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ABSTRACT 
 
Aldosterone is crucial for regulating sodium 
conservation in the kidney, salivary glands, sweat 
glands, and colon. This adrenal steroid hormone acts 
via the mineralocorticoid receptor (MR) to promote 
active transport of sodium and potassium excretion in 
its target tissues, through activation of specific 
amiloride-sensitive sodium channels (ENaC) and a 
Na-K ATP-ase pump. Defective aldosterone 
biosynthesis or action results in various clinical and 
laboratory test manifestations, such as hypotension, 
hyponatremia, hyperkalemia, and acidosis. Primary 
adrenal insufficiency and congenital adrenal 
hypoplasia are discussed in other chapters. In this 
chapter the mechanisms underlying aldosterone-
deficient conditions, such as hyporeninemic 
hypoaldosteronism, primary hypoaldosteronism, 
including aldosterone synthase deficiency (ASD), 
acquired forms of the disease, and 
pseudohypoaldosteronism, an aldosterone resistance 
syndrome due to insensitivity of target tissues to 
aldosterone, are reviewed.  
 

INTRODUCTION 
 
Aldosterone is crucial for sodium conservation in the 
kidney, salivary glands, sweat glands, and colon. 
Aldosterone is synthesized exclusively in the zona 
glomerulosa of the adrenal gland. Destruction or 
dysfunction of the adrenal gland in conditions such 
as primary adrenal insufficiency, congenital adrenal 
hypoplasia, isolated mineralocorticoid deficiency, 
acquired secondary aldosterone deficiency 
(hyporeninemic hypoaldosteronism), acquired 
primary aldosterone deficiency, and inherited 
enzymatic defects in aldosterone biosynthesis cause 
clinical symptoms and laboratory characteristics 
owing to aldosterone deficiency. 
Pseudohypoaldosteronism is an aldosterone 
resistance syndrome i.e. a condition due to the 
insensitivity of target tissues to aldosterone. In this 
chapter, aldosterone-deficiency conditions other than 
primary adrenal insufficiency and congenital adrenal 
hypoplasia are reviewed. 
 
ALDOSTERONE BIOSYNSTHESIS 
 
All human steroid hormones are derived from 
cholesterol. Aldosterone is synthesized in the zona 
glomerulosa of the adrenal cortex through four 
enzymes, cholesterol desmolase (CYP11A1), 21-
hydroxylase (CYP21A2), aldosterone synthase 
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(CYP11B2), and 3β-hydroxysteroid dehydrogenase 
(3β-HSD) (Figure 1). CYP11A1, CYP21A2 and 
CYP11B2 are cytochrome 450 enzymes (CYP), 
which are membrane-bound, heme-containing 
enzymes that accept electrons from NADPH through 
accessory proteins and use molecular oxygen to 
perform hydroxylation or other oxidative conversions 
(1). CYP11A1, which is a side-chain cleavage 
enzyme, cleaves the side chain from C21 of 
cholesterol, converting cholesterol to pregnenolone in 
adrenal mitochondria and this is the first step in 
steroidogenesis. The CYP11A1 gene is located on 
the long arm of human chromosome 15q24-q25 (2). 
Pregnenolone is returned to the cytosolic 
compartment and is converted to progesterone by 
3β-HSD. Progesterone is then hydroxylated at C21 
by CYP21A2, an enzyme located in the smooth 
endoplasmic reticulum, to yield deoxycorticosterone 
(DOC). The CYP21A2 gene is located on the short 
arm of human chromosome 6 (3). Only CYP21A2 is 
active in humans, the other, CYP21A1P is a 
pseudogene (4). CYP11B1, which is a mitochondrial 

enzyme, catalyzes β-hydroxylation at C11 and 
converts DOC to corticosterone. The terminal two 
steps in the conversion of corticosterone to 
aldosterone (18-hydroxylation and 18-
methyloxidation) are catalyzed by CYP11B2 
(aldosterone synthase) (5) which was previously 
named corticosterone 18-hydroxylase/18-
methyloxidase (CMO I/CMO II) or 18-
hydroxylase/isomerase. These two steps previously 
proposed to be catalyzed by separate enzyme, CMO 
1 and II, are known to involve only one enzyme 
substrate interaction, aldosterone synthase encoded 
by CYP11B2 gene (6). The CYP11B1 and CYP11B2 
genes are located on the long arm of chromosome 8 
and the amino acid sequence of CYP11B2 shares 
more than 90% homology with that of CYP11B1 (7). 
In humans, the expression of CYP11B1 and 
CYP11B2 in the adrenal glands is spatially 
separated. While expression of CYP11B1 takes 
place in the zona reticularis/fasciculata, CYP11B2 
expression and aldosterone synthesis are restricted 
to the zona glomerulus (8). 
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FIGURE 1. ALDOSTERONE BIOSYNTHESIS. ALDOSTERONE IS DERIVED FROM CHOLESTEROL. 
BIOSYNTHETIC PATHWAY OF ALDOSTERONE AND STRUCTURE OF ADRENAL STEROIDS AND 
THEIR BIOSYNTHETIC PRECURSORS ARE SHOWN IN THE FIGURE. THE ENZYMES THAT CATALYZE 
EACH STEP ARE LISTED IN THE ADJACENT BOX AT THE RIGHT SIDE OF THE FIGURE. 
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EPIGENETIC REGULATION OF CYP11B2 
EXPRESSION 
 
CYP11B2 gene expression is epigenetically 
controlled. DNA methylation at CpG dinucleotides 
alter gene expression by affecting transcription factor 
binding activity (9). Cyclic AMP responsive element 
binding protein 1 (CREB 1) /ATF family members and 
nuclear receptor subfamily 4, group A (NR4A) 
members bind the CYP11B2 promoter at Ad1  (cAMP 
response element at -71/-64) and Ad5 (cAMP 
response element at -129/-114), respectively, leading 
to activation of transcription. DNA methylation at 
CpG1 greatly decreased CREB 1 binding to Ad1 in 
the promoter lesion of CYP11B2  gene (10). In 
addition, DNA methylation at CpG2 reduced basal 
binding activities of NR4A1 and NR4A2 with Ad5 by 
30% and 50%, respectivly (10). Ang II infusion in the 
rat decreased the methylation ratio of CYP11B2 gene  
and increased gene expression in the adrenal gland 
(10). A low-salt diet induced hypomethylation of rat 
CYP11B2 and increased CYP11B2 mRNA levels 
parallel with aldosterone synthesis (10). 
 
REGULATION OF ALDOSTERONE SECRETION 
 
Aldosterone secretion is regulated by multiple 
factors. The renin-angiotensin system and potassium 
ion are the major regulators, whereas ACTH and 
other POMC peptides, sodium ion, vasopressin, 
dopamine, ANP, β-adrenergic agents, serotonin and 
somatostatin are minor modulators. 
 
The Renin-Angiotensin System 
 
Renin is a 430 amino acid enzyme that cleaves renin 
substrate or angiotensinogen, which is a 453 amino 
acid alpha-globulin product of the liver, to produce 
the decapeptide, angiotensin I. Angiotensin I is 
rapidly cleaved by angiotensin-converting enzyme 

(ACE) in the lung and other tissues to form the 
octapeptide, angiotensin II. Moreover, 
angiotensinase cleaves the NH2-terminal Asp 
residue from angiotensin II and produces the 
heptapeptide, angiotensin III, then to the hexapeptide 
angiotensin IV. The circulating levels of angiotensin 
III are 15 to 25% of those of angiotensin II. 
Angiotensin II, III and IV stimulate aldosterone 
secretion and vasoconstriction, while angiotensin II is 
more potent for vasoconstriction. The angiotensins 
are inactivated within minutes by tissue and plasma 
peptidase. The levels of the circulating renin are the 
rate-limiting factor in this process. 
 
Renin is synthesized by the juxtaglomerular cells in 
the renal cortex and its secretion is controlled by 
renal arterial blood pressure, sodium concentrations 
of tubular fluid sensed by the macula densa, and 
renal sympathetic nervous activity (11). Factors that 
decrease renal blood flow, such as hemorrhage, 
dehydration, salt restriction, upright posture, and 
renal artery narrowing, increase renin levels. In 
contrast, factors that increase blood pressure, such 
as high salt intake, peripheral vasoconstrictors, and 
supine posture, decrease renin levels. Hypokalemia 
increases and hyperkalemia decreases renin release. 
 
The effect of angiotensin II and III on the adrenal 
glomerulosa is initiated by binding to G-protein 
coupled receptors. The first mechanism of the 
intracellular signal transduction is activation of 
phospholipase C, which hydrolyzes PIP2 to IP3, 
which then releases intracellular calcium ions (12). 
Interestingly, angiotensin II does not stimulate 
adenylate cyclase activity. Angiotensin II stimulation 
leads to increased transfer of cholesterol to the inner 
mitochondrial membrane and increased conversion 
of cholesterol to pregnenolone and corticosterone to 
aldosterone (13). 
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Potassium 
 
Potassium directly increases aldosterone secretion 
by the adrenal cortex and aldosterone then lowers 
serum potassium by stimulating its excretion by the 
kidney. High dietary potassium intake increases 
plasma aldosterone and enhances the aldosterone 
response to a subsequent potassium or angiotensin 
II infusion (12). The primary action of potassium for 
stimulating aldosterone secretion is to depolarize the 
plasma membrane, which activates voltage-
dependent calcium channels, that permit influx or 
efflux of extracellular calcium (12–14), leading to the 
activation of calmodulin and calmodulin-dependent 
kinase, subsequently. The activated kinase 
phosphorylates both activating transcription factor 
and members of CRE-binding protein family which 
bind to 5’ flanking promotor regions of the CYP11B2 
gene and trigger gene transcription in the zona 
glomerulosa, followed by increased aldosterone 
biosynthesis (13,14). 
 
Pituitary Factors 
 
ACTH and possibly other POMC-derived peptides, 
including α-MSH, α-MSH, β-LPH, and β-END, 
influence aldosterone secretion, however, the role of 
ACTH in aldosterone secretion is minor (12). ACTH 
increases aldosterone secretion by binding to 
glomerulosa cell-surface melanocortin-2 receptor, by 
activating adenylate cyclase, and increasing 
intracellular cAMP (15). Like other agents, ACTH 
stimulates the same two early and late steps of 
aldosterone biosynthesis. 
 
Vasopressin has a modest and transient stimulatory 
effect on aldosterone secretion from zona granulosa 
cells in vitro. This effect is probably mediated via V2 
receptors and phospholipase C generating IP3 and 
diacylglycerol (16). 
 

Sodium 
 
Sodium intake influences aldosterone secretion by an 
indirect effect through renin and to a minor extent by 
direct effects on zona glomerulosa responsiveness to 
angiotensin II. High sodium intake increases vascular 
volume, which suppresses renin secretion and 
angiotensin II generation and decreases the 
sensitivity of aldosterone response to angiotensin II. 
 
Inhibitory Agents 
 
Dopamine inhibits aldosterone secretion in humans 
by a mechanism that is independent of the effects of 
prolactin, ACTH, electrolytes, and the renin-
angiotensin system (17,18). This inhibitory effect may 
involve binding to D2 receptors on glomerulosa cells 
(19). Atrial natriuretic peptide (ANP) directly inhibits 
aldosterone secretion and blocks the stimulatory 
effects of angiotensin II, potassium and ACTH, at 
least in part, by interfering with extracellular calcium 
influx (20). 
 
MECHANISMS OF ALDOSTERONE ACTION  
 
EFFECT OF ALDOSTERONE 
 
Aldosterone is crucial for sodium conservation in the 
kidney, salivary glands, sweat glands, and colon. 
Aldosterone promotes active sodium transport and 
excretion of potassium in its major target tissues. It 
exerts its effects via the mineralocorticoid receptor 
(MR) and the resultant activation of specific 
amiloride-sensitive sodium channels (ENaC) and the 
Na-K ATP-ase pump (21). Aldosterone and the MR 
may be involved in the regulation of genes coding for 
the subunits of the amiloride sensitive sodium 
channel and the Na-K ATP-ase pump, serum and 
glucocorticoid regulated kinase (SGK), channel-
inducing factor, as well as of other proteins (22,23). 
Activated SGK1 phosphorylates the neural precursor 
cell-expressed, developmentally down-regulated 
protein 4-2 (Nedd4-2) which allows binding of 14-3-3 
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proteins (24). Then, the interaction of Nedd4-2 and 
ENaC causes an accumulation of ENaC at the 
plasma membrane and enhances epithelial sodium 
transport by increasing open probability of ENaC. In 
a later phase translation and allocation of ENaC, 
basolateral Na-K ATP-ase and apical K channel 
(ROMK) are enhanced in its target tissues (25–27).  
 
On the other hand, rapid effects in response to 
aldosterone but independent of the MR were 
described as so-called non-genomic or rapid 
signaling of aldosterone. The G protein-coupled 
estrogen receptor (GPER) [previously known as G 
protein-coupled receptor 30 (GPR30)], a member of 
the seven transmembrane domain family of cell 
surface receptors, has been reported to be a 
membrane receptor for aldosterone (28). The 
expression of GPER is ubiquitous, including in 
vascular cells (both endothelial cells and smooth 
muscle cells) and is required for rapid MR-
independent effects of aldosterone in vascular 
smooth muscle cells (28). Aldosterone has both 
vasodilator and vasoconstrictor effects. The effect of 
aldosterone on endothelial function would vary 
depending on the balance between GPER and MR 
expression. In vascular endothelial cells, aldosterone 
activation of GPER mediates vasodilation, while 
activation of endothelial MR has been linked to 
enhanced vasoconstrictor and/or impaired 
vasodilator response (28–30). 
 
Mineralocorticoid Receptor 
 
The mineralocorticoid receptor (MR) is found in the 
cytoplasm and nucleus and the sodium channels are 
expressed in the apical membrane of epithelial cells 
of the distal convoluted tubule as well as in cells of 

other tissues involved with conservation of salt, such 
as colon, sweat glands, lung, and tongue. MR is a 
member of the nuclear receptor superfamily. 
Together with the glucocorticoid, progesterone, and 
androgen receptors, MR forms the steroid receptor 
subfamily (30). Steroid receptors display a modular 
structure comprised of five regions (A-E). The N-
terminal A/B region harbors an autonomous 
activation function. The central C region, 
corresponding to the DNA-binding domain, is highly 
conserved and is composed of two zinc fingers 
involved in DNA binding and receptor dimerization. 
The D region is a hydrophilic region and it forms a 
hinge between DNA-binding domain and ligand-
binding domain. The E region corresponds to the C-
terminal ligand-binding domain and mediates 
numerous functions, including ligand binding, 
interaction with heat-shock proteins, dimerization, 
nuclear targeting, and hormone-dependent activation 
(31) (Figure 2). The human MR (hMR) and human 
glucocorticoid receptor (hGR) have almost identical 
DNA-binding domains (94% homology in the amino 
acid) and very similar ligand-binding domains (57%), 
but divergent N-terminal A/B regions (<15%) (32). 
The hMR gene was mapped on chromosome 4q31.1-
31.2 (33,34) and hMR cDNA encodes a 107 
kilodalton polypeptide with 984 amino acids (32). The 
hMR gene consists of 10 exons, including two exons 
1 that encode different 5'-untranslated sequences 
(35). Expression of the two different hMR variants is 
under the control of two different promoters that 
contain no obvious TATA element, but multiple GC 
boxes. Both hMRα and hMRβ mRNAs are expressed 
at approximately the same level in the 
mineralocorticoid target tissues (36). 

 



 
 
 

 

www.EndoText.org   7 

 
Figure 2. The linearized structures of the mineralocorticoid receptor gene, mRNAs and protein. The MR 
gene consists of 10 exons. The MR has two exons 1 (exon 1α and exon 1β), each with an alternative 
promoter; however, the finally translated MR protein is the same. Exons 1 are untranslated regions, 
exon 2 codes for the immunogenic domain (A/B), exons 3 and 4 for the DNA-binding domain (C), and 
exons 5-9 for the hinge region (D) and the ligand-binding domain (E) (37) 
 
Molecular and Cellular Mechanisms of the 
Aldosterone Action 
 
MRs in its unliganded state is located in the 
cytoplasm, as part of hetero-oligomeric complexes 
containing heat shock proteins 90, 70 and 50 (38). 
Upon binding with their ligand, the receptor-ligand 
complex dissociates from the heat shock proteins, 

homo- or heterodimerizes and translocates into the 
nucleus. Homodimers or heterodimers of the MR 
interact with hormone-responsive elements (HRE) 
and/or other transcription factors in the promoter 
regions of target genes, including the subunits of the 
ENaC or other proteins related to this channel and 
sodium transport in general, and modulates the 
transcription rates of these genes (39) (Figure 3). 
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Figure 3. Mechanism of aldosterone action on sodium reabsorption at the distal convoluted tubule of 
the nephron. Aldosterone binds to the MR, which is located in the cytoplasm in complex with heat 
shock proteins 90, 70 and 50. After binding, the receptor-ligand complex translocates into the nucleus, 
binds to hormone-responsive elements (HRE) of target genes where it modulates their transcription 
rate. Amiloride-sensitive sodium channel (ENaC) subunits or other related proteins may be targets of 
such regulation (40). 
 
Pre-Receptor Regulation 
 
Since cortisol circulates at plasma concentrations 
several orders of magnitude higher than those of 
aldosterone does, and since it has a high affinity for 
the MR, it would be expected to overwhelm this 
receptor in mineralocorticoid target tissues and cause 
mineralocorticoid excess. A local enzyme, 11β-
hydroxysteroid dehydrogenase type 2 (11β-HSD2), 
however, converts active cortisol to inactive 
cortisone, and protects the MRs from the effects of 
cortisol (40) 11β-HSD catalyzes the inter-conversion 
of hormonally active C11-hydroxylated 
corticosteroids (cortisol in humans or corticosterone 
in rodents) and their inactive C11-keto metabolites 
(cortisone in humans or 11-dehydrocorticosterone in 
rodents). Two isozymes of 11β-HSD have been 

identified, 11β-HSD type 1 (11β-HSD1) and 11β-
HSD2, which differ in their biological properties and 
tissue distributions. 11β-HSD2, a potent NAD-
dependent 11β-hydrogenase, rapidly inactivates 
glucocorticoids. The human 11β-HSD2 gene 
encodes 405 amino acids and its molecular weight is 
approximately 40-kilodalton (41). 11β-HSD2 has a 
hydrophilic N-terminal domain that is thought to 
anchor the protein into membranes (42). 11β-HSD2 
is localized as a dimer in the nucleus and cytoplasm 
of cells of the cortical collecting duct and colon 
(42,43). Prednisolone and prednisone are substrates 
for both 11β-HSD isozymes (44,45) and 
dexamethasone is metabolized slightly by 11β-HSD2 
(46). Licorice derivatives, such as glycyrrhizic acid, 
and the hemisuccinate derivative carbenoxolone are 
inhibitors of 11β-HSD2. Inhibition of 11β-HSD2 with 
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such agents, confers mineralocorticoid potency to 
physiologic concentrations of endogenous 
glucocorticoids in the kidney and colon (47). Thus, in 
normal physiology, 11β-HSD2 protects the MR by 
converting cortisol to the inactive cortisone and 
allows aldosterone-selective access to the inherently 
nonselective MR in mineralocorticoid target tissues. 
 
Amiloride-Sensitive Sodium Channel (Epithelial 

Sodium Channel; ENaC) 
 
The cDNA of the α-subunit of the ENaC (αENaC) 
was cloned from the rat colon in 1993 (48) and soon 
after the cDNAs of the β- and γ-subunits of this 
channel were cloned for the same species (49). The 
human α-, β- and γ-subunits of ENaC were also 
cloned (50,51). In vitro studies demonstrated that the 
α subunit of the ENaC itself had the majority of Na 
channel function, while, the β- and γ- subunits alone 
were not shown to play as major a role in sodium 
transport (48). However, the β- and γ-subunits 
enhanced the function of the α-subunit and all 
subunits are required for full ENaC activity (52). It 
appears then that this channel consists of the α-, β- 
and γ-subunits and an amiloride-binding protein 
(Figure 4). Aldosterone increases transcription of 
αENaC but not β- and γ-subunits, resulting enhanced 
channel assembly and transported from endoplasmic 
reticulum to Golgi (53). In Golgi, furin proteolytically 
cleaves specific sites in the extracellular domains of 
α- and γ-ENaC, resulting in channel activation. At the 
cell surface, Nedd4-2 binds to ENaC, increasing 
endocytosis and degeneration (54).The proline-rich 
region of the C-terminal of the αENaC is important for 
binding to α-spectrin and for stabilization of the 
sodium channel in the membrane (55). Recently, 
several studies demonstrated abnormalities of the β- 
and γ-subunits of the ENaC in patients with Liddle's 
syndrome, characterized by mineralocorticoid excess 
(hypertension and hypokalemic alkalosis), and 
suppressed aldosterone secretion (56–59). The 
truncation caused by these mutations influenced the 
PY motif at the N-terminal of the molecule. This motif 

is responsible for the binding of the channel subunits 
with NEDD4, a carrier protein facilitating clearance of 
the channel (60). Moreover, a point mutation of the 
αENaC gene, located close to the N-terminal of the 
protein, was reported to cause a decrease of the 
probability of an open sodium channel, resulting in 
defective reabsorption (40,61). 
 
The ENaC-Regulatory Complexes in Aldosterone-

Mediated Sodium Transport 
 
Aldosterone-induced trans-epithelial Na+ transport 
via ENaC involves the coordinate functioning of 
stimulatory signaling proteins such as serum- and 
glucocorticoid-induce kinase-1 (SGK1) (23,62), 
glucocorticoid-induced leucine zipper protein-1 
(GILZ1) (63) and connector enhancer of kinase 
suppressor of Ras 3 (CNK3) (64), with inhibitory 
proteins, such as neural precursor cell expressed, 
developmentally downregulated protein (Nedd4-2) 
(24) and extracellular signal-regulated kinase (ERK) 
1/2 (23,24,62,65). 
 
SGK1 is an aldosterone-regulated protein kinase that 
stimulates renal ENaC through many mechanisms. 
First, SGK1 phosphorylates the E3 ubiquitin ligase 
and Nedd4-2, and inhibits its actions. Nedd4-2 
interacts with the C-terminal tail of ENaC subunits, 
decrease surface expression of the channel via 
channel ubiquitinoylation (23,24,62). Second, SGK1 
phosphorylates kinase with no lysine (WNK) 4 and 
prevents ENaC endocytosis (66). Third, SGK1 
directly phosphorylates alpha ENaC and transforms 
silent ENaC channels to active ones (67). Then, 
SGK1 alters ENaC expression, trafficking and 
activity, and stimulates Na+ transport in the kidney 
cortical collecting duct (CCD) (68). However, SGK1 is 
a short-lived protein. Following synthesis, SGK1 is 
rapidly targeted to the endoplasmic reticulum (ER), 
where ER-associated ubiquitin ligases CHIP and 
HRD1 aid in its ubiquitinoylation and subsequent 
proteasome-mediated degradation (69). Another 
aldosterone-induced ENaC-regulator, GILZ, which 
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protects SGK1 from rapid ER-associated degradation 
by controlling protein-protein interaction (53.6). In 
kidney CCD, GILZ1 is robustly induced by 
aldosterone (70). GILZ1 stimulates ENaC cell surface 
expression and activity at least in part by inhibiting 
ERK1/2, which abrogates ENaC function (65,71,72). 
 
The recently identified MR target gene CNKSR3 
(connector enhancer of kinase suppressor of Ras 3), 
commonly referred as CNK3, is highly expressed in 
the connecting tubule (CNT) and the CCD (73). 
CNK3, like SGK1 and GILZ1, is rapidly induced by 
physiological concentrations of aldosterone (64). 
CNK3 acts to assembly various ENaC-regulatory 
components in close vicinity of the channel and 
thereby exerts its stimulatory effects on channel 
function (74). 
 
Epigenetic Control of  ENaC Transcription by 

Aldosterone-Sensitive Dot1A-Af9 Complex 
 
Chromatin regulates gene transcription by the post-
translational modification of histone N-terminal tails 
such as acetylation and methylation. The histone H3 
Lys 79 methyltransferase disruptor of telomeric 
silencing alternative splice variant a (Dot1a) 
methylates histone H3 Lys79, which resides in the 
globular domain (75). ALL-1 fused gene from 

chromatin 9 (Af9), putative transcription factor, 
physically and functionally interact with Dot1a to form 
a nuclear repressor complex that directly or indirectly 
binds specific site of the alpha ENaC promoter. 
Aldosterone reduces the level of Af9 mRNA and 
protein. Then, Af9 overexpression induces 
hypermethylation of histone H3 Lys 79 and 
repression of alpha ENaC transcription (76). 
Aldosterone impairs the formation of Dot1a -Af9 
complex associated with alpha ENaC promoter by 1) 
decreasing abundance of Dot1a and Af9; 2) 
attenuating the interaction between Dot1a and Af9 
via Sgk-1-catalyzed phosphorylation of Af9 at Ser 
435; 3) counterbalancing the repression through 
binding to mineralocorticoid receptor (MR) and 
facilitating its translocation into the cell nucleus, 
where MR and Dot1a compete for binding to Af9.  
These are aldosterone-dependent and -independent 
mechanisms for Dot1a-Af9-mediated repression of 
alpha ENaC transcription. While aldosterone -
independent de-repression achieved through the 
action of ALL-1 fused gene from chromatin 17 (Af17), 
Af17 upregulates alpha ENaC transcription by 
decreasing Af9 binding to Dot1a and relieving Dot1a-
Af9-mediated repression of ENaC (77). 4) SGK1 
phosphorylates Af9, thus, down-regulating Dot1a-Af9 
complex, and relieving the basal repression on alpha 
ENaC transcription (67,78). 
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Figure 4. Model of a putative amiloride-sensitive sodium channel (ENaC). The amiloride-sensitive 
sodium channel appears to consist of the α-, β- and γ- subunits and an amiloride-binding protein. This 
channel is located at the apical site of the renal epithelium and plays a role in passive sodium 
transport, which is mainly regulated by mineralocorticoids (79). 
 
THE RENIN-ANGIOTENSIN-ALDOSTERONE 
SYSTEM IN NEWBORNS AND INFANTS                  
 
Aldosterone secretion rate of newborns and infants 
was similar to that of older children and adults. 
Therefore, the aldosterone secretion rate corrected 
by body surface was much higher in infancy than 
later in life (80). Urinary aldosterone at birth depends 
on gestational age and increases progressively, 
concurrently with the levels of plasma aldosterone. 
Plasma renin activity, plasma aldosterone and 
urinary excretion rate of aldosterone decrease with 
age (81). At  birth, human kidneys display tubular 
immaturity leading to sodium wasting and impaired 
ability to reabsorb water. Past studies showed that 
plasma potassium concentrations were significantly 
higher in newborns than in their respective mothers, 

while neonatal and maternal plasma sodium 
concentrations were closely related. Aldosterone and 
renin levels in newborns differs significantly from the 
corresponding maternal concentrations (82). The 
aldosterone-renin ratio significantly increases with 
gestational age. Thus, neonatal partial aldosterone 
resistance was previously suggested because of the 
high urinary sodium loss in the presence of 
hyperactivity of the renin-angiotensin-aldosterone 
system (83). Previous study found that the highest 
aldosterone levels detected in the cord blood 
originated from de novo synthesis by the fetal 
adrenal glands (84). In addition, neonatal aldosterone 
resistance was associated with weak or undetectable 
renal MR expression at birth. MR mRNA is transiently 
expressed between 15 and 24 weeks of gestation, 
but it is undetectable in late gestational age and 
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neonatal kidney (85). 11 beta-hydroxysteroid 
dehydrogenase type 2 (11 beta HSD2) and alpha 
ENaC are closely correlated with cyclic MR 
expression. 
 
CLASSIFICATION OF HYPOALDOSTERONISM 
 

Various syndromes are characterized by or 
associated with hypoaldosteronism. 
Hypoaldosteronism is classified in three large 
categories, defective stimulation of aldosterone 
secretion, primary defects in adrenal synthesis or 
secretion of aldosterone, and aldosterone resistance, 
according to their pathophysiology and summarized 
in Table 1. 

 
Table 1. Causes of Hypoaldosteronism and Hormonal Profiles 
Causes of Hypoaldosteronism Hormonal Profiles 
DEFECTIVE STIMULATION OF ALDOSTERONE 
v Congenital keep tablehyporeninemic 

hypoaldosteronism 
v Acquired hyporeninemic hypoaldosteronism 

Ø Associated with diabetes mellitus 
Ø Associated with nephropathy 
Ø Glomerulonephritis 
Ø Gouty nephritis 
Ø Pyelonephritis 
Ø Nephropathy associated with multiple myeloma 
Ø Nephropathy associated with systemic lupus 

erythematosa 
Ø Mixed cryoglobulinemia 
Ø Nephrolithiasis 
Ø Analgesic nephropathy 
Ø Renal amyloidosis 
Ø Iga nephropathy 

v Associated with autonomic insufficiency 
v Associated with liver cirrhosis 
v Associated with sickle cell anemia 
v Associated with acquired immune deficiency 

syndrome 
v Associated with polyneuropathy, organomegaly, 

endocrinopathy, m protein and skin changes 
syndrome 

v Lead poisning 
v Excess sodium bicarbonate 
v Sjogren's syndrome 
v Drugs interfering with renin production 

Ø Β-blocker 
Ø Prostaglandin synthetase inhibitors 

Low plasma renin;  
Low plasma and urinary 
aldosterone 
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Ø Non-steroidal anti-inflammatory drugs 
Ø Calcium channel blocker 

v Other drugs 
Ø Cyclosporin a 
Ø Mitomycin c 
Ø Cosyntropin 

Drugs interfering with angiotensin ii production 
Ø Angiotensin ii converting enzyme inhibitors 

High plasma renin; low plasma 
aldosterone; low angiotensin ii 

PRIMARY DEFECTS IN ADRENAL SECRETION OF ALDOSTERONE 
Combined with defective cortisol synthesis 

a) Congenital causes 
Ø Congenital adrenal hypoplasia (dax-1 mutation) 
Ø Congenital adrenal hyperplasia 

§ Cholesterol desmolase deficiency (lipoid 
adrenal hyperplasia) 

§ 3β-hydroxysteroid dehydrogenase deficiency 
§ 21-hydroxylase deficiency 
§ 11β-hydroxylase deficiency 

 
Adrenoleukodystrophy, adrenomyeloneuropathy 

Low plasma renin; low plasma 
aldosterone; low plasma cortisol  
 
 
 
 
 
 
High plasma deoxycorticosteorne 

b) Acquired causes 

Ø Autoimmune adrenal destruction 
• Addison's disease 
• Multiple autoimmune endocrinopathy 

Ø Infectious adrenal destruction 

• Bacterial infection 

• Fungal infection 
Ø Infiltration of adrenal glands 

• Amyloidosis 
• Hemochromatosis 
• Sarcoidosis 
• Metastatic or infiltrative malignant disease 

Ø Bilateral adrenalectomy 
Ø Drug induced 

§ Mitotane 
§ Aminoglutethimide 
§ Torilostane  
§ Ketoconazole 

Low plasma renin; low plasma 
aldosterone; low plasma cortisol 

v Isolated deficiency of aldosterone secretion 
Ø Congenital causes 

High plasma renin; low plasma 
aldosterone 
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§ Cyp11b2 (aldosterone syntase) deficiency 
¨ Corticosterone methyloxidase type i 

(cmo i) deficiency 
 

¨ Corticosterone methyloxidase type ii 
(cmo ii) deficiency 

¨  

 
Normal plasma 18-
hydroxycorticosterone/aldosterone 
ratio 
High plasma 18-
hydroxycorticosterone/aldosterone 
ratio 

Ø Acquired causes 
§ Critically ill patients associated with 

hypotension or hypovolemia 
¨ Sepsis 
¨ Pneumonia 
¨ Peritonitis 
¨ Cholangitis 
¨ Liver failure 

• After removal of mineralocorticoid 
secreting adrenal tumor 

• Discontinuation of agents with 
mineralocorticod activity 

• Heparin or chlorbutol administration 

 
Low plasma aldosterone 
concentration; inappropriate 
elevated plasma renin 

DEFECTIVE ALDOSTERONE ACTION 
v Pseudohypoaldosteronism (pha) type 1 

Ø Renal (autosomal dominant pha) 
Ø Systemic pha (autosomal recessive pha) 

v Secondary pseudohypoaldosteronism 
§ Associated with urinary tract infection 
§ Associated with medication that blocks 

epithelial sodium channel (enac) 
¨ Amiloride  
¨ Triamterene  
¨ Trimethoprim 
¨ Pentamidine 

§ Administration of aldosterone antagonists 
¨ Spironolactone 
¨ Progesterone 
¨ 17-hydroxyprogesterone 
¨ Synthetic progestin 

§ Drugs that may lead to aldosterone 
resistance 

                Caludinerin inhibitor (cyclosporin a, tacrolimus) 

High plasma renin; high plasma 
and urinary aldosterone 
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Defective Stimulation of Aldosterone 
 
The first category of conditions, which is 
characterized by defective stimulation of aldosterone 
secretion, includes the syndromes of congenital and 
acquired hyporeninemic hypoaldosteronism. One of 
these conditions is due to a defect of renin secretion 
such as hyporeninemia resulting from β-blockers, 
prostaglandin synthetase inhibitors, and calcium 
channel blockers. Another condition is due to 
decrease in the conversion of angiotensin I to 
angiotensin II mediated by converting enzyme 
inhibitor medications and is associated with 
hyperreninemia. 
 
Primary Defects in Adrenal Biosynthesis or 

Secretion of Aldosterone 
 
The second category of conditions, which are 
characterized by primary defects in adrenal synthesis 
or secretion of aldosterone, includes all causes of 
primary adrenal insufficiency and primary 
hypoaldosteronism caused by aldosterone synthase 
(CYP11B2) deficiency or as an acquired state. 
Primary adrenal insufficiency causes include 
congenital adrenal hypoplasia, congenital adrenal 
hyperplasia, adrenoleukodystrophy/ 
adrenomyeloneuropathy, acquired adrenal 
insufficiency due to autoimmune, infectious and 
infiltrative disease, bilateral adrenalectomy and use 
of adrenolytic agents and enzyme inhibitors that 
block cortisol and aldosterone biosynthesis. These 
conditions are usually combined with defective 
cortisol synthesis. Aldosterone synthase (CYP11B2) 
deficiency (ASD) leads to reduced aldosterone 
production associated with low or high levels of 18-
hydroxycorticosterone, referred to as CMO I or CMO 
II deficiency, respectively. Several conditions may be 
associated with aldosterone biosynthetic activity. 

Heparin suppresses aldosterone synthesis. Critically 
ill patients with persistent hypovolemia and 
hypotension also have inappropriately low plasma 
aldosterone concentrations in relation to the activity 
of the renin-angiotensin system. Isolated primary 
hypoaldosteronism in occasionally associated with 
metastatic cancer of the adrenal gland. 
 
Defective Aldosterone Actions 
 
The third category which is characterized by 
defective aldosterone action includes syndromes of 
aldosterone resistance such as 
pseudohypoaldosteronism type 1 and sodium-
wasting states resulting from excessive amounts of 
circulating mineralocorticoid antagonists, such as 
spironolactone and its analogues, and synthetic 
progestin or natural agonists, such as progesterone 
or 17-hydroxyprogesterone. These mineralocorticoid 
antagonists may antagonize aldosterone at the levels 
of mineralocorticoid receptor (86) and frequently, 
these states are compensated for by elevated 
concentrations of plasma aldosterone. 
 
HYPORENINEMIC HYPOALDOSTERONISM 
 
The most common form of isolated 
hypoaldosteronism is caused by impaired renin 
release from the kidney. Hudson et al. first described 
this syndrome in 1957 (87), however, hyporeninemia 
was first recognized in 1972 (88) (89). The typical 
patient is 50 to 70 years old and usually presents 
with chronic and asymptomatic hyperkalemia and 
mild to moderate renal insufficiency with a 40-70% 
decrease in the glomerular filtration rate when 
compared to that of age matched healthy subjects. 
Hyperchloremic metabolic acidosis is seen in 
approximately half of the patients. This acidosis is 
classified as a renal tubular acidosis type IV (90). 
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The acidosis is a consequence of decreased renal 
ammonia neogenesis, reduced hydrogen ion-
secretory capacity in the distal nephron, and mild 
reduction in the proximal tubular threshold for 
bicarbonate reabsorption. Occasionally, muscle 
weakness or cardiac arrhythmias are present in 
some patients. More than a half of the patients have 
diabetes mellitus (91). Other frequently associated 
states include autonomic neuropathy, hypotension, 
and various nephropathies such as 
glomerulonephritis, gouty nephropathy, and 
pyelonephritis. Also, this syndrome is associated with 
nephropathies associated with multiple myeloma and 
systemic lupus erythematosus, mixed 
cryoglobulinemia, nephrolithiasis, analgesic 
nephropathy, renal amyloidosis, IgA nephropathy, 
cirrhosis, sickle cell anemia, acquired immune 
deficiency syndrome (AIDS), polyneuropathy, 
organomegaly, endocrinopathy, M protein and skin 
changes (POEMS) syndrome, lead poisoning, excess 
sodium bicarbonate, and Sjogren’s syndrome 
(90,92–101) . Moreover, this syndrome occurs 
transiently in association with use of non-steroidal 
anti-inflammatory drugs, cyclosporin A, mitomycin C, 
cosyntropin, and other agents in susceptible 
individuals (102–104). 
 
Pathophysiology 
 
Urinary aldosterone excretion is low under basal 
conditions and fails to increase after sodium 
restriction. Plasma renin activity is also low and does 
not increase appropriately during sodium restriction, 
periods of prolonged upright posture, or diuretic 
administration (88). Interstitial renal disease and 
damage to the juxtaglomerular apparatus seems the 
most likely cause for the primary defect in renin 
generation or release and secondary deficiency of 
aldosterone. However, in some patients with this 
syndrome there is an absent or blunted aldosterone 
response to angiotensin II (94,104), suggesting a 
coexisting primary defect in aldosterone secretion or 

it reflects atrophy of the zona glomerulosa caused by 
chronic renin deficiency. 
There are various mechanisms to be explained for 
the hyporeninemia. First possible mechanism is the 
hypervolemia. The expanded extracellular fluid 
volume due to hypertension may suppress renin. In 
fact, long-term sodium restriction and diuretic 
administration increase plasma renin activity in these 
patients, however, the increments of plasma renin 
activity are less than those of normal subjects (97). A 
second possible mechanism is insufficiency of the 
autonomic nervous system, particularly in patients 
with diabetic neuropathy. Impaired adrenergic 
response to postural change may contribute to 
insufficient renin release. Besides, these patients 
exhibit decreased sensitivity to β-adrenergic 
agonists, suggesting defects in both production and 
action of catecholamines (96). A third proposed 
mechanism is secretion of abnormal forms of renin, 
such as a defect in the conversion of prorenin to 
renin. Insufficiency of autonomic nervous system 
may be associated with impaired conversion of 
prorenin to renin. Indeed, patients with diabetes 
mellitus and autonomic neuropathy have elevated 
plasma levels of prorenin (105). A fourth possibility is 
prostaglandin deficiency. Production of prostaglandin 
I2 (prostacyclin), which mediates renin release, is 
apparently diminished in patients with hyporeninemic 
hypoaldosteronism as assessed by measurement of 
the stable urinary metabolite 6-keto-prostaglandin 
F1α (95). Furthermore, the prostaglandin I2 in these 
patients was unresponsive to the potent stimulator’s 
norepinephrine and calcium. Prostaglandin I2 
deficiency may cause hyporeninemic 
hypoaldosteronism by causing defects in the 
conversion of prorenin to renin and renin release 
(106). 
 
Diagnosis 
 
The diagnosis of hyporeninemic hypoaldosteronism 
must be considered in any patient with unexplained 
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hyperkalemia. Excess potassium intake from food or 
drugs does not cause sustained hyperkalemia, if 
renal function is normal. Renal function should be 
evaluated and drugs that impair renal potassium 
excretion should be excluded as a cause. The clinical 
diagnosis is confirmed by low plasma renin activity 
and low plasma concentrations or urinary 
aldosterone excretion under conditions that activate 
the renin-angiotensin-aldosterone axis by 
maintenance of upright posture and/or furosemide 
administration. A low random plasma renin 
concentration associated with a normal ratio of 
aldosterone to plasma renin activity is also useful for 
the diagnosis (94). 
 
Therapy 
 
The therapeutic approach should be chosen after 
taking into consideration the age of the patients and 
other concurrent disorders. Only monitoring 
potassium concentrations is enough for patients with 
moderate hyperkalemia and without electro-
cardiographic changes. Drugs that promote 
hyperkalemia, such as β-adrenergic antagonists, 
cyclooxygenase inhibitors, angiotensin-converting 
enzyme inhibitors, heparin, and potassium-sparing 
diuretics, should be avoided. Dietary potassium 
intake should be reduced, if possible. Diuretics are 
the initial treatment for patients who have disorders 
associated with sodium retention, such as 
hypertension and congestive heart failure. 
Mineralocorticoid replacement with fludrocortisone is 
reserved for patients with severe hyperkalemia 
without hypertension and congestive heart failure. 
 
PRIMARY HYPOALDOSTERONISM- 

ALDOSTERONE SYNTHASE DEFICIENCY 
(ASD) 

 
Congenital hypoaldosteronism is a rare inherited 
disorder transmitted as either an autosomal 
recessive or autosomal dominant trait with mixed 

penetrance. This disorder was previously termed 
"corticosterone methyloxidase (CMO)” deficiency and 
subdivided into two types according to the relative 
levels of aldosterone and its precursors in an affected 
person. Patients with "corticosterone methyloxidase I 
(CMO I)" deficiency have elevated serum levels of 
corticosterone and low levels of 18-
hydroxycorticosterone and aldosterone. In contrast, 
patients with "corticosterone methyloxidase II (CMO 
II)" deficiency have high levels of 18-
hydroxycorticosterone, the immediate precursor of 
aldosterone (107). With greater understanding of 
structure-activity relationships in the CYP11B2 
enzyme, this disorder may be better considered a 
spectrum of hormonal deficiencies, depending on the 
nature of the CYP11B2 gene defect (108). Two steps 
of aldosterone biosynthesis from corticosterone 
previously proposed to be catalyzed by separate 
enzymes, CMO I and II, previously, are known to 
involve only one enzyme substrate interaction (6). 
Isolated aldosterone deficiency results from loss of 
activity of aldosterone synthase encoded by 
CYP11B2 gene (109–118). Therefore, the term 
aldosterone synthase deficiency type 1 (ASD1) and 
type 2 (ASD2) reflects more appropriately the 
molecular basis of this disease. In both ASD1 and 2, 
glomerulosa zone corticosterone is increased and 
aldosterone decreased, but 18-hydroxycorticosterone 
is increased in ASD2 (108).  ASD1 is associated with 
loss of both 18-hydroxilation and 18-oxidation 
enzyme activities. In ASD2, the ability to convert 
corticosterone (B) to 18-hydorxytetrahydro11-
dehydrocorticosterone (18-OH-B) is preserved with 
failure of further oxidation of 18-
hhdroxicorticosrerone to aldosterone (119). The 
deficiency of aldosterone is much more severe in 
ASD1. In contrast, aldosterone may reach normal 
levels under intense stimulation of renin-angiotensin 
system in ASD2 (108). The clinical presentations of 
these deficiencies are otherwise similar.  
 
Clinical Presentation 
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The clinical presentation is typical of aldosterone 
deficiency, including electrolyte abnormalities such 
as a variable degree of hyponatremia, hyperkalemia 
and metabolic acidosis, with poor growth in 
childhood, but there are usually no symptoms in 
adults (107,120). Miao et al. reviewed 45 ASD 
patients (20 of ASD1, 12 of ASD2, 13 of undefined 
subtype) (121).  From their review, 95% of the 
patients having ASD1 and all of having ASD2 and an 
undefined subtype had hyponatremia, while 89% 
showed hyperkalemia. In infants, it is characterized 
by recurrent dehydration, salt wasting and failure to 
thrive. These symptoms are present generally within 
the first 3 months of life, and most often after the first 
5 days of life. A modest uremia with a normal 
creatinine level reflects dehydration in the presence 
of intrinsically normal renal function. Plasma renin 
activity might vary, while elevated plasma renin 
activity levels were more likely to be found in the 
ASD1 (121). 
 
Diagnosis and Therapy  
 
The diagnosis can be established by measuring the 
appropriate corticosteroids or their major metabolic 
products, such as 11-deoxycorticosterone (DOC), 
corticosterone, 18-hydroxycorticosterone, 18-
hydroxy-DOC, and aldosterone levels in plasma. The 
ratio of plasma 18-hydroxycorticosterone to plasma 
aldosterone differentiates the two disorders; it is less 
than 10 in ASD1 (CMO I deficiency) and more than 
100 in ASD2 (CMO II deficiency) (121,122). Patients 
with ASD2 (CMO II deficiency) tend to have 
increased plasma cortisol levels that may result from 
increased adrenal sensitivity to ACTH induced by the 
increased plasma angiotensin II levels in response to 
sodium depletion (123). 
 
Both forms of the syndrome are treated by 
replacement of mineralocorticoid with the usual 
dosage of fludrocortisone (0.1-0.3 mg/ day). Almost 

infants and children require oral sodium 
supplementation (2 g/day as NaCl alone or in 
combination with NaHCO3), although some infants 
with severe symptom need intravenous fluids. Oral 
sodium supplementation may be discontinued once 
plasma rennin activity has decreased to normal, but 
mineralocorticoid replacement is usually maintained 
through childhood.  
   
Molecular Mechanism of CYP11B2 Deficiency  
 
ASD has been identified in Jews of European, North 
American, and Iranian descent (119). In Asians, it 
was reported in the Thai (124), Indian (124), 
Japanese (125) and Chinese populations (120,126). 
 
To date, approximately 40 mutations, such as 
missense and nonsense mutations, splicing 
mutations, small insertions/deletions, gross deletions, 
and complex rearrangements, in the CYP11B2 have 
been reported in cases of ASD; the most common 
mutations were missense and nonsense (121). Some 
variants, such as p.Q170X, p.E198D, c.1398+2T>A, 
p. F233fsX*295, p.L462R, p.Q337X and p.Q272W, 
were identified in patients without an ASD 
classification subtype (121). A majority of mutations 
led to complete loss of enzyme activity, while in some 
mutations, such as V386A and R181W, double 
homozygosity was required for clinical phenotype 
(112,113,121). 
 
Some patients with ASD1 (CMO I deficiency) have a 
homozygous 5 nucleotide deletion in exon 1 which 
leads to a frameshift and premature stop codon, 
resulting in the complete lack of enzyme production 
(109,110). A male Caucasian patient with ASD1 
(CMO I deficiency) had a homozygous point mutation 
causing a R384P substitution, resulting in complete 
loss of 11 β- and 18-hydroxylase activity (111) 
(Figure 5). This suggests that the arginine-384 in 
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aldosterone synthase is highly conserved and 
apparently quite important for enzyme activity. 
 
A male infant of Turkish parents who presented with 
ASD1 had a homozygous missense mutation 
(L451F) in exon 8 of CYP11B2 gene. The L451F 
mutant protein in vitro showed complete aldosterone 
deficiency with 11-deoxycirticosterone or 
corticosterone as substrates. The L451F mutation 
located immediately adjacent to the highly conserved 
heme-binding C450 of the cytochrome P450 (117). 
Computer modeling of the molecule suggested that 
this substitute my lead a steric effect resulting in 
preventing the activity of CYP11B2 (117). 
 
Three siblings of Pakistan origin who presented with 
ASD1 had a homozygous mutation (S308P) in exon 
5 of CYP11B2 gene. The S308P mutant protein in 
vitro showed complete loss of enzyme activity. This 
mutated residue is likely to locate within the a-helix I, 
close to the heme-binding, active site of the enzyme. 
This structural change may be the cause of this 
disorder in this family (118).   
 
A large number of kindreds with ASD2 (CMO II 
deficiency) have been identified among Jews 
originally from Isfahan, Iran. Such patients are all 
homozygous for two mutations, R181W in exon 3 
and V386A in exon 7 (109,112,113) (Figure 5). 
These mutations together reduce aldosterone 
synthase activity to 0.2 % of normal without affecting 
11 β-hydroxylase activity (112,113). However, one 
non-Iranian patient with ASD2 (CMO II deficiency) 
carries mutations in the paternal allele, including 
V386A and T318A mutations, and maternal allele, 
including R181W and a deletion/frameshift mutation, 
resulting in complete loss of enzyme activity (113). 
This suggests that the high levels of 18-
hydroxycorticosterone seen in ASD2 (CMO II 
deficiency) can be synthesized by CYP11B1, which 
has some 18-hydroxylase activity, and not by 
CYP11B2. A patient with apparent ASD 1 was 

homozygous for the mutations E198A and V386A, 
yet when assayed in vitro the double mutant enzyme 
behaved similarly to the mutant enzyme found in the 
Iranian Jewish ASD 2 patients (127). Thus, a 
difference in expression of CYP11B1 rather than 
allelic variation of CYP11B2 may be involved in the 
mechanism underlying the different levels of 18-
hydroxycorticosterone between ASD1 and 2 (CMO I 
and CMO II deficiency). The distinction between ASD 
1 and ASD 2 is not precise, and these disorders 
should be regarded as different degrees of severity 
on a continuous clinical spectrum. 
 
 A male Japanese patient with ASD1 (CMO I) was a 
compound heterozygous for W56X in exon 1 and 
R384W in exon 7. W56X was inherited from his 
mother and R384X was from his father. Since both 
alleles contain nonsense mutations, a lack of 
CYP11B2 activity was speculated to cause his 
condition (125). 
 
Two male Japanese patients with ASD2 (CMO II) 
had homozygous missense mutation (G435S) in the 
exon 8 of CYP11B2 gene. The expression studies 
indicated that the steroid 18-hydroxylase/oxidase 
activities of mutant enzyme were substantially 
reduced. 
 
A female infant of Albanian origin with ASD2 (CMO 
II) revealed homozygosity for a pathogenic T185I 
mutation in Exon 3 of the CYP11B2 gene and two 
other homozygous polymorphisms F168F and K1738 
in Exon3 (128). Both healthy parents revealed 
heterozygous for all three substitutions. 
 
Another female Italian Caucasian patient was 
diagnosed with a compound heterozygous mutation 
located in exon 4 causing a premature stop codon 
(E255X) and a further mutation in exon 5, also 
causing a premature stop codon (Q272X). The 
patient’s CYP11B2 encoded two truncated forms of 
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aldosterone synthase predicted to be inactive 
because they lack critical active site residues as well 
as the hormone-binding site. However, this case 
displays biochemical features intermediate between 
those of ASD1 and 2 (CMO I and II). 

 
Some cases of ASD without causative mutations in 
CYP11B2 have also been reported (116,119). 

 

 
Figure 5. Relative positions of CYP11B1 and CYP11B2 on chromosome 8 and mutations of CYP11B2. 
A, The relative positions of CYP11B1 and CYP11B2 on chromosome 8q22. Arrows indicate direction of 
transcription. B, Mutations of CYP11B2 in reported patients with CYP11B2 deficiency are summarized 
in the figure (109,121,126,128). 
 
ACQUIRED FORMS OF PRIMARY 

HYPOALDOSTERONISM   
 
Several conditions may be associated with 
aldosterone biosynthetic defects. The administration 
of heparin causes natriuresis and hyperkalemia 
(129). Heparin preparations suppress aldosterone 
synthesis, leading to a compensatory rise in plasma 
renin activity. However, it has been demonstrated 
that this suppression of enzyme activity is attributable 
to chlorbutol (1,1,1-trichloro-2-methyl-2-propanol), 
the preservative used in commercial heparin, rather 
than to pure heparin (130). 
 

Persistently hypotensive, critically ill patients with 
sepsis, pneumonia, peritonitis, cholangitis and liver 
failure, also have inappropriately low plasma 
aldosterone concentrations in relation to elevated 
plasma renin activity (131). The defect is at the level 
of the adrenal but has not been associated with any 
particular disease or therapy. Plasma cortisol levels 
are high, reflecting the stressed state. The response 
to angiotensin infusion is impaired, and the ratio of 
plasma 18-hydroxycorticosterone to aldosterone is 
increased, suggesting selective insufficiency of CMO 
II. It is possible that the hypoxia causes a relative 
zona glomerulosa insufficiency (132). 
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ALDOSTERONE RESISTANCE  

 
PSEUDOHYPOALDOSTERONISM (PHA) TYPE 1 
 
Mineralocorticoid resistance 
(pseudohypoaldosteronism type 1, PHA1) results 
from inability of aldosterone to exert its effect on its 
target tissues and was first reported by Cheek and 
Perry as a sporadic occurrence in 1958 (133). This 
disease, usually presents in infancy with severe salt-
wasting and failure to thrive, accompanied by 
profound urinary sodium loss, severe hyponatremia, 
hyperkalemia, acidosis, hyperreninemia, and 
paradoxically markedly elevated plasma and urinary 
aldosterone concentrations. Usually, renal and 
adrenal functions are normal. This disease has been 
reported in over 70 patients (134). The prevalence, 
as estimated from recruitment through a genetic 
laboratory at the Hôpital Européen Georges 
Pompidou in France, which is a national reference 
center for a rare disease, is ~1 per 80,000 newborns 
(135)(136). Approximately one fifth of these cases 
are familial, and both an autosomal dominant and a 
recessive form of genetic transmission have been 
observed. A previous study found that all patients 
had renal tubular unresponsiveness to aldosterone, 
while some had involvement of other 
mineralocorticoid target-tissues, including the sweat 
and salivary glands, and the colonic epithelium, as 
well. Autosomal recessive PHA1 presents in the 
neonatal period with hyponatremia caused by multi-
organ salt loss, including kidney, colon, and sweat 
and salivary glands. Autosomal recessive PHA1 
persists into adulthood and shows no improvement 
over time. However, literature regarding follow-up of 
these patients after diagnosis is insufficient.  In 
contrast, autosomal dominant PHA1 is characterized 
by an isolated renal resistance to aldosterone, 
leading to renal salt loss. Particularly autosomal 
dominant form of PHA1 typically shows a gradual 
clinical improvement during childhood, allowing the 
cessation of sodium supplementation.   

  
PATHOPHYSIOLOGY  
 
The mechanism(s) by which aldosterone controls 
sodium transport in its target tissues involves the 
mineralocorticoid receptor (MR) and proteins that are 
associated with the amiloride-sensitive sodium 
channel (ENaC). The latter proteins are expressed in 
the apical membrane of epithelial cells of the distal 
convoluted tubule and in the membranes of cells of 
other tissues involved in the conservation of salt, 
such as colon, sweat gland, lung and tongue. Thus, 
the MR and the ENaC were considered as potential 
candidate molecules for the pathogenesis of PHA1. 
In fact, mutations of α- and β-subunits of the ENaC 
were reported in PHA patients from autosomal 
recessive kindreds (61,137). Mutations of the MR 
were also reported in the patients with autosomal 
dominant PHA1 (138,139). However, no molecular 
defects were found in either MR or ENaC in some 
patients with PHA1, especially in those with the 
sporadic form PHA1, which suggests molecular 
heterogeneity in PHA1 (79,140–144). 
 
DIAGNOSIS  
 
Electrolyte profiles suggest mineralocorticoid 
deficiency or end-organ resistance, along with 
hyperkalemia, hyponatremia and metabolic acidosis 
associated with profound urinary salt loss. Renal and 
adrenal function is normal. The diagnosis is 
confirmed by the markedly elevated plasma 
aldosterone concentrations and plasma renin activity. 
 
The differential diagnosis of PHA1 includes salt-
wasting states due to hypoaldosteronism, including 
several forms of congenital adrenal hyperplasia, 
isolated hypoaldosteronism due to corticosterone 
methyloxidase (CMO) I and II deficiencies and 
congenital adrenal hypoplasia. Normal cortisol and 
excessive aldosterone responses to 
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adrenocorticotropin (ACTH) are expected in patients 
with congenital PHA. 
 
THERAPY          
 
The standard treatment of PHA has been 
replacement with high doses of salt, with a variable 
response among patients (134). Recently, 
carbenoxolone, an 11β-hydroxysteroid 
dehydrogenase inhibitor, was employed as therapy in 
PHA1 and an ameliorating effect was observed which 
was attributed to mediation by the MR (140). We 

studied a 17-yr-old male patient with congenital 
multifocal target-organ resistance to aldosterone. We 
examined his clinical response to carbenoxolone, 
expected to increase the intracellular level of cortisol 
in the kidney by preventing local conversion of 
cortisol to cortisone, and to high doses of 
fludrocortisone, a synthetic mineralocorticoid. 
Subsequently, and for a brief period of time, we 
administered dexamethasone, which has no intrinsic 
salt-retaining activity, in addition to carbenoxolone, to 
suppress endogenous cortisol, along with its intrinsic 
mineralocorticoid activity. 

 

 
Figure 6. Effect of carbenoxolone, carbenoxolone plus dexamethasone, and fludrocortisone (top panel) 
on the serum sodium (middle panel) and potassium (bottom panel) concentrations of a patient with 
PHA. Carbenoxolone normalized plasma electrolytes, addition of dexamethasone reversed this effect, 
while fludrocortisone at high doses also normalized plasma electrolytes (140). 
 
Carbenoxolone normalized the patient's serum 
electrolyte concentrations and decreased his urinary 
excretion of sodium within a week (Figure 6). 
Subsequent long-term therapy of this patient with 
carbenoxolone (450 mg/day p.o.) maintained his 
electrolyte concentrations within the normal range. 

His urinary 24 h free cortisol was increased during 
carbenoxolone therapy. Addition of dexamethasone 
suppressed his urinary free cortisol excretion and 
reversed the beneficial effect of carbenoxolone on 
serum and urinary electrolytes (Figure 6). These data 
suggest that an increase in urinary free cortisol 
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observed during carbenoxolone therapy was due to a 
localized effect of this drug on the kidney rather than 
on tissues involved in the negative feedback effect of 
glucocorticoids. The effect of carbenoxolone does not 
seem to be mediated by GR but seems to be exerted 
purely via the MR (Figure 7). There were no adverse 
effects of long-term carbenoxolone therapy in this 

patient. He also reported increased stamina, a better 
ability to concentrate and less anxiety. On treatment, 
the patient grew 6 cm/y and progressed from -4SD to 
-3SD scores for mean height for age. He also 
progressed in his pubertal development from Tanner 
stage III to IV for pubic hair, while his bone age 
advanced from 12 to 14 y. 

 

 
Figure 7. Mechanism of the effect of carbenoxolone. Carbenololone inhibits of conversion of cortisol to 
cortisone in the kidney, resulting in the enhancement of the effect of cortisol as a ligand for MR. 
Dexamethasone suppressed cortisol production and reversing the beneficial effect of carbenoxolone 
in our patient with PHA1. 
 
Both carbenoxolone and fludrocortisone normalized 
the serum electrolytes of our patient, suggesting the 
presence of a functional, albeit possibly defective, 
renal MR. Interestingly, the same patient was 
unresponsive to intravenous infusion of aldosterone 
and fludrocortisone (up to 3 mg/day) when studied in 
infancy (145), suggesting that the clinical 
improvement that has been noted in the majority of 
PHA patients with age may be related to changes in 
their responsiveness to mineralocorticoid. 
 

On the other hand, another study reported that 
carbenoxolone did not show any significant salt-
retaining effect in two patients with multiple PHA, 
while carbenoxolone significantly suppressed the 
renin-aldosterone system in a patient with renal-form 
PHA (146).  This difference of responsiveness to 
carbenoxolone may be due to an age-dependent 
change on mineralocorticoid responsiveness. 
Additionally, the different mineralocorticoid 
responsiveness of renal and multisystem PHA 
patients indicates a difference in their MR function. 
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The partial response to carbenoxolone in renal PHA 
suggests that there is at least a partly functional MR. 
This is also supported by the observation that 
spironolactone, a mineralocorticoid antagonist, 
aggravated sodium loss in several patients with renal 
PHA (147).  
 
MOLECULAR MECHANISM(S) OF 

PSEUDOHYPOALDOSTERONISM TYPE 1           
 
In 1996, a study reported homozygous mutations 
introducing a stop codon or frame shift in the αENaC 
gene of affected members of families with autosomal 
recessive PHA (61).  To date, worldwide more than 
40 different mutations have been described in the 
coding region of ENaC subunit genes (148–150). The 
majority of mutations appear in the αENaC gene 
SCNN1A, most frequently in exon 8 (61,150–152). 
Mutations are nonsense, single base deletions or 
insertions, or splice-site mutations, leading to 
abnormal length of mRNA and protein. Few 
missense mutations in αENaC gene have also been 
reported (149,153). Only a few cases of mutations in 
β and gamma ENaC genes have been reported 
(149,154,155). Phenotype and genotype correlations 
have been noted with more severe phenotype in 
nonsense, frameshift, and abnormal splicing 
mutations than patients with missense mutations 
(148,154,155). 
 
A Swedish study regarding families with autosomal 
recessive PHA, homozygous or compound 
heterozygous mutations showed that a stop codon or 
a frame shift in the αENaC gene was associated with 
pulmonary disease as well (150). The truncation 
caused by these mutations influenced the PY motif at 
the N-terminal region of the molecule. This motif is 
responsible for the binding of the channel subunits 
with Nedd4, a carrier protein facilitating clearance of 
the channel (60). Moreover, a point mutation of the 
αENaC gene, located close to the N-terminal of the 
protein, was reported to cause a decrease of the 

probability of an open sodium channel, resulting in 
defective reabsorption (61,153). In the other four 
families with autosomal recessive PHA, insertion of a 
T in exon 8 and nonsense mutation (R508X) in exon 
11 of the αENaC gene, resulting in a truncated 
αENaC subunit, was found (156). A splice site 
mutation in intron 12 of the βENaC gene, which 
preventing correct splicing of the mRNA was found in 
a Scottish patient (156). Also, other autosomal 
recessive families with PHA had a homozygous 
splice-site mutation in the γENaC, while a Japanese 
sporadic patient with the systemic form of PHA was a 
compound heterozygote for mutations in the αENaC, 
which resulted in the generation of a truncated 
channel subunit (137,157) . Compound heterozygous 
mutations (Q217X in exon 4 and Y306X in exon 6) of 
βENaC have been reported in the patient with multi-
organ PHA1 of Ashkenazi family in Israel (154). 
These mutations produce shortened βENaC subunits 
with 253 and 317 residues respectively instead of the 
640 residues present in βENaC subunit. Expression 
of cRNA carrying these mutations in Xenopas 
oocytes showed that the either mutation drastically 
reduced to only 3% of normal ENaC activity (154).  
An African American female with PHA, who had 
persistent and symptom hyperkalemia, had 
compound heterozygous mutation in the βENaC 
gene: c.1288delC in exon 9, a one-base deletion that 
generated a frameshift mutation, and c.1466+1 G>A, 
an intronic base substitution in intron11 that leaded to 
a splice site mutation (158).  
 
To date more than 50 different mutations in the 
human MR gene (NR3C2) causing autosomal 
dominant PHA1 have been described. NR3C2 
mutations were found in 62% of patients with renal 
PHA1 referred to a genetics laboratory at the Hôpital 
Européen Georges Prompidou in France (135). 
Nonsense mutations, frameshift mutations, splice site 
mutations, and deletions of whole or part of the gene 
lead to gross change of the MR protein. Nonsense 
mutations are found in all exons and lead to 
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truncated MR protein. A past study. reported families 
with autosomal dominant PHA, who had molecular 
defects of the MR resulting in non-expression of one 
of the 2 alleles (138) (Figure 8). In addition, another 
study reported a sporadic patient with PHA who had 
a heterozygous mutation in exon 9 of the MR that 
introduced a premature stop codon (144) (Figure 8). 
These results, may suggest that expression of only 
one allele of the MR is insufficient to prevent salt 
loss. Another case study did not identify any 
abnormalities of the MR in PHA patients from two 
families with the autosomal dominant form of the 
disease (144), while other authors reported a 
heterozygous missense mutation in exon 8 of the MR 
gene identified in PHA patients from a Japanese 
autosomal dominant family (139) (Figure 8). A 
heterozygous nonsense mutation in exon 2 (S163X, 
C436X) and in exon 9 (R947X) of the MR, leading to 
a premature stop codon of the MR gene were found 
in other patients with autosomal dominant PHA (159–
161). It was previously reported a heterozygous 
splice acceptor site mutation, which results in exon 7 
skipping and subsequently in premature termination 
in exon 8 of MR with Japanese female patients with 
PHA1 (162). This study showed that RT-PCR 
products of mRNA with that patient showed both 
wiled-type and mutated mRNA, suggesting that 
haploinsufficiency due to nonsense mediated mRNA 
decay with premature termination is not sufficient to 
give rise to the PHA phenotype (162). It was also 
reported that Q776R mutation in exon 5 or L979P 
mutation in exon 9, which is located in the ligand-
binding domain of the MR, presented reduced or 
absent aldosterone binding, respectively (163). 
Three-dimensional structure of MR suggests that the 
residue Q776 is located in helix 3 and is locking 
aldosterone in the ligand-binding pocket (163). A 
study examined patients with PHA1 presenting 
isolated renal salt loss from six families in Italy and 
Germany and found one nonsense mutation 
(E378X), one frameshift mutation (A958R) and two 
missense mutations (S818L and E972G) (164). 
S818L does not bind aldosterone or activate 

transcription or translocate into the nucleus. Three-
dimensional molecular structure showed that S818 
was located in helix H5 and S818 was speculated to 
be necessary to stabilize helix H5 and the �-sheet 1 
via hydrogen bond to Y828. E972G mutation showed 
a significantly lower ligand-binding affinity and only 
9% of wild-type transcriptional activity. Three-
dimensional molecular structure showed that E972 is 
involved in a hydrogen-bond network with R947 
anchoring helix H12 to H10. Thus, substitute of 
E972G suggested to be open up the hydrophobic 
core and displace helix H10, causing the decreased 
ligand-binding ability (164). 
 
A Japanese study reported four sporadic patients 
and two siblings with a renal form of PHA (165). Two 
siblings and one sporadic patient had R651X of 
NR3C2 (MR) gene. One sporadic patient had R947X, 
another two patients had 603A deletion and 304-
305CG deletion, respectively, both resulting in 
frameshift mutations (165). 
 
Another study reported two female Japanese infants 
with the renal form of PHA1 and identified two 
heterozygous mutations. One had a 
c.4932_493insTT in Exon 2, resulting in a premature 
stop codon (p.Met166 LeufsX8) and another had a 
nonsense mutation of R861X in exon 7 (166).  These 
mutations resulted in haploinsufficiency of the MR 
and were the cause of aldosterone resistance in the 
kidney. 
 
From the study of the genetics laboratory at the 
Hôpital Européen Georges Pompidou in France, 20 
mutations were found in exon 2; all of them led to 
truncated receptors, Of the 22 mutations identified in 
exon 3 and 4, coding for the MR DBD, 11 were 
nonsense or frameshift mutations, the reminder 
missense mutations. Thirty variants were located in 
exon 5-9 and affected LBD; the majority were 
missense mutations. Nine were splice variants in 
different introns, 19 were large deletions 
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encompassing single or multiple exons and the 
flanking intronic regions of the NR3C2 gene (135) 
(figure 8). 

 
These studies suggest major molecular 
heterogeneity in PHA. 

 

 
Figure 8. Mutations of the MR in patients with PHA1. Mutations of the MR that have been reported in 
patients with PHA1 are summarized in the figure (135,138,139,144,166).   
 
Another study investigated 5 unrelated cases of 
sporadic PHA (79,140,143). The researchers found a 
nonconservative homozygous mutation (A241V) in 
the MR of 4 of the patients and a conservative 
heterozygous mutation (I180V) in one of these 
patients and his asymptomatic father, while no 
abnormalities were found in the DNA- or ligand-
binding domains of the MR. The Val241 and Val180 
substitutions were found also in the norm 6al 
population. The heterozygosity and homozygosity 
frequencies of the Val241 and Val180 mutations 
were 48%, 38%, 22% and 1.5%, respectively. 
Another finding was a nonconservative amino acid 
substitution (T663A) in the αENaC, which was 

located close to the C-terminal (79). Of the 5 
patients, 2 were homozygous and 3 heterozygous for 
this variation, respectively. This amino acid 
substitution was also present at high frequency in 
apparently normal controls. The homozygosity and 
heterozygosity frequencies of the αENaC Ala663 
were 31% and 64%, respectively. Three of the 4 
(75%) patients with multiple tissue resistance to 
aldosterone had both αENaC (heterozygous or 
homozygous) and MR (homozygous) mutations as 
described above, while only 7% of our controls with 
apparently normal salt conservation had the same 
concurrent abnormalities (Table 2, p < 0.025). 

 
Table 2. MR and aENaC Polymorphisms in PHA and Normal Subjects 
    MR  αENaC  Target organ 
    I180V  A241V  T663A    
  Homo  hetero  homo  Hetero  homo  Hetero   
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Table 2. MR and aENaC Polymorphisms in PHA and Normal Subjects 
    MR  αENaC  Target organ 
    I180V  A241V  T663A    
  Homo  hetero  homo  Hetero  homo  Hetero   
 Pt.1   + +     +  Multiple 
 Pt.2              +     Multiple  
 Pt.3        +     +     Multiple 
  
 Pt.4 

  
  

  
  

  
  

  
  

  
  

  
+ 

  
 Multiple 

  
 Pt.5 

  
  

  
  

  
+ 

  
  

  
  

  
+ 

  
 Isolated 

  
controls 

  
1.5% 

  
22% 

  
38% 

  
48% 

  
31% 

  
64% 

  
  

  
controls 

  
  

  
+ 

  
+ 

  
  

  
  

  
+ 

  
  

  
controls 

  
  

  
  

  
+ 

  
  

  
+ 

  
  

  
  

  
controls 

  
  

  
  

  
+ 

  
  

  
  

  
+ 

  
  

                (79) with permission 
 
The researchers identified, in a Japanese patient with 
sporadic PHA, three homozygous substitutions in the 
MR gene: G215C, I180V or A241V, which had 
previously reported to occur in healthy populations. 
Luciferase activities induced by MR with either 
G215C, I180V or A241V substitution were 
significantly lower than those for wild-type MR with 
aldosterone at concentrations ranging from 10-11 to 
10-9 M, 10-8M, or 10-11 to 10-6M, respectively. A 
homozygous A to G substitution of the donor splice 
site of αENaC intron 4 was found in the patient. 
These results suggest that each of three MR 
polymorphisms identified in our patient is functionally 
and structurally heterogeneous (167). 
 

The authors suggested that the above 
polymorphisms may confer vulnerability in salt 
conservation, which might be expressed fully only 
when concurrently present with other genetic defects 
of the MR or other proteins that participate in sodium 
homeostasis, such as Nedd4 (168). This hypothesis, 
if true, would be compatible with a sporadic 
presentation or a digenic or multigenic expression 
and heredity as previously described in retinitis 
pigmentosa (169). In this case, hereditary 
transmission might be complex and appear either as 
a dominant and/or recessive trait with variable 
penetrance. 
 
Secondary Pseudohypoaldosteronism (PHA)  
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Secondary PHA is a form of renal resistance to 
aldosterone. The cause of secondary PHA is either 
renal disease or medication. The clinical and 
laboratory findings resemble those of a transient 
PHA. Since Rodriguez-Soriano et al. reported the 
first case in 1983 (169), more than 68 cases have 
been reported. Secondary PHA may occur mainly in 
neonates and young infants with urinary tract 
infections, such as pyelonephritis, and/or 
malformation of urinary system causing obstructive 
uropathy, tubulointerstitial nephritis, sickle cell 
nephropathy, and systemic lupus 
erythematosus(170). Secondary PHA has been also 
related to drugs like non-steroidal anti-inflammatory 
agents and potassium-sparing diuretics (170–172). 
This state occurs in male infants more frequently 
than female infants because of the higher incidence 
of urinary tract infections and obstructive uropathy in 
male infants rather than in female infants(169). 
Patients present poor feeding, poor weight gain or 
failure to thrive, vomiting, diarrhea, polyuria, and 
dehydration. Acute worsening of their general 
condition may occur, with severe weight loss, 
peripheral circulatory failure, rise in serum urea and 
creatinine levels, and occasional life-threatening 
hyperkalemia (169). The laboratory features are 
hyponatremia, hyperkalemia, metabolic acidosis, 
elevation of plasma aldosterone concentrations and 
plasma renin activity, and inappropriately increased 
sodium and decreased potassium excretion in urine 
(173).  The aldosterone resistance of secondary PHA 
is transient and usually reverts with the resolution of 
the infection. 
 
PATHOPHYSIOLOGY 
 
The very high ratio of plasma aldosterone to 
potassium, together with diminished urinary K/Na 
values, strongly suggests that hyponatremia and 

hyperkalemia result from a lack of response of the 
renal tubule to endogenous mineralocorticoids (174). 
The intrarenal expression of several cytokines, such 
as tumor necrosis factor alpha, interleukin (IL) 1, IL-6, 
transforming growth factor beta-1, angiotensin II, 
endothelin, thromboxane A2, and prostaglandins, are 
increased in cases of urinary tract infections. These 
changes result in inhibition of aldosterone action 
through reduction of its expression and/or impairment 
of its receptor, vasoconstriction and reduction of 
glomerular filtration rate, increased natriuresis and/or 
decreased Na+-K+-ATPase activity(173) . A past 
study found that the number of mineralocorticoid 
receptors in obstructive uropathy were low in the 
acute phase but returned to normal after successful 
surgical correction of the obstruction (175). This 
suggests that a reduced aldosterone effect can also 
reflect down-regulation of the receptor sites, due to 
highly elevated aldosterone levels (175). 
 
THERAPY 
 
The clinical and laboratory findings improve within 
one or two days and disappear after the completion 
of medical treatment of urinary tract infection and/or 
surgical correction of obstructive uropathy, usually 
within a few days to one week after beginning of 
treatment (173). However, in some patients, sodium 
bicarbonate and/or sodium chloride supplementation 
may be necessary for a week or month (173) 
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