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ABSTRACT 
 
Glucocorticoid (GC)-induced osteoporosis (GCOP) is 
the most common cause of iatrogenic osteoporosis 
(OP). Fractures may occur in 30-50% of patients on 
chronic GC therapy. Most of the epidemiological data 
associating fracture risk with GC therapy are from the 
use of oral GCs. The process of bone remodeling is 
complex, regulated by an intricate network of local and 
systemic factors. With prolonged GC administration, 
cortical bone becomes increasingly affected and long 
bones show increased fragility. As some patients on a 
low GC dose show bone loss at a much higher rate 
than others on a higher GC dose, genetics may play a 
role in determining this difference. Any patient that is 
treated with long-term GCs should be suspected as 
suffering from GCOP. Laboratory evaluation for 
GCOP should include total blood cell count, markers 
of renal and liver function, serum electrophoresis, 
serum and 24-hr urine calcium, serum levels of 25-
hydroxyvitamin D, alkaline phosphatase, thyroid-
stimulating hormone and parathyroid hormone, 
estradiol in women and total and free testosterone in 
men. Changes in BMD early on during GC therapy can 
be detected by dual-energy X-ray absorptiometry 
(DXA). In patients under GC treatment fractures tend 
to occur at BMD values that are lower than the 

conventional threshold T-score of -2.5. Recently 
simple adjustments for the calculated fracture risk 
have been presented that take into account 
glucocorticoid dosage for the Fracture Risk 
Assessment tool (FRAX). Guidelines for the 
prevention and treatment of GCOP have been put 
forth from various authorities. Prevention of GCOP 
should start as soon as GCs are administered; bone 
loss is more rapid in the first months of therapy. 
Patients on GCs should receive supplementation with 
calcium and vitamin D. There are several 
antiresorptive agents available for the prevention and 
treatment of GCOP - bisphosphonates are the most 
widely used. Teriparatide and denosumab can also be 
therapies of choice for patients on GC treatment with 
or without GCOP. 
 

INTRODUCTION 

 

Glucocorticoid (GC)-induced osteoporosis (GCOP) is 
often the result of secondary osteoporosis (OP) (1). It 
is the most common cause of iatrogenic OP; adults 
aged 20 to 45 years are mainly affected (1-3). 
Important bone loss may occur with or without other 
manifestations and its severity is dependent on both 
the dose and duration of GC treatment (4). From a 
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retrospective study conducted in the United Kingdom 
the prevalence of chronic use of oral GCs in the 
general population was shown to be 0.5%; the 
prevalence was higher in women over 55 years (1.7%) 
and as high as 2.5% in subjects older than 70 years 
(5, 6); more recently experts argued that 
approximately 2% of the population receives long-term 
GC treatment (7). It is of practical interest to note that 
only 4%-14% of patients taking oral steroids were 
receiving treatment for prevention of osteoporosis 
(mainly by rheumatologists), indicating that GCOP is 
often underestimated and left untreated (5, 8). 

 

EPIDEMIOLOGY 
 
The association between glucocorticoid (GC) excess 
and osteoporosis was first described nearly 80 years 
ago, but its importance in clinical practice has only 
recently been recognized (9). Although it shares some 
similarities with postmenopausal osteoporosis, 
glucocorticoid-induced osteoporosis (GCOP) has 
distinct characteristics, including the rapidity of bone 
loss early after initiation of therapy, the accompanying 
increase in fracture risk during this time, and the 
combination of suppressed bone formation and 
increased bone resorption during the early phase of 
therapy (10). 
 
Although awareness of GCOP amongst health-care 
professionals has increased over recent years, 
several studies indicate that its management remains 
suboptimal (11, 12). Although increased rates of 
diagnosis and treatment have been reported, possibly 
as a result of national guidelines, but overall these 
rates remain low (12, 13). 
 
There is clear epidemiological association between 
GC therapy and fracture risk (14-16). Oral GC therapy 
is prescribed in up to 2.5% of the elderly population 
(aged 70-79 years) for a wide range of medical 
disorders (17). Fractures may occur in 30-50% of 
patients on chronic GC therapy (18). The vertebrae 

and femoral neck of the hip are specifically involved 
(19), whereas risk at the forearm (predominantly 
consisting of cortical bone), is not increased, 
confirming that GCs affect predominantly cancellous 
bone (15). Vertebral fractures associated with GC 
therapy may be asymptomatic (20). When assessed 
by X-ray-based morphometric measurements of 
vertebral bodies, more than 1/3 of postmenopausal 
women on chronic (> 6 months) oral GC treatment 
have sustained at least one vertebral fracture (20). 
 
Along with the demonstration that fractures can occur 
early in the course of GC therapy, fracture incidence 
is also related to the dose and duration of GC 
exposure (16).  
 
Doses as low as 2.5 mg of prednisone equivalents per 
day can be a risk factor for fracture, but the risk is 
clearly greater with higher doses. Chronic use is also 
associated with greater fracture risk (1, 16). When 
daily amounts of prednisone - or its equivalent - 
exceed 10 mg on a continuous basis and duration of 
therapy is greater than 90 days, the risk of fractures at 
the hip and vertebral sites is increased by 7- and 17-
fold respectively (16). The risk of fractures declines 
after discontinuation of GCs although the recovery of 
the lost bone is gradual and often incomplete (1, 16).  
 
Most of the epidemiological data associating fracture 
risk with GC therapy, come from the use of oral GCs. 
There is less data about risk associated with inhaled 
GCs (21-25); from the data available it can be 
extrapolated that a small but persistent and clinically 
significant growth retardation may be expected in 
children receiving inhaled GCs (26). It is also 
important to bear in mind that the underlying disorder 
for which inhaled or systemic GCs is used may also 
be a cause of bone loss (27). The systemic release of 
local bone-resorbing cytokines in some of these 
disorders could stimulate bone loss (28, 29). In 
addition, there are also local factors to consider. In 
inflammatory bowel disease, bone loss may be due, in 
part, to malabsorption of vitamin D, calcium, and other 



 
 
 

 
www.EndoText.org 3 

nutrients (28). In chronic lung disease, hypoxia, 
acidosis, reduced physical activity, and smoking may 
all contribute to bone loss, independently of the use of 
inhaled GCs (14, 25, 30, 31). 
 
SECONDARY CAUSES/RISK FACTORS OF BONE 
LOSS 
 
Factors, such as advancing age, race, sex, 
menopausal status, family history of OP and fractures, 
and secondary causes of OP, such as 
hyperthyroidism, hyperparathyroidism, Cushing’s 
syndrome, hypogonadism, diabetes (particularly type 
1), renal failure, inflammatory bowel disease, and 
rheumatoid arthritis can add to the effects of GCOP 
(14, 32-36). Some of the risk factors for GCOP are 
common to other forms of OP and can be modified; 
these include: low calcium and high sodium intake 
(37), high caffeine intake (when calcium intake is low) 
(38), tobacco and alcohol use, decreased physical 
activity, immobilization, and a number of medications 
(32, 39, 40). Medications/treatments that are 
administered concomitantly with GCs (such as 
methotrexate, cyclosporine, heparin, 
medroxyprogesterone acetate, gonadotropin 
releasing hormone (GnRH) analogs, levothyroxine, 
anticonvulsants, or radiotherapy) may add to the 
disease burden of GCOP.  
 
The emerging use of aromatase inhibitors (41), 
androgen-deprivation therapy in men with prostate 
cancer (42), and the growing field of bariatric surgery 
(43) have emerged as novel and important etiologies 
of secondary osteoporosis. 
 
Patients with classical congenital adrenal hyperplasia 
(CAH)  can be over-treated with GC and show loss of 
bone mineral density (BMD) (44). The iatrogenic 
suppression of adrenal androgens production in 
women with CAH is associated with increased risk for 
bone loss (45). Young adult men on GCs apparently 
show more rapid bone loss compared to older men or 

postmenopausal or premenopausal women. Of note, 
men are more susceptible to depression-associated 
bone loss, which may be in part, GC-mediated (46). 
Postmenopausal women receiving GCs show higher 
fracture risk compared to premenopausal women that 
is attributed to lower bone mass when starting GC 
therapy) (47, 48). Patients with sarcoidosis and those 
taking steroids to prevent rejection of grafts after heart 
or kidney transplant, are also more likely to experience 
rapid bone loss (49-51). 
 
CELLULAR AND MOLECULAR MECHANISMS OF 
GCOP 
 

The process of bone remodeling is complex, regulated 
by an intricate network of local and systemic factors. 
Although normal bone needs endogenous GCs for its 
development (for osteoblast differentiation in 
particular, via inhibition of mesenchymal stem-cell 
differentiation to adipocytes) (52-54), GCs, at least in 
mice models, exert negative effects on bone 
maintenance in old age (by lowering survival of 
osteoblasts and osteocytes and limiting angiogenesis) 
(52). Quiescent bone is covered by osteoblasts and 
osteoclasts. In response to bone-resorbing stimuli, 
osteoclastic migration and bone resorption are 
activated. Osteoclasts remove both the organic matrix 
and the mineral component of the bone, producing a 
pit. This bone remodeling cycle takes place under a 
canopy of osteoprogenitor cells (55). In the formation 
phase, osteoblasts deposit osteoid in the pit, which is 
then mineralized. In normal bone there is – apparently 
– no appreciable effect of GCs on osteoclasts (52). 
Quiescence is restored at completion of the cycle (56). 
GCs can influence bone remodeling in a number of 
ways and at any stage of the remodeling cycle (Figure 
1). We have to note that regarding animal studies of 
GCOP experts point to the heterogeneity of used 
models and the need for their standardization (57). 
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Figure 1. Overview of the mechanisms of glucocorticoid-induced osteoporosis (GCOP). Osteoporosis 
results from an imbalance between osteoblast and osteoclast activity. BMP-2: bone morphogenic 
protein-2; Cbfa1: core binding factor a1; Bcl-2: B-cell leukemia/lymphoma-2 apoptosis regulator; Bax: 
BCL-2-associated X protein; IGF-I: insulin-like growth factor-I; IGFBP: IGF binding protein; IGFBP-rPs: 
IGFBP-related proteins; HGF: hepatocyte growth factor; RANKL: receptor activator of the nuclear factor-
κB ligand; CSF-1: colony-stimulating factor-1; OPG: osteoprotegerin; PGE2: Prostaglandin E 2; PGHS-2 
prostaglandin synthase-2 

 

Bone Histomorphometry Under GCs  
 
Trabecular bones and the cortical rim of vertebral 
bodies are more susceptible to the effects GCs 
compared to the cortical component of long bones 
(radius, humerus) (58-62). Under GC treatment, 
lumbar bone shows significantly greater bone loss 
compared to distal radius. Bone loss is also observed 
in the proximal femur (particularly at Ward’s triangle, 

an area rich in trabecular bone) (63, 64). Although 
bone remodeling is initially turned on with higher bone 
resorption, over time, resorption parameters fall and 
bone becomes quiescent (65, 66). Thus, with 
prolonged GC administration, cortical bone becomes 
increasingly affected and long bones show increased 
fragility.  
 
Bone biopsies of patients on GC therapy for longer 
than 12 months show increased bone resorption, a 
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decline in all aspects of bone formation, and 
decreased trabecular volume. Histomorphometric 
studies on subjects with GCOP show increased 
osteoclasts and bone-resorbing sites; bone loss is 
higher in the metaphyses compared to the diaphyses 
(67-69). A specific feature of GCOP is the decrease in 
canopy coverage of bone remodeling sites (52, 55). 
GCOP differs from post-menopausal OP in terms of 
microanatomical appearance; in GCOP the number of 
trabeculae and their surface area are relatively 
preserved, and individual plates are very thin 
(trabecular attenuation), although still connected, 
whereas in post-menopausal OP, trabecular width is 
relatively preserved but the lamellae are perforated by 
resorption, with a loss of trabecular surface and 
continuity (70). Such changes may lead to lower 
mechanical strength of bone. The particular histology 
of GCOP may have important implications for 
pharmacologic intervention: the preservation of 
thinned trabeculae in GCOP may provide the 
foundation for new bone apposition. With excess GCs, 
osteoclasts, over time, preferentially deepen their 
resorption pits than migrate to new resorption sites 
(52). 
 

Glucocorticoid Receptors (GRs) and Bone  

 
There is still no consensus on whether genomic or 
non-genomic actions of GCs are the major players in 
GCOP (71). Genomic actions result from the binding 
of GCs steroids to specific cytoplasmic receptors that 
belong to the nuclear receptor superfamily. The GC-
GR complex can either activate or repress the 
expression of target genes. While activation requires 
binding of a dimerized receptor to GC-responsive 
elements (GREs) in the promoter region of target 
genes, repression is mainly mediated by interaction 
between receptor monomers and transcription factors 
(72). GC-induced osteoblast apoptosis does not 
require GR dimerization (52). Translation of GR 
mRNAs produces two GR isoforms; GRα, which is 
transcriptionally active and GRβ, which can 
heterodimerize with GRα inhibiting its transcriptional 

activity (73). In humans, normal osteoblasts, and 
specific osteoblastic cell lines show GRα expression, 
whereas mature osteoclasts show no GRα 
expression. Osteoclasts, in contrast, predominantly 
show GRβ expression. Osteoblasts and osteoclasts 
also express mineralocorticoid receptors (MRs) that 
bind to cortisol and form heterodimers with both GRα 
and GRβ (74). IL-6, in human osteoblasts, acts as an 
autocrine positive modulator that upregulates the 
number of GRs (75, 76). Cortisol, even at physiologic 
concentrations, modulates negatively the secretion of 
IL-11, a cytokine that decreases GR expression (77). 
Consequently, this interplay of cytokines through 
autocrine/paracrine loops may modulate bone 
sensitivity to GCs (78).  
 

GCs and Osteoblast Activity 

 

In response to pharmacologic doses of GCs, 
osteocytes trigger the protective process of 
autophagy; with excessive doses of GCs autophagy 
leads to apoptosis (79). GCs increase the apoptosis of 
osteoblasts and mature osteocytes via activation of 
caspase 3 (1, 80-83). Osteoblast/osteocyte apoptosis 
may involve decreased expression of the pro-survival 
factor BclXL and increased expression of the 
proapoptotic factors Bim and Bak (through induction of 
the leucine zipper E4bp4) (52, 84). Apoptosis is also 
assisted by GC-induced excess reactive oxygen 
species (ROS) production and inhibition of Akt, 
leading to suppression of the Wnt/β-catenin pathway, 
which is necessary for osteoblastogenesis as well as 
for cell survival (52, 85). Studies on the proaptototic 
effect of GCs on osteoblasts/osteocytes, indicate that 
it may be mediated by the process of endoplasmic 
reticulum stress (86). Furthermore, GCs reduce 
osteoblast proliferation and differentiation (62), 
possibly as a result of GC-induced repression of bone 
morphogenic protein-2 (BMP-2) and expression of 
core binding factor a1 (Cbfa1) (84). GCs also modify 
the expression of osteoblast specific genes, such as 
osteocalcin. Osteocalcin expression during the 
development of bone is tightly regulated by GCs, and 
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multiple GREs have been identified on the human and 
rat osteocalcin promoter region (87, 88). The 
osteocalcin gene also contains several activator 
protein-1 (AP-1) sites that apparently contribute to the 
basal activity of the promoter. Therefore, repression of 
osteocalcin promoter activity by GCs may also involve 
interaction between GR and components of the AP-1 
complex, independently of DNA binding, as it has 
been postulated for the collagenase promoter (89, 90).  

 

The Wnt signaling pathway is important for osteoblast 
differentiation and function, bone development and 
level of peak bone mass (91). Mechanical loading 
results in increased bone mass in animals that carry 
activating mutations of Lrp5 (coding for a Wnt 
coreceptor)(91). Wnt signaling may be implicated in 
the osseous response to mechanical loading (91) and 
the observed inhibition of skeletal growth by GCs may 
be mediated by effects on Wnt signaling (92) by 
enhancing Dickkopf 1 (Dkk1) expression (which is a 
Wnt antagonist) and Sost (sclerostin, which is a 
disruptor of the Wnt-induced Fz-Lrp5/6 complex 
leading to β-catenin ubiquitination) (52, 62, 93). 
Interestingly, both short- and long-term GC 
administration decreases Dkk1 expression in humans 
whereas only long-term GC administration decreases 
Sost expression; Wnt signaling involvement in GCOP 
appears to be time-dependent (52). The inhibition of 
Wnt signaling is also involved in GC-induced 
adipocyte differentiation (52). 

 

GCs are required for the differentiation of 
mesenchymal stem cells to bone cells; they can also 
promote an osteoblastic phenotype (by inhibiting 
collagenases (MMPs) and reducing collagen type 1 
breakdown) (94-96). Impaired osteoblastogenesis by 
excess GCs involves the reduction in expression of 
microRNAs (endogenous RNAs of 18-25 nucleotides 
each that interact with mRNA to alter protein 
expression) (97), such as miR-29a/miR-34a-5p and 
reductions in the mRNA expression of Dkk1/receptor 
activator of the nuclear factor-κB ligand (RANKL) (98). 

  

GCs and Osteoclast Activity 

 

Compared to effects of GCs on osteoblasts, the 
effects of GCs on osteoclasts are less known as 
osteoclast isolation from bone is technically difficult 
and bone marrow cultures, hematopoietic cell lines 
and cells derived from giant-cell tumors (used as 
model systems to study osteoclast differentiation and 
activity) have produced varying results. GCs stimulate 
bone resorption (99-101). It has been shown that GCs 
stimulate osteoclastogenesis through their capacity to 
bind to the bone surface by altering the expression of 
N-acetylglucosamine and N-acetylgalactosamine (85, 
102). Osteocyte apoptosis, induced by GCs, reduces 
osteoprotegerin (OPG, the decoy RANKL ligand) (52). 
GCs may decrease apoptosis and prolong the lifespan 
of mature osteoclasts (52, 62) but cannot affect 
directly their bone-resorbing activity, since these cells 
apparently lack functional GRs (103). GCs suppress 
calpain 6 (Capn 6) which is enmeshed in β-integrin (a 
mediator of osteocyte interaction with the osseous 
matrix) and expression of microtubules’ 
acetylation/stability within the bone cells cytoskeleton 
(52). Higher expression of the GR gene in subjects 
with lower BMD may lead to higher sensitivity of their 
monocytes/macrophages to GCs to differentiate into 
osteoclasts (104). Cytokines are also implicated in 
these actions (see next section on regulation of local 
bone factors by GCs) (105).  

 

GCs and Local Bone Factors (Cytokines, Growth 
Factors, Prostanoids and Kinases) 

 
CYTOKINES  
 
Interleukin-1 (IL-1) and -6 (IL-6) induce bone 
resorption and inhibit bone formation. GCs partially 
inhibit the production of IL-1 and IL-6 and inhibit the 
bone resorbing activity of these cytokines (GC therapy 
could paradoxically protect osseous tissue from IL-
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induced bone resorption) (106-109). Transforming 
growth factor beta 1 (TGF-b, which inhibits IL-1-
induced bone resorption and stimulates osteoblast 
activity) is decreased by GCs. (110). Lower levels of 
TGF-b may increase the susceptibility of bone to the 
resorbing effects of IL-1. IL-1 suppression also inhibits 
the generation of nitric oxide, which modulates 
osteoclast activity (111). Excess GCs inhibit the 
expression of IL-11 on osteoblasts (and hinder this 
cytokine’s effect on their differentiation) independently 
of GR dimerization (52). GCs interfere with the 
RANKL-OPG axis. RANKL (which is expressed at high 
levels in pre-osteoblast/stromal cells) induces 
osteoclast differentiation in the presence of colony-
stimulating factor-1 (CSF-1) by binding to the receptor 
activator of the nuclear factor-κB (RANK; a member of 
the TNF family on the surface of octeoclasts(108). 
OPG is also produced by osteoblasts and is found on 
their surface. OPG acts as a decoy receptor of 
RANKL: it binds RANKL and prevents it from binding 
its osteoclast receptor, therefore inhibiting osteoclast 
differentiation. GCs enhance RANKL and CSF-1 
expression (78), and lower OPG expression in human 
osteoblasts cells in vitro (112). Serum OPG 
concentrations are significantly reduced in patients 
undergoing systemic GC therapy (113). This decrease 
in OPG is more marked than the GC-induced increase 
in RANKL (via suppression of miR-17/20a, which 
targets Rankl) (52), leading to an increased 
RANKL/OPG ratio that may mediate GC-induced bone 
resorption (114).  

 

GROWTH FACTORS  
 
Insulin-like growth factors (IGFs) have an anabolic 
effect on bone cells that affect IGF-I and IGF-II 
receptors. IGF-I and IGF-II are weak mitogens (they 
increase the replication of osteoblasts), they increase 
type I collagen synthesis and matrix apposition rates 
and decrease collagenase-3 (metalloproteinase-13) 
expression by osteoblasts (115, 116). Synthesis of 
IGF-I in osteoblasts is decreased by GCs via 
increased expression of the CAAT/enhancer binding 

protein (C/EBP) β and δ (transcription factors that bind 
to the IGF-I promoter and halt its transcription) (117). 
GCs inhibit IGF-II receptor expression in osteoblasts 
(while they have no effect on IGF-I receptor 
expression)(118, 119). Since the IGF-II receptor 
functions as an IGF-binding protein (IGFBP) its 
inhibition by GCs may result in higher levels of 
available growth factors although it may also lead to 
faster degradation of IGF-II. The activity of IGF-I and -
II is regulated by at least six IGFBPs that are 
expressed by osteoblasts (120, 121). IGFBPs in 
skeletal cells are considered to be local reservoirs and 
modulators of IGFs. GCs decrease the expression of 
IGFBP-3, -4, and -5 in osteoblasts (122, 123). IGFBP-
5 stimulates bone cell growth (and enhances the 
effects of IGF-I); its reduction in the bone 
microenvironment may be relevant to the inhibitory 
actions of GCs on bone formation and the process of 
GCOP (124). GCs also increase the synthesis of 
IGFBP-related proteins (IGFBP-rPs; a family of 
peptides related to IGFBPs that bind IGFs and are 
involved in cell growth) (125). Chondrocytes are 
involved in fracture healing and in OP this process is 
delayed. Among others, GCs inhibit the activation of 
GH and IGF-I receptors in chondrocytes and reduce 
IGF-I and GH receptor expression in these cells (126). 
 

Bone cells express transforming growth factor-b (TGF-
b) -1, -2, and -3 genes (127). TGF-b stimulates bone 
collagen synthesis and matrix apposition rates, 
modifies bone cell replication, stimulates growth and 
proliferation of osteoblasts but inhibits their 
differentiation and the expression of osteocalcin (128, 
129). TGF-b1 expression in osteoblasts is not 
modified by GCs. GCs, instead, induce activation of 
the latent form of TGF-b1 by increasing the levels of 
bone proteases (130, 131). Two signal-transducing 
TGF-b receptors are expressed in osteoblasts. GCs 
shift the binding of TGF-b from these receptors to 
betaglycan (by increasing the synthesis of this 
proteoglycan) and oppose the effects of TGF-b 
osteoblastic cell replication (130).                       
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Hepatocyte growth factor (HGF) is produced by both 
osteoblasts and osteoclasts. HGF is a potent 
stimulator of osteoblastic function and a potent 
suppressor of bone resorption in isolated rat 
osteoclasts (132). Osteoclast-produced HGF (in an 
autocrine fashion), may lead to changes in osteoclast 
shape and stimulate osteoclast migration and 
chemotaxis, while (in a paracrine fashion) may lead 
osteoblasts to enter the cell cycle, via DNA synthesis 
stimulation (132, 133). GCs inhibit the release of HGF 
in vitro, which suggests that the inhibitory effects on 
bone resorption of GCs may be in part mediated via 
regulation of osteoblast-produced HGF (134, 135).  
 

Platelet-derived growth factor (PDGF) is a mitogen of 
bone cells (136). PDGF-A and PDGF–B are 
expressed in a limited fashion in osteoblasts, and 
neither the synthesis nor the binding of PDGF appear 
to be modified by GCs. Specific PDGF-A/B binding 
proteins are lacking, although SPARC (secreted 
protein acid rich in cysteine) and osteonectin (a protein 
abundant in bone matrix) bind and prevent the biologic 
actions of PDGF-B (137). Since GCs enhance 
osteonectin expression in osteoblastic cells they may 
also decrease the activity of PDGF-B in bone (138). 

 

PROSTANOIDS  

 

Prostaglandins (PGs) are produced by bone cells and 
affect both bone formation and resorption. PGs (and 
PGE2 in particular) stimulate bone collagen and non-
collagen protein synthesis (139-141). PGs inhibit 
directly the activity of isolated osteoclasts and 
increase bone resorption in organ cultures, (probably 
by promoting osteoclastogenesis) (142). GC-induced 
inhibition of collagen synthesis in bone, down-
regulation of c-fos oncogene expression and reduced 
osteoblast proliferation are all reversed by exogenous 
PGE2in vitro, suggesting an important pathogenic role 
for this PG in GCOP (143-147). GCs interfere with the 
production of PGs in bone (especially of PGE2) via the 

decreased expression of cyclooxygenases (the 
enzymes that convert arachidonic acid into PGs) (148, 
149). Osteoblasts express two cyclooxygenases: 
constitutive prostaglandin synthase-1 (PGHS-1) and 
inducible prostaglandin synthase-2 (PGHS-2). 
Apparently, GC-inhibited PG-production in bone is 
mediated through a decrease in agonist-induced 
PGHS-2 expression. 

 

KINASES  

 

GCs modulate intracellular kinases (ERKs, 
MAPK/JNK and Pyk2) with a proapoptotic effect on the 
osteoblastic lineage  (150) 

 

EXTRASKELETAL MECHANISMS OF GCOP 
 

Effects of GCs on Calcium Absorption and Excretion 

 

Although there is no consensus regarding the effect of 
GCs on calcium absorption, they mainly impair 
intestinal calcium absorption (151-158). GCs have no 
effect on the intestinal brush border membrane 
vesicles (159), but decrease synthesis of calcium 
binding protein and deplete mitochondrial ATP (160). 
Patients treated with GCs show increased renal 
calcium loss occasionally leading to the development 
of secondary hyperparathyroidism (161). In normal 
subjects receiving GCs the elevation of fasting urinary 
calcium proceeds the rise in immunoreactive 
parathyroid hormone (iPTH) (162). In patients on long-
term GC therapy, hypercalciuria is most likely due to 
increased skeletal mobilization of calcium and 
decreased renal tubular reabsorption that occurs in 
spite of elevated PTH levels. The GC-induced 
decrease in bone formation lowers calcium uptake by 
newly formed bone and elevates the filtered load of 
calcium. High dietary sodium intake increases renal 
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loss of calcium whereas sodium restriction and 
thiazide diuretics lower its renal loss (163). 

 
Effects of GCs on the Excretion of Phosphorus 

 

GCs, acting directly on the kidney and indirectly, via 
induction of secondary hyperparathyroidism, lower 
tubular reabsorption of phosphate, leading to 
phosphaturia (164, 165). Furthermore, GCs increase 
the amiloride-sensitive Na+/H+ exchange activity in the 
renal proximal tubule brush border vesicles and 
decrease the Na+ gradient-dependent phosphate 
uptake, resulting in  increased acid secretion and 
phosphaturia (166). 

 

GC Effects on Parathyroid Hormone (PTH) 
 
A direct stimulatory effect of GCs on PTH secretion 
may also exist (164, 167, 168). GCs induce a negative 
calcium balance that leads to secondary 
hyperparathyroidism; in patients receiving GCs iPTH 
is increased, that can be suppressed with exogenous 
calcium and vitamin D (168, 169). Chronic GC 
administration is accompanied by altered secretory 
dynamics of PTH; more particularly, it reduces its tonic 
secretion and increases its pulses (170). However, 
elevated iPTH levels can also be suppressed following 
calcium infusion, suggesting that its  elevation is more 
likely to be secondary to a negative calcium balance 
caused by GCs, rather than to direct stimulation of 
PTH secretion (171).  
 
Effects of GCs on Vitamin D Metabolism 
 
Low, normal, or increased circulating levels of 1,25-
dihydroxyvitamin D (1,25-(OH)2D) have been reported 
in subjects taking GCs (171-174). These differences 
may originate from variations in the dietary intake and 
absorption of vitamin D and in exposure to sunlight. 
The rate of synthesis and clearance of 1,25-(OH)2D is 

normal in subjects receiving GCs (175). Although the 
administration in humans of 1,25-(OH)2D improves 
calcium transport, it does not normalize it (176). 
 
GC Effects on Sex Hormones 
 
GCs inhibit the secretion of gonadotropins and also 
show direct effects on the gonads and the target 
tissues of gonadal steroids. In rats, GCs reduce the 
action of follicle-stimulating hormone (FSH) on 
granulosa cells and inhibit the response of luteinizing 
hormone (LH) to gonadotropin-releasing hormone 
(GnRH) (177-179).In rats and primates, GCs also 
decrease GnRH secretion; furthermore, in rats, 
overexposure to GCs renders their pituitary insensitive 
to exogenously administered GnRH (180-182).In men 
and women given GCs the plasma concentrations of 
estradiol, estrone, dehydroepiandrosterone (DHEAS), 
androstenedione, and progesterone are decreased 
(183-185). High-dose GC therapy in women may lead 
to amenorrhea. Although the exact targets of GC 
inhibition of steroidogenesis in Leydig or granulosa-
theca cells are not fully defined, recent studies have 
found a GC-responsive upstream promoter region of 
the cholesterol side-chain cleavage gene (186).  In 
postmenopausal women an additive effect of GC 
treatment with estrogen deficiency on bone loss is 
observed (187, 188).  
 
GC Effects on Growth Hormone (GH) 
 
GH is an important regulator of both bone formation 
and bone resorption. in vitro studies have shown that 
the GH-induced increase in bone formation is twofold: 
by direct interaction with GH receptors on osteoblasts, 
and through induction of an endocrine and 
autocrine/paracrine IGF-I effect (189). In contrast, in 
animals high endogenous GCs or exogenous 
exposure can inhibit linear growth and GH secretion in 
animals. In patients with GCOP a lower GH response 
to growth hormone–releasing hormone (GHRH) and a 
positive correlation between GH increment and 
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osteocalcin are observed. This inhibitory effect of GCs 
on the secretion of GH may be dependent on an 
increase in somatostatin synthesis and secretion, 
which inhibits pituitary GH secretion. Arginine, which 
decreases hypothalamic somatostatin tone, 
normalizes the GH response to GHRH (190, 191). 
Bone sensitivity to GH may also reduce by GCs: an 
up-regulatory effect on GH receptor expression may 
be implicated (192).  

 
GC Effects on Connective Tissue 
 
Excess GCs hinder wound healing via suppression of 
DNA and protein synthesis in fibroblasts and impaired 
local macrophage recruitment (193, 194). 

 
GC Effects on Muscle 
 
Common side effects of GC excess include muscle 
weakness and loss of muscle mass. Alterations of 
muscle biopsies of GC-treated patients include 
selective atrophy of type IIa muscle fibers, relative 
increase in the number of type IIb fibers and decrease 
in the number of type I fibers (195-197). The main 
mechanisms implicated in GC-induced myopathy are 
increased protein catabolism, inhibition of glycogen 
synthesis, and interference with fatty acid β-oxidation 
(83). In fact, GCs stimulate ubiquitin-proteasome-
dependent protein breakdown in skeletal muscle and 
regulate calcium-dependent proteolysis (198, 
199).Moreover, levels of glycogen synthase, beta-
hydroxyacyl-CoA dehydrogenase and citric acid 
synthase, are lower in muscle from GC-treated 
patients compared to muscle from disease-matched 
controls (200). A strong association between steroid 
myopathy and OP has been described (201).  
 
INDIVIDUAL SUSCEPTIBILITY TO GCOP 
 
Some patients on a low GC dose show bone loss at a 
much higher rate than others on a higher GC dose 

(202). Genetics may play a role in determining this 
difference. Little is known about the mechanisms of 
cellular sensitivity to GCs. Individual factors are also 
important in determining the risk of fractures when 
GCs are used. Polymorphisms in the GR gene have 
been linked to the varied degrees of susceptibility to 
GCs; these could explain the different rates of GC-
associated fractures (97). Individuals that are 
heterozygous for a polymorphism at nucleotide 1,220 
(resulting in an Asparagine-to-Serine change at codon 
360), had increased BMI, increased blood pressure 
and lower spine BMD compared to control subjects 
(203, 204).  
 
Another explanation for inter-individual variability 
among those exposed to GCs is related to differential 
activity of 11b-hydroxysteroid dehydrogenase (11b-
HSD) (205). This enzyme system plays a critical role 
in the regulation of GCs activity (206). Two distinct 
11β-HSD enzymes have been described; 11b-HSD1 
(converting cortisone [E] to cortisol [F] and 11b-HSD2 
(converting F to E) modulate GC and mineralocorticoid 
hormone action in target organs (205, 207, 208). 11β-
HSD1 is widely expressed in GCs target tissues, 
including bone (206). The reductase activity does not 
show a large inter-individual variability, whereas the 
oxidase activity of 11b-HSD2 has a large inter-
individual variability. Subjects with higher oxidase 
activity at bone level may be at greater risk of 
developing GCOP (209). Men with OP were shown to 
have increased endogenous GC availability, via 
apparent 11b-HSD1 activation (210). The activity of 
11β-HSD1 and the potential to generate F from E in 
human osteoblasts is increased by pro-inflammatory 
cytokines (TNFa, IL-1b and IL-6) and by GCs 
themselves (211, 212). During inflammation pro-
inflammatory cytokines may potentiate GC actions in 
bone through an “intracrine” mechanism (209, 213). 
An increase of 11β-SD1 activity occurs with aging, 
possibly providing an explanation for the enhanced 
GC effects in the skeleton of elderly subjects (214). 
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In the future, the characterization of factors accounting 
for the variability to GC-related bone loss among 
individuals may identify subjects at higher risk of 
developing GCOP and, possibly, customize treatment. 
 
DIAGNOSIS OF GCOP 

 

Medical History and Clinical Evaluation 

 

Table 1 summarizes elements from medical history 
suggestive of GCOP and the modalities available for 
its diagnosis. Any patient that is treated with long-term 
(for over a month) GCs should be suspected as 
suffering from GCOP (215). The risk for GCOP is 
higher in postmenopausal women, transplant 
recipients, and patients with sarcoidosis (216-220). 
Bone loss depends on the dose, route, and duration of 
GC administration (218-220). 

 

 
 
  

Table 1. Clues and Diagnostic Means for GCOP 

Medical 
history 

Sex and age 
History of OP and/or trauma fractures 
History of allergy, chronic inflammatory or autoimmune disease, hematologic, skin and 
renal disorders, transplantation  
Calcium and alcohol intake, smoking, physical activity 
Chronic use of anticonvulsants, heparin, immunosuppressants 
Menstrual, menopausal or fertility status   

Clinical 
evaluation 

Truncal obesity, edemas, striae, skin atrophy and ecchymoses 
Myopathy (myalgias, weakness of the proximal muscles and pelvic girdle)  

Assessment of temporal baldness, loss of body hair, gynecomastia, altered pubic hair 
pattern, decreased testicle and prostate size 

Laboratory 
evaluation 

Complete blood cell count, liver and renal function, serum electrophoresis 

Serum calcium and phosphate, serum 25-OH-vitamin D, serum alkaline phosphatase, 
PTH 

Osteocalcin, bone-specific alkaline phosphatase, procollagen type I extension 
propeptides) 
Hydroxyproline, hydroxylysine glycosides, hydroxypyridinium cross-links, type I collagen 
telopeptides) 
Thyroid hormone profile, total and free testosterone, estradiol, luteinizing hormone, 
prolactin, ferritin 

Bone 
mineral 
density 
assessment 
 
 

Lateral scan (vertebral bodies) and anteroposterior scans (spine, hip) with dual-energy 
X-ray absorptiometry (DXA) – Trabecular Bone Score (TBS) in lumbar spine (if available) 

• Assessment of vertebral compression fractures with X-ray          
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Cushingoid clinical features include truncal obesity, 
skin atrophy with increased fragility and ecchymoses, 
fluid retention, hyperglycemia, and symptoms of 
vertebral compression and myopathy. Muscle strength 
needs to be assessed by a trained physician or 
specialized physical therapist, with special attention to 
the testing of proximal muscle groups. A brief 
exposure to GCs may trigger myopathy that is not 
always dose-dependent, and is often difficult to 
differentiate from inflammatory myopathy. However, 
GC myopathy is characterized by creatinuria and 
normal muscle enzymes, including aspartate 
aminotransferase, creatine kinase, and aldolase (195, 
201).  
 
Men and women on chronic treatment with GCs often 
have symptoms of hypogonadism, such as decreased 
libido and sexual activity, and may show low rates of 
fertility or even infertility. In premenopausal women 
history taking should assess menstrual periods, since 
subtle changes, including less bleeding and shortened 
menstrual periods, may be indications of low estrogen 
levels. Menstrual irregularities are also common in 
women with endogenous GC excess. 
 
Various respiratory, dermatologic, musculoskeletal, 
neurologic and gastrointestinal disorders are 
frequently treated with GCs. Signs and symptoms of 
such disorders need to be evaluated. 
 

Laboratory Tests and Markers of Bone Turnover 

 

Laboratory evaluation for GCOP should include total 
blood cell count, markers of renal and liver function, 
serum electrophoresis, serum and 24-hr urine 
calcium, serum levels of 25-hydroxyvitamin D, alkaline 
phosphatase, thyroid-stimulating hormone and 

parathyroid hormone, estradiol in women and total and 
free testosterone in men (218-221). 

 

In patients receiving GCs a dose-dependent decrease 
in serum osteocalcin is found; this is a good indicator 
of the degree of inhibition of osteoblastic activity (222, 
223). Other markers of bone formation, such as total 
and bone specific alkaline phosphatase and 
procollagen type I carboxy-propeptide are also lower 
in under GC therapy (162, 224). In subjects on GC 
therapy baseline levels of osteocalcin do not always 
correlate with subsequent bone loss (225-227). In 
some, but not all, studies of patients treated with GCs, 
markers of bone resorption (like urinary collagen N-
telopeptides [NTX]) are elevated (165, 228-230). In 
view of such discrepancies, the measurement of 
serum markers of bone formation and resorption is 
considered to be of little clinical utility and it is not 
currently advocated for routine use (217).  

 

Bone Mineral Density (BMD) Assessment 

 

Changes in BMD early on during GC therapy can be 
detected by dual-energy X-ray absorptiometry (DXA) 
and quantitative computed tomography (QCT); classic 
X-ray studies are useful to detect vertebral 
compression fractures. Both QCT and DXA can 
measure cortical and trabecular bone density, 
however, the former is mostly used to evaluate 
trabecular bone density, whereas the latter is used to 
measure cortical and trabecular bone density (231, 
232). DXA also helps estimate the risk for fractures, 
and provides an objective measurement to judge the 
efficacy of treatment (221, 233, 234). BMD 
measurement techniques that focus on the vertebral 
body and exclude the cortical bone of posterior 
processes, such as lateral DXA scanning, are more 
sensitive in detecting GCOP (61, 235). However, the 
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selection of a BMD assessment method is influenced 
by the presence of vertebral deformities, osteophytes, 
or of calcifications in the aorta that may spuriously 
elevate spinal BMD values. If this is the case, lateral 
views of the vertebral bodies are considerably less 
precise than antero-posterior scans, and therefore 
less appropriate for following up changes in bone 
mass. When marked osteophytosis or scoliosis of the 
spine is seen, proximal femoral densitometry (in the 
femoral neck) should be chosen (63). The trabecular 
bone score (TBS), which is a DXA analytical tool that 
hones on lumber vertebral microarchitecture, may be 
useful in assessing GCOP (236, 237).  

 

In patients under glucocorticoid treatment fractures 
tend to occur at BMD values that are lower than the 
conventional threshold T-score of -2.5 (238, 239). A T-
score threshold value of – 1.5 SD is usually the cutoff 
for GCOP in Europe (5), whereas the American 
College of Rheumatology (ACR) has defined the T-
score cut off to – 1.0 SD to separate “normal” from “not 
normal” BMD (220). Furthermore, the ACR 
recommends BMD baseline measurements at the 

lumbar spine and/or hip before starting any GC 
treatment longer than 6 months (220). At 6 month 
intervals from the baseline assessment, or at 12 
month intervals, if the patient is receiving therapy to 
prevent bone loss, follow-up measurements should be 
done (240, 241). For the United States in particular, 
Medicare reimburses BMD evaluation for patients on 
chronic treatment with GC doses higher than 7.5 
mg/day of prednisolone equivalent (242).  

 

The Fracture Risk Assessment tool (FRAX) estimates 
the 10-year risk for osteoporotic fractures at the hip 
and other sites. FRAX is criticized since it uses hip 
BMD, whereas vertebral fractures may be more 
common than hip fractures in subjects receiving GCs 
(243). Recently simple adjustments for the calculated 
fracture risk have been presented that take into 
account glucocorticoid dosage (244) (Figure 2). Use of 
FRAX is currently advised to stratify GC-treated 
patients in low, moderate and high fracture risk 
categories (245, 246). 
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Figure 2. Fracture risk stratification and FRAX fracture risk corrections according to glucocorticoid 
usage (modified from (245); # fracture; T: T-score; postmenop: postmenopausal; corr: corrected; * x 1.15 
if glucocorticoid dose > equivalent to 7.5 mg prednisone/day; **x 1.20 if glucocorticoid dose > equivalent 
to 7.5 mg prednisone/day; ***for > 6months; Z: Z-score; GC Rx: glucocorticoid therapy 

 

PREVENTION AND TREATMENT OF GCOP 

 

Guidelines for the prevention and treatment of GCOP 
have been put forth from the ACR in 2001, in 2010 
(220, 247) and more recently in 2017 (245), the UK 
Consensus group in Management of GCOP (240) and 
the Belgian Bone Club (248), among others.  

 

General Preventive Strategies 

 

As soon as GCs are administered prevention of GCOP 
should start; bone loss is more rapid in the first months 
of therapy. The minimal effective GC dose should be 
used. Although alternate day therapy seems attractive 
it has not been proven to hasten bone loss in adults 
(202, 249); the persistent depression of adrenal 
androgen production may be the culprit (250). 

 

The concept of “safe dose” for the treatment with oral 
GCs is controversial (66). More particularly, 
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prednisone given at low doses (2.5-9 mg/d) may affect 
BMD whereas lower doses (1-4 mg/d) were reported 
to have very little or no skeletal effect (251, 252). 
Intravenous high-dose (up to 1 g) methylprednisolone 
administration is not onerous to bone (253) but even a 
single oral dose of 2.5 mg of prednisone has an almost 
immediate negative effect on osteocalcin secretion 
(254). Alternate-day GC administration may prevent 
growth retardation in children but not bone loss (202, 
249). Thus, despite the ambiguity of the literature, an 
equivalent dose equal to or higher than 2.5 mg of 
prednisone per day for a month seems a sensible 
threshold to give protection against GCOP.  

 
Inhaled GCs may be better than oral or systemic GCs 
vis-à-vis bone health, but still have their osseous 
tissue complications (22, 255). Newer inhaled GCs 
(such as budesonide), seem to have less adverse 
effects on the bone, as indicated by measurements in 
bone markers (256, 257). Dosing of the inhaled GC is 
important; beclomethasone dipropionate or 
budesonide given at low doses for more than one year 
did not affect spine BMD in asthmatic subjects (257). 
However, patients treated with high doses of inhaled 
budesonide or beclomethasone (1.5 mg/day, for at 
least 12 months) and without prior oral GC treatment 
for more than 1 month, had a significant decrease in 
BMD and bone formation markers, with no changes in 
bone resorption markers (258). In another study, 
inhaled GCs in adults with chronic lung disease were 
not associated with increased fracture risk (and more 
in detail no dose-response curve was verified) (259). 
Moreover, in children treated with beclomethasone for 
bronchial asthma, analysis after adjustment for the 
severity of the underlying disease did not show any 
association between inhaled GCs and fracture risk 
(260). Thus, in children, other factors, such as excess 
body weight, low muscle mass and limited exercise 
capacity may predispose to low BMD (261). 
 

Another factor that should be noted is the change in 
lifestyle for the prevention of GCOP. Diet should be 
rich in calcium and protein (262). Alcohol and sodium 

intake should be reduced (to 1-2 units of alcohol/day 
(245)), smoking should be stopped and a regular 
exercise program should be followed (37). Subjects on 
GCs may benefit if they are protected from falls (217, 
263).  

 

An important, yet often neglected by most prescribing 
physicians (93), facet of GC-treatment is the need for 
proper patient information and acknowledgement 
regarding untoward effects. A signed relevant patient 
acknowledgement form should be included in medical 
charts/files to avoid malpractice litigation (243).   

 

Therapeutic Options 

 

Therapy for GCOP aims to prevent and minimize bone 
loss, to increase BMD and, at least partially, to reverse 
the effects of GC excess. Some therapies should be 
continued for as long as GC treatment is pursued. The 
usual primary outcome in most reported – to date - 
trials of GCOP-specific treatments, is the change from 
baseline in vertebral BMD vis-à-vis placebo or other 
treatments; few trials have also assessed fracture 
rates (264, 265).   

 
CALCIUM AND VITAMIN D SUPPLEMENTATION 
 
Patients on GCs should receive supplementation with 
calcium and vitamin D; this is better than no 
supplementation or calcium alone (262). A daily dose 
of 1,500 mg calcium and 800 IU vitamin D (1 μg/day 
of α-calcidiol or 0.5 of μg/day calcitriol) effectively 
oppose negative calcium balance (220). A two-year 
randomized clinical trial demonstrated the efficacy of 
combined calcium and vitamin D supplementation in 
preventing bone loss in patients with rheumatoid 
arthritis treated with low doses of GCs (266). However, 
these encouraging findings were not replicated in a 
three-year follow-up study, where the same 
combination did not show any benefit (267). From 
randomized clinical trials and meta-analyses it was 
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shown that active metabolites of vitamin D (α-calcidiol 
and calcitriol) are more effective than vitamin D in 
maintaining bone density during medium-to-high dose 
GC treatment (268-271). Treatment with active forms 
of vitamin D entails a risk of hypercalciuria and 
hypercalcemia, consequently periodic assessment of 
serum calcium and creatinine levels at the beginning 
of the therapy, after 2-4 weeks, and thereafter every 
2-3 months is advised (272, 273). Currently - 
according to the ACR (245) - optimal intake for calcium 
is set at 1000 mg/day and at 600-800 IU/day for 
vitamin D. 
 

Thiazide diuretics lower urinary calcium excretion. 
Chronic treatment with thiazides decreased the 
incidence of hip fracture in elderly patients, and 
increased BMD in the general population (274-276). 
This evidence suggests that, together with sodium 
restriction, they may be useful in opposing calcium 
loss and secondary hyperparathyroidism caused by 
chronic GC therapy. However, there are currently no 
studies showing long-term effect of thiazide diuretics 
on BMD in patients treated with GCs. 

 

ANTIRESORPTIVE THERAPY  

 

There are several antiresorptive agents available for 
the prevention and treatment of GCOP.  

 

Bisphosphonates decrease the resorptive activity of 
osteoclasts, increase osteoclast apoptosis and 
decrease osteoblast and osteocyte apoptosis (277). 
Their efficacy in preventing and treating GCOP has 
been clearly shown in large randomized controlled 
clinical trials (278-280). Treatment with alendronate 
for 18 months or two years increased total body BMD, 
and – according to some studies - significantly 
decreased risk of vertebral fractures in patients taking 
GC (281, 282). In a one-year study of patients on GCs 
having undergone cardiac transplantation subjects 
given alendronate had lower bone loss compared to 

subjects on calcitriol or no other treatment (-0.7%, -
1.6% and -3.2% for the lumbar spine and -1.7%, -2.1% 
and -6.2% for the femoral neck BMD, respectively); 
vertebral fracture rates were not different in the three 
groups though (283).  In a meta-analysis of published 
randomized clinical trials of patients with GCOP who 
were given alendronate for 6-24 months, BMD in the 
lumbar spine as well as in the femoral neck increased 
but the fracture rate was not different compared to that 
of patients who were given only calcium, serving as a 
control group (284). Similarly, a one-year study with 
risedronate in patients taking prednisone (7.5 mg/day 
for at least 6 months) showed an increase in lumbar 
spine and femoral neck BMD and an impressive – 
though prone to bias due to limited sample size -  70% 
decrease in the relative risk of vertebral fractures 
(285). Zoledronic acid, a long-acting potent 
bisphosphonate given intravenously (4-10 mg once or 
twice a year) has excellent anti-OP results (286-291) 
and has been assessed in GCOP. The HORIZON 
study lasted for one year and tested the effectiveness 
of 5 mg intravenous zoledronic acid (n=416) vs. 
risedronate (n=417) in subjects with GCOP; the former 
led to greater increase in lumbar bone mineral density 
and greater decrease in bone turnover compared to 
the latter (292). The study did not show differences in 
fracture risk most probably because of its short 
duration. Pyrexia (particularly in the first three days 
post-infusion) and worsening of rheumatoid arthritis 
were noted more often in the zoledronic acid group 
(292).   

 
Oral bisphosphonates are a first choice for anti-
resorptive therapy, followed by intravenous 
bisphosphonates (245), the latter are a first choice in 
pediatric GCOP (293). Currently, alendronate po (70 
mg/week), risedronate po (35 mg/week or 75 mg on 
two consecutive days per month) and zolendronic acid 
iv (5 mg once a year) are recommended to treat men 
and women receiving GC treatment (247); therapy is 
advised for at least two years (294). Oral ibandronate 
(150 mg once a month) given for GCOP in men and 
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women has positive results – particularly regarding 
spine BMD and vertebral fractures (295).  
 
In patients with rheumatoid arthritis and connective 
tissue diseases who are treated with the RANKL 
inhibitor denosumab, lumbar spine (296-298) and 
femoral neck (297) BMD increase. Denosumab sc (60 
mg every six months) is henceforth also proposed as 
treatment for GCOP (245, 299); it is considered to be 
superior in therapeutic effect on lumbar spine BMD, 
total hip/femoral neck BMD and vertebral fractures’ 
incidence compared to bisphosphonates (300, 301). 
The downside of Denosumab is that its discontinuation 
is followed by rapid bone loss (302); some experts 
consider that this makes it less attractive as a 
treatment for GCOP (303). Denosumab can also be a 
therapeutic option in patients with renal insufficiency 
who cannot receive bisphosphonates or teriparatide 
(243). 

 

ANABOLIC THERAPY  

 

Anabolic medications enhance bone formation, 
therefore antagonizing the suppressive effect of GCs 
on osteoblasts. However, some of the information on 
the use of these compounds to prevent or treat GCOP 
comes from small studies.  

 

Recombinant PTH administration (400 IU of PTH 1-34; 
teriparatide) to postmenopausal women on prolonged 
estrogen replacement, who had developed OP after 
chronic GC therapy, resulted in increased lumbar 
spine bone mass, assessed by both DXA and QCT, 
which was maintained after discontinuation of 
teriparatide (304, 305). An 18-month long randomized 
double-blind trial compared teriparatide vs 
alendronate in subjects with GCOP; the increase in 
lumbar BMD was higher with teriparatide (+4.6 to 
+8.1% vs. +2.3 to +3.6%) than for alendronate at 18 
months. Better results were noted for those taking low 
GC doses and fewer vertebral fractures occurred with 

teriparatide compared to alendronate (0.6% vs 6.1%) 
whereas the non-vertebral fracture rate did not differ 
between treatment groups (306). Analogous results 
were noted when the trial was extended to 3 years: 
lumbar spine BMD increased by +11.0% for 
teriparatide vs +5.3% for alendronate whereas the 
respective femoral neck BMD change was +6.3% vs 
+3.4% (307). Teriparatide can be a therapy of choice 
(20 microg/day sc) for patients on GC treatment and/or 
with GCOP, following intravenous bisphosphonates 
on a par with denosumab as proposed in the ACR 
guidelines (245, 247, 308, 309). The combination of 
teriparatide and bisphosphonates may not have an 
additive effect on bone (310); it is not advised for 
GCOP. Nevertheless, bisphosphonates given after 
stopping teriparatide therapy help maintain the bone 
formed by teriparatide (311). 

 
Sodium fluoride, in combination with either calcium 
and vitamin D, or cyclic etidronate, improved lumbar 
spine BMD and trabecular bone volume in GC-treated 
patients. However, no reduction in the incidence of 
fractures was observed. Moreover, fluoride induced 
bone loss at the femoral neck (312, 313). Since most 
of the evidence indicates that sodium fluoride does not 
provide architecturally competent bone, its use is 
currently not recommended for GCOP (220).  
 

Anabolic steroids have also been tested in GCOP. 
Cyclic nandrolone decanoate (50 mg i.m. every three 
weeks for six months) increased the forearm bone 
density in GC treated women, 10% of which 
developed virilizing side effects (314). The typical 
negative effects of steroids on bone are not present 
with nandrolone because it is metabolized to 
dihydrotestosterone (DHT). Similarly, cyclic 
medroxyprogesterone acetate (200 mg i.m. every 6 
weeks for one year) augmented lumbar spine BMD in 
treated men (315). Currently, there is no 
recommendation for the use of anabolic steroids for 
GCOP.  
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GONADAL HORMONE THERAPY  

 

Sex hormone treatment should be considered 
whenever a patient with GC excess develops 
hypogonadism (278). A retrospective study in 
postmenopausal women taking GCs found an 
increased BMD in those who were taking estrogens, 
compared to increasing bone loss in those who were 
not (316). Moreover, in a randomized controlled 
clinical trial of postmenopausal women taking GCs for 
rheumatoid arthritis, a significant increase in lumbar 
spine BMD was observed in those receiving hormone 
replacement therapy (HT) compared to those 
receiving placebo (317). This evidence suggests the 
potential benefit of HT in hypoestrogenic women 
treated with GCs. However, a large randomized 
clinical trial in postmenopausal women treated with a 
combination of estrogen and progestin planned to last 
8.5 years was interrupted after 5 years, because the 
overall risks exceeded the benefits of the treatment 
(318). In the past the ACR recommended oral 
contraceptives (unless contraindicated) in 
premenopausal women on GCs who develop oligo-
amenorrhea (220) but this option is no longer included 
in the more recent ACR guidelines. Similarly, adult 
men with GC excess who develop hypogonadism 
benefit from testosterone replacement. In GC-treated 
asthmatic men with testosterone deficiency, i.m. 
testosterone injections increased lumbar spine but not 
hip BMD (319). There are no data on the potential 
benefit of testosterone therapy in GC- treated 
eugonadal men (247). However, since most studies 
have shown an increase in prostate size and prostate-
specific antigen levels in older men on testosterone 
supplementation/therapy (320-323), testosterone 
administration should be monitored with yearly digital 
examinations and prostate-specific antigen 
measurements. 

 

OTHER THERAPIES 

 

In addition to different combinations of the treatments 
so far discussed, selective estrogen receptor 
modulators (SERMs) alone or conjugated 
estrogens/SERMs belong to the pharmaceutic 
armamentarium against GCOP. SERMs, have positive 
effects on the bone. Tamoxifen reduces in vitro some 
of the deleterious effects of GC on the bone (324). 
Raloxifene, which is currently approved by the United 
States’ Food and Drug Administration (FDA) for the 
prevention and treatment of postmenopausal OP, 
might be a safer alternative to HT in the treatment of 
GCOP that develops in postmenopausal women (246, 
325), given its favorable effects on serum lipids, 
together with the lack of growth stimulation on 
endometrial and breast tissues (326-328).  

 

FUTURE THERAPEUTIC OPTIONS 

 

Currently, denosumab is being evaluated for pediatric 
GCOP (293). Other newer agents that are tentatively 
evaluated for the treatment of osteoporosis either 
inhibit osteoclast resorption or stimulate osteoblast 
bone forming activity. These include antibodies 
against RANKL (RANKL inhibitors), recombinant 
osteoprotegrin, inhibitors of osteoclast enzymes, 
integrin antagonists and agonists to LRP5 (308).  

 

At the time of writing, abaloparatide (PTHrp) and 
romosozumab (humanized monoclonal antibody that 
targets sclerostin) have been cleared by the FDA for 
the treatment of OP in women only (8, 329, 330). One 
would expect the former to be a good candidate for 
GCOP in analogy to teriparatide. However, this 
therapy is not yet approved for GCOP and to the best 
of our knowledge there are no relevant clinical studies 
to support its use in GCOP (331). Furthermore, we 
have to bear in mind that administration of GC > 15 
mg/day may attenuate the osseous effects of 
teriparatide, and this has also been shown with 
abaloparatide in rodent GCOP models (331, 332). 
There is an ongoing trial of romosozumab in GCOP 
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but at present this medication has no firm indication for 
GCOP (313); experimental studies in rodents were 
encouraging (333). 

 
Other promising future therapeutic options target GC 
therapy per se. These include the use of disease-
modifying antirheumatic drugs or tumor-necrosis 
factor agents, which could lead to the need for lower 
GC dosage for autoimmune disease. Furthermore, 
deflazocort (a prednisone derivative) and liposomal 
prednisone may be less onerous to bone (334). The 
search continues to find selective GR agonists 
(SGRMs) that possess the anti-inflammatory benefits 
of traditional GCs without the associated adverse 
effects (335). The SGRMs are selective ligands of the 
GR, which maintain the transrepressive properties of 
GCs (usually associated with their beneficial anti-
inflammatory effect) while they do not have their 
transactivating properties (usually associated with 
metabolic negative effects, including perhaps those on 
the bone). Some of these molecules may represent an 
alternative to traditional GCs in the chronic treatment 
of inflammatory disorders (334, 336). Inhibitors to 
cathepsin K (which is involved in systemic bone 
resorption) (337) hold promise for treating GCOP 
(295, 338). There is interest in therapeutic inhibitors of 
11b-HSD1 for patients with endogenous 
hypercortisolemia such as Cushing’s disease; these 
inhibitors – in theory – could also mitigate GCOP but 
no relevant research has been put forth (53).   

 

GLUCOCORTICOID DISCONTINUATION AND 
REVERSIBILITY OF GCOP 

 

There is no consensus on the reversibility of GCOP. 
Bone mineral density increases after curative surgery 
for Cushing’s disease or interruption of exogenous GC 
treatment (339-341). A prospective study in patients 
with rheumatoid arthritis showed partial bone regain 
after discontinuation of low-dose GC therapy that was 
given for five months (67). If GCs are discontinued and 
treatment for GCOP is continued, a return to baseline 
BMD is to be expected within 9 to 15 months (303). In 
patients with sarcoidosis younger than 45 years, full 
recovery of bone mass was reported two years after 
cessation of therapy (342). However, it is unlikely that 
the large (10% or more) bone mass that is lost during 
high-dose GC therapy can be completely regained, 
with full recovery of the mechanical properties of the 
bone. The likelihood of bone regain may be negatively 
correlated with the duration of treatment as well as 
unknown host-related factors. Most complications of 
osteoporotic fractures, such as vertebral deformities 
and chronic back pain, are permanent. A sensible 
approach is to stop anti-osteoporotic treatment 6 to 12 
months after discontinuation of GCs administration 
(303). 
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