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ABSTRACT 

 
Androgens are an important class of C19 steroid 
hormones that control normal male development and 
reproductive function. The main circulating androgen 
is testosterone, which is produced in the Leydig cells 
of the testis and can also act as a pro-hormone after 
being metabolized to dihydrotestosterone (DHT) or 
estradiol (E2). The biological actions of testosterone 
and DHT are mediated by the androgen receptor, a 
member of the nuclear receptor superfamily, which in 
response to hormone regulates gene expression in 
target tissues. In this chapter the biosynthesis of 
androgens, receptor structure/function, and the 

consequences of genetic changes impacting on 
receptor expression and signaling in disorders of male 
development are discussed. 

 

INTRODUCTION  
 
Androgens are important hormones for expression of 
the male phenotype. They have characteristic roles 
during male sexual differentiation, but also during 
development and maintenance of secondary male 
characteristics and during initiation and maintenance 
of spermatogenesis (1, 2). The two most important 
androgens in this respect are testosterone and 5α-
dihydrotestosterone [Figure 1].  

 



 
 
 

 
www.EndoText.org 2 

 
Figure 1. Structure of testosterone and 5α-dihydrotestosterone and anti-androgens. 
 
While acting through the same androgen receptor, 
each androgen has its own specific role during male 
sexual differentiation: testosterone is directly involved 
in development and differentiation of Wolffian duct 
derived structures (epididymides, vasa deferentia, 
seminal vesicles and ejaculatory ducts) [Figure 2A], 

whereas 5α-dihydrotestosterone, a metabolite of 
testosterone, is the active ligand in a number of other 
androgen target tissues, like urogenital sinus and 
tubercle and their derived structures (prostate gland, 
scrotum, urethra, penis) [Figure 2B] (3, 4).  

 

 
Figure 2. Specific actions of testosterone (T) and 5α-dihydrotestosterone (DHT). A) Testosterone is 
synthesized in the testis under the control of luteinizing hormone (LH) from the pituitary. After entering 
target cells in the hypothalamus, pituitary, testis, and Wolffian duct, T binds to the androgen receptor 
(AR) and the T-AR complex binds to specific DNA sequences and regulates gene transcription, which 
can result in negative feedback regulation of gonadotrophin synthesis and secretion, in initiation and 
regulation of spermatogenesis, and in differentiation and development of Wolffian ducts. B) T is 
synthesized in the testis under the control of LH, enters target cells in urogenital sinus, urogenital 
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tubercle, and several other androgen target tissues and is metabolized to DHT by the enzyme 5α-
reductase type 2. DHT binds directly to the AR and the DHT-AR complex interacts with specific DNA 
sequences and regulates gene transcription resulting in differentiation and development of the prostate, 
the external genitalia, and during puberty several secondary male sex characteristics.   
 
The interaction of both androgens with the androgen 
receptor is different. Testosterone has a twofold lower 
affinity than 5α-dihydrotestosterone for the androgen 
receptor, while the dissociation rate of testosterone 
from the receptor is five-fold faster than of 5α-
dihydrotestosterone (5). However, testosterone can 
compensate for this "weaker" androgenic potency 
during sexual differentiation and development of 
Wolffian duct structures via high local concentrations 
due to diffusion from the nearby positioned testis. In 
more distally located structures, like the urogenital 
sinus and urogenital tubercle the testosterone signal 
is amplified via conversion to 5α-dihydrotestosterone.  
 

ANDROGEN BIOSYNTHESIS  
 
Androgens (testosterone and 5α-dihydrotestosterone) 
belong to the group of steroid hormones. The major 
circulating androgen is testosterone, which is 
synthesized from cholesterol in the Leydig cells in the 
testis. Testosterone production in the fetal human 

testis starts during the sixth week of pregnancy. 
Leydig cell differentiation and the initial early 
testosterone biosynthesis in the fetal testis are 
independent of luteinizing hormone (LH) (6-8). During 
testis development production of testosterone comes 
under the control of LH which is produced by the 
pituitary gland. Synthesis and release of LH is under 
control of the hypothalamus through gonadotropin-
releasing hormone (GnRH) and inhibited by 
testosterone via a negative feedback mechanism 
[Figure 2A] (9).The biosynthetic conversion of 
cholesterol to testosterone involves several discrete 
steps, of which the first one includes the transfer of 
cholesterol from the outer to the inner mitochondrial 
membrane by the steroidogenic acute regulatory 
protein (Star) and the subsequent side chain cleavage 
of cholesterol by the enzyme P450scc (10). This 
conversion, resulting in the synthesis of pregnenolone, 
is the rate-limiting step in testosterone biosynthesis. 
Subsequent steps require several enzymes including, 
3β-hydroxysteroid dehydrogenase, 17α-
hydroxylase/C17-20-lyase and 17β-hydroxysteroid 
dehydrogenase type 3 [Figure 3] (11).  
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Figure 3. Biosynthetic pathways for testosterone and DHT synthesis. The classic pathway show 
testosterone synthesized from cholesterol with further metabolism to DHT. The alternative or 
“backdoor” pathway shows DHT production without going through testosterone. Note only some of the 
enzymes are shown for clarity. 
 

METABOLISM OF TESTOSTERONE TO 5Α-
DIHYDRO-TESTOSTERONE  
 
Metabolism of testosterone to 5α-dihydrotestosterone 
occurs through the classical pathway [Figure 3] and is 
essential for initiation of the differentiation and 
development of the urogenital sinus into the prostate 
[Figure 2B]. Differentiation of male external genitalia 
(penis, scrotum and urethra) also strongly depends on 
the conversion of testosterone to 5α-
dihydrotestosterone in the urogenital tubercle, 
labioscrotal swellings, and urogenital folds (1). In 
recent research there has been considerable interest 
in the alternative or ‘backdoor’ pathway of DHT 

production (12 and references therein). This pathway 
has been found to have a significant role in the normal 
masculinization of the male fetus (see 13) and 
abnormal virilization of the female fetus in cases of 
congenital adrenal hyperplasia resulting from 
mutations in the enzyme P450 oxidoreductase (14).  
 
The irreversible conversion of testosterone to 5α-
dihydrotestosterone is catalyzed by the microsomal 
enzyme 5α-reductase type 2 (SRD5A2) and is NADPH 
dependent [Figure 4] (15). The cDNA of the gene for 
5α-reductase type 2 codes for a protein of 254 amino 
acid residues with a predicted molecular mass of 
28,398 Dalton (16, 17).  
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Figure 4. Metabolism of testosterone to DHT by the enzyme 5α-reductase type 2 (SDR5A2). 
 
The NH2-terminal part of the protein contains a 
subdomain proposed to be involved in testosterone 
binding, while the COOH-terminal region is involved in 
NADPH-binding (3). The enzyme 5α-reductase type 2 
belongs to the 5α-reductase family which is composed 
of 3 subfamilies with a total of 5 members (18). There 
are three isozymes: type 1, type 2 and the more 
recently discovered type 3, which has a role in the 
conversion of polyprenols to dolichols (important step 
in protein N-glycosylation) (19, 20). The other 
members are the proteins glycoprotein synaptic 2 
(GPSN2) and glycoprotein synaptic 2 like (GPNS2L) 
and are most likely involved in double bond reduction 
during fatty acid elongation (21). 
 

ANDROGEN ACTION  
 
The Androgen Receptor and the Nuclear 
Receptor Family 
  
Actions of androgens are mediated by the androgen 
receptor (NR3C4; Nuclear Receptor subfamily 3, 

group C, gene 4). This ligand-dependent transcription 
factor belongs to the superfamily of 48 known human 
nuclear receptors (22). This family includes receptors 
for steroid hormones, thyroid hormones, all-trans and 
9-cis retinoic acid, 1,25 dihydroxy-vitamin D, ecdysone 
and activators of peroxisome proliferation (23-25). An 
increasing number of nuclear proteins have been 
identified with a protein structure homologous with that 
of nuclear receptors, but without a known ligand. 
These so-called "orphan" receptors form an important 
subfamily of transcription factors acting either in the 
absence of any ligand or with yet unknown 
endogenous ligands (26). Comparative structural and 
functional analysis of nuclear hormone receptors has 
revealed a common structural organization in 4 
different functional domains: a NH2-Terminal Domain, 
a DNA-Binding Domain, a Hinge Region and a Ligand 
Binding Domain [Figure 5]. 
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Figure 5. Steroid hormone receptor family. Sequence homologies between the human androgen receptor 
(hAR), human progesterone receptor (hPR), human glucocorticoid receptor (hGR), human 
mineralocorticoid receptor (hMR), and the human estrogen receptor alpha (hERα) and beta (hERβ).  
 
The current model for androgen action involves a 
multi-step mechanism as depicted in Figure 6. Upon 
entry of testosterone into the androgen target cell, 
binding occurs to the androgen receptor either directly 
or after its conversion to 5α-dihydrotestosterone. 
Binding to the receptor is followed by dissociation of 
chaperone protein complexes (e.g., heat shock 
proteins) in the cytoplasm, simultaneously 
accompanied by a conformational change of the 
receptor protein resulting in a transformation and a 
translocation to the nucleus. The complex of 
chaperone and chaperone-associated proteins is 

collectively called the ‘foldosome’ and has functions 
beyond the classical role in the cytosol. The foldosome 
can for instance affect nuclear translocation and target 
gene expression (27, 28). Upon binding in the nucleus 
to specific DNA-sequences the receptor dimerizes 
with a second molecule and the homodimer entity 
recruits further additional proteins (e.g., coactivators, 
general transcription factors, RNA-polymerase II) via 
specific interaction motifs (29). This finally results in 
transcriptional activation or suppression of specific 
androgen responsive genes (30).  
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Figure 6. Simplified model of androgen action in an androgen target cell. The androgen receptor (AR) 
binds testosterone or its active metabolite DHT. After disassociation of heat shock proteins (hsp) the 
receptor enters the nucleus via an intrinsic nuclear localization signal and binds as a homodimer to 
specific DNA elements present as enhances upstream of androgen target genes. The next step is 
recruitment of coactivators, which form the communication bridge between the receptor and several 
components of the transcription machinery. The direct and indirect binding of the androgen receptor 
with several components of the transcription machinery (e.g., RNA polymerase II (RNA Pol II), general 
transcription factors (GTFs)) are key events in nuclear signaling. This communication triggers 
subsequent mRNA synthesis and consequently protein synthesis resulting in androgen responses. A 
non-genomic pathway involving the AR via cross-talk with the Src/Raf-1Erk-2 pathway is also known. 
 
Interestingly androgen signaling via the androgen 
receptor can also occur in a non-genomic, rapid and 
sex-nonspecific way by crosstalk with the Scr, Raf-1, 
Erk-2 pathway [Figure 6] (31, 32). The classical 
androgen receptor is also involved in androgen-
mediated induction of Xenopus oocyte maturation via 
the (MAPK)-signaling cascade in a transcription 
independent way (33, 34).  
 
Cloning and Structural Organization of the 
Androgen Receptor Gene  
 
Since cloning of the human androgen receptor cDNA 
our insights into the mechanism of androgen action 
have increased tremendously. Only one androgen 
receptor cDNA has been identified and cloned, despite 
the two different ligands (35-38). The concept of two 

hormones and one receptor to explain the different 
actions of androgens has been generally accepted 
and, according to the information available from the 
human genome project, it is very unlikely that 
additional genes exist coding for a functional nuclear 
receptor with androgen receptor-like properties (25).  
 
The androgen receptor gene is located on the X-
chromosome at Xq11.2 -12.  The gene spans 186,587 
kilobases (kb) in total and codes for a protein with a 
molecular mass of approximately 110 kDa [Figure 7] 
(39, 40). The gene consists of 8 coding exons and the 
structural organization of the coding exons is 
essentially identical to those of the genes coding for 
the other steroid hormone receptors (e.g., exon/intron 
boundaries are highly conserved) and is characterized 
by unusually long 5’- and 3’-UTRs [Figure 7] (36, 41-
43, 47). As a result of differential splicing in the 3' - 
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untranslated region two androgen receptor mRNA 
species (of around 7.5 and 10 kb, respectively) have 
been identified in several human tissues and cell lines 
(36): only the larger transcript is seen in rodent tissues 
(36, 43, 47). There is no structural indication in the 
androgen receptor mRNA for any preferential use of 
either of the two transcripts or transcript specific 
functions, but it can be speculated that tissue-specific 

factors may determine which transcript is present in 
which androgen target tissue. In the human prostate 
and in genital skin fibroblasts the 10 kb size mRNA is 
predominantly expressed (43). It may also be 
significant that a number of micro-RNAs have been 
identified and validated that target the 3’-UTR that are 
likely to contribute to the regulation of receptor levels 
(44-46) [Figure 7]. 

 

 
Figure 7. Human androgen receptor gene was mapped to the long arm of the X chromosome. The human 
androgen receptor gene consists of coding exons and unusually long 5’- and 3’ UTRs. These have been 
shown to be important for transcriptional regulation (binding sites for both positive and negative 
regulatory factors) in the case of the 5’UTR. The 3’UTR region of the mRNA is targeted by a number of 
microRNAs (miRNAs). The androgen receptor has been shown to downregulate its own mRNA through 
response elements located in the 5’UTR and exon 2.   
 
Regulation and Expression of the Androgen 
Receptor Gene 
 
The promoter for the androgen receptor gene lacks 
TATA and CCAAT elements and transcription is driven 
primarily by the Zn-finger transcription factor Sp1. Sp1 
binds to GC-boxes upstream of the transcription start 
site (-46 to -41 bps) and within the 5’UTR (+429 to 
+442) (47-52) [Figure 7]. In addition, the promoter and 
the region spanning the 5’-UTR and exon 1 contains a 
CpG island that demonstrates tissue-selective 
methylation patterns (53) and to be associated with 
loss of AR expression in prostate cancer (54). 
 

Transcription of the receptor gene is under both 
positive and negative regulation (55, 58). Recent 
studies have focused on the auto-down regulation of 
the receptor mRNA in prostate cells. Balk and co-
workers (56) identified, using chromatin 
immunoprecipitation (ChIP), binding sites for ligand 
bound androgen receptor within the second intron and 
a second negative androgen response elements has 
been characterized in the 5’UTR (+611 bp) of the 
human receptor gene (57). Unravelling the molecular 
mechanism(s) for androgen-dependent down 
regulation, including possible synergy between the 
identified elements, in different cell types and tissues 
is an active area of research (58). 
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In addition to regulation by hormone, recent work has 
also highlighted the importance of the balance 
between positive (Sp1) and negative (Purα) 
transcription factors binding to the 5’UTR of the human 
gene in determining the expression of receptor mRNA 
in different prostate cancer cell models (52 and 
references therein). 
 
Androgen Receptor Polymorphisms  
 
The androgen receptor DNA-binding and ligand-
binding domains have a high homology with the 
corresponding domains of the other members of the 
steroid receptor subfamily (59) [Figure 5].  
 
There is a remarkably low homology between the 
androgen receptor NH2-terminal domain and that of 
the other steroid receptors [Figure 5, see above] (60-
65). A poly-glutamine stretch, encoded by a 
polymorphic (CAG)nCAA - repeat is present in the 
NH2-terminal domain (66). The length of the repeat 
has been used for identification of X-chromosomes for 
carrier detection in pedigree analyses (67, 68). 
Variation in length (9 - 38 glutamine residues) is 
observed in the normal population and has been 
suggested to be associated with a very mild 
modulation of androgen receptor activity (69). This 
assumption is based on in vitro experiments after 
transient transfection of androgen receptor cDNA's 
containing (CAG)nCAA - repeats of different lengths 
(70, 71). In translating this finding to the in vivo 
situation, it can be envisaged that either shorter or 
longer repeat lengths can result in a relevant biologic 
effect during life. This concept has been explored in 
epidemiological studies of men with prostate cancer or 
infertility. With respect to prostate cancer, a clear 
picture has not emerged, and controversy persists. In 
several studies, shortening of the (CAG)nCAA repeat 
length in exon 1 of the androgen receptor gene was 
found to correlate with an earlier age of onset of 
prostate cancer, and a higher tumor grade and 
aggressiveness (72-74). However, in other 

epidemiological studies in prostate cancer patients 
these associations were not confirmed (75, 76).  
 
In several investigations in male infertile patients an 
association was found between a longer (CAG)nCAA 
repeat and the risk of defective spermatogenesis (77-
79). This suggests that a less active androgen 
receptor, due to a moderate expanded repeat length, 
may be a factor in the etiology of male infertility.  
 
The (CAG)nCAA - repeat in exon 1 of the androgen 
receptor gene is expanded in patients with spinal and 
bulbar muscular atrophy (SBMA) and varies between 
38 and 75 repeat units (69, 80, 81). Spinal and bulbar 
muscular atrophy is characterized by progressive 
muscle weakness and atrophy and is associated with 
nuclear accumulation of androgen receptor protein 
with the expanded polyglutamine stretch in motor 
neurons. Clinical symptoms usually manifest in the 
third to fifth decade and result from severe depletion 
of lower motor nuclei in the spinal cord and brainstem 
(69, 82, 83). SBMA patients frequently exhibit 
endocrinological abnormalities including testicular 
atrophy, infertility, gynecomastia, and elevated LH, 
FSH and estradiol levels. Sex differentiation proceeds 
normally, and characteristics of mild androgen 
insensitivity appear later in life.  
 
The neurotoxicity of the polyglutamine androgen 
receptor may involve generation of NH2-terminal 
truncation fragments, as such peptides occur in SBMA 
patients, but several other mechanisms have also 
been suggested for the molecular basis of SBMA (84, 
85). Therapeutic approaches in SBMA are focusing on 
reducing nuclear localized mutant androgen receptor 
via enhanced mutant androgen receptor degradation 
or by disrupting the interaction with androgen receptor 
coregulators (86, 87). In a phase 3 clinical trial it was 
shown that the use of leuprorelin, a synthetic 
neuropeptide with an inhibitory action on LH secretion 
and consequently on testicular testosterone synthesis, 
is associated with improved swallowing function in 
SBMA patients, suggesting that interference by a 
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pharmacon in testosterone-mediated AR aggregation 
can be a potential therapy in SBMA patients (88). The 
selective action of dutasteride (a 5α-reductase 
inhibitor) in motor neurons, by reducing significantly 
the formation of the active androgen 5α-
dihydrotestosterone, resulted in a slowdown of the 
progression of SBMA and illustrated that active 
androgen depleting therapies can be promising in the 
treatment of SBMA (89). 
 
In general patients with an expanded CAG repeat are 
expected to have a low incidence of prostate cancer. 
However, a rare case has been reported in which a 
high stage prostate cancer has been detected in a 
SBMA patient, which responded to a maximal 
androgen blockade therapy (90). 
 
An important step in the receptor-mediated 
mechanism of action of androgens involves the NH2-
terminal domain interacting with the COOH-terminal 
ligand binding domain (N/C interaction). (See details 
below under ‘Androgen Receptor Functional 
Domain Structure’). This N/C interaction is also a 
prerequisite for androgen receptor aggregation and 
toxicity in SBMA. Interference of the N/C interaction by 
selective androgen receptor modulators ameliorates 
aggregation and toxicity (91). 
 
The androgen receptor is a substrate for numerous 
post-translational modifications (see below) and 
phosphorylation of serine 516 has been associated 
with cleavage of the receptor and cytotoxicity (92). In 
contrast, phosphorylation of serines 215 and 793, by 
Akt kinase, was found to prevent nuclear translocation 
and receptor transactivation (93). Interestingly, 
methylation on arginine residues 210, 212, 787, 789 
enhanced cytotoxicity and the authors proposed that 
this was as a consequence of mutual antagonism of 
phosphorylation (serines 215, 792) and arginine 
methylation (94). Similarly, prevention of SUMOylation 
rescues the SBMA phenotype in a mouse model by 
enhancing receptor-dependent transcriptional activity 
(95). 

 
The isoflavone genistein, which is derived from soy, is 
a potential therapeutic agent in SBMA, because this 
androgen receptor modulator can effectively disrupt 
the interaction between the co-regulator ARA70 and 
the androgen receptor and promotes the degradation 
of the mutant receptor in neuronal cells. (96). Similarly, 
targeting molecular chaperone complexes with small 
molecule modulators (e.g., 17-AAG, YM-1) has been 
shown to reduce neurotoxicity and enhance receptor-
dependent degradation (reviewed in 81). 
 
Several therapeutic approaches have been 
investigated at different levels in the androgen 
receptor signaling pathway and aggregation process, 
in SBMA mouse models. However, translating these 
results to the human situation in SBMA patients has its 
limitations and is far from a complete cure of SBMA 
patients (97, 98). 
 
ANDROGEN RECEPTOR AMINO ACID 
NUMBERING 
 
The current sequence of the androgen receptor cDNA 
and the amino acid numbering of the corresponding 
protein is based on the NCBI reference sequence 
NM_000044.3. This is different from the original 
numbering scheme used over the past 20 years that 
was based on Gen-Bank mRNA sequence M20132.1 
(36).  
 
In order to correctly identify mutations previously 
published, the following changes should be kept in 
mind: the variable polyglutamine tract length is two 
longer (23 instead of 21), whereas the variable 
polyglycine tract length is one shorter (23 instead of 
24) for NM_000044.3 versus M20132.1, respectively. 
Consequently, the androgen receptor protein of the 
new reference sequence is one amino acid longer, 
that is, 920 residues, leading to a +2 shift in amino acid 
numbering between residues 78 and 449 and to a +1 
shift between residues 472 and 919 compared with the 
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previously used standard reference sequence. The +1 
shift involves all the amino acid residues in the DNA-
binding domain (DBD) and ligand-binding domain 

(LBD). The new reference numbering is further 
explained and illustrated in Figure 8 and will be used 
throughout the text. 

 

 
Figure 8. Reference numbering of the androgen receptor (AR) of protein. The numbering of the amino 
acid residues is according to National Center for Biotechnology Information (NCBI) reference sequence 
number NM_000044.3, which refers to a gene size of 187,246 nucleotides and an AR protein of 920 amino 
acid residues with a polyglutamine tract of 23 and a polyglycine tract of 23 (110). Amino acid numbering 
+2 between 78 and 449; Amino acid numbering +1 between 472 and 919. In addition, a number of splice 
variants of the AR have been identified in prostate cancer cell lines and patient samples. These splice 
variants lack most or all of the LBD but retain a functional DBD and NTD with unique C-terminal 
sequences derived from cryptic exons (CE) (e.g., AR-v7).   
 
ANDROGEN RECEPTOR: FUNCTIONAL DOMAIN 
STRUCTURE  
 
The NH2-terminal Domain  
 
The androgen receptor NH2-terminal domain (NTD) 
harbors the major transcription activation functions 
and several structural subdomains. The NTD of the 
androgen receptor, as that of the other steroid 
receptors, can be considered as an intrinsically 
disordered protein domain, existing as an ensemble of 
conformers. It has a structure between a fully unfolded 
state and a structured folded conformation: this 
molten-globule-like conformation has the propensity to 

form helical structures, despite its structurally plasticity 
(99-102). Within its 539 amino acids, two independent 
activation domains have been identified: activation 
function 1 (AF-1) (located between residues 103 and 
372) that is essential for transcriptional activity of full-
length androgen receptor, and activation function 5 
(AF-5) (located between residues 362-486) that is 
required for transactivity of a constitutively active 
androgen receptor, which lacks its LBD (103). 
Evidence is available now that the AF-5 region in the 
receptor NH2-terminal domain interacts with a 
glutamine rich domain in p160 cofactors like SRC-1 
and TIF2/GRIP1 and not with their LxxLL-like protein 
interacting motifs (104-107).  
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Recent years have seen further structural and 
functional insights into the intrinsically disordered 
NTD. Key discoveries include the high-resolution 
mapping of helical regions within the AF1 domain 
(108) that were in very good agreement with previous 
predictions (109); and the identification of a helical 
segment involving the WHTLF motif responsible for 
TFIIF binding (110). Also of note are helical regions 
mapping to the poly-Q and adjacent leucine stretch 
(111) and the sequence immediately preceding the 
DBD (112). Collectively, these studies emphasize the 
presence of helical regions within the NTD and its 
propensity to adopt a more helical structure 
underpinning function. 
 
Another function of the androgen receptor NH2-
terminal domain is its binding to the COOH-terminal 
LBD (N/C interaction) (113, 114). The NH2-terminal 
regions required for the binding of the LBD have been 
mapped to two essential units: the first 36 amino acids 
and residues 372-495 (115).  
 
The hormone dependent interaction of the NH2-
terminal domain with the ligand binding domain can 
play a role in stabilization of the androgen receptor 
dimer complex and in stabilization of the ligand 
receptor complex by slowing the rate of ligand 
dissociation and decreasing receptor degradation 
(116, 117). Agonists like T and DHT, but not 
antagonists like hydroxyflutamide or bicalutamide 
induce the N/C interaction in full length receptor. In a 
FRET (fluorescence resonance energy transfer) study 
it was clearly shown that the androgen receptor N/C 
interaction is rapidly initiated in the cytoplasm after 
hormone binding as an intramolecular interaction and 
is followed by an intermolecular N/C interaction in the 

nucleus, contributing to receptor dimerization (118). 
The N/C interaction occurs preferentially in the mobile 
androgen receptor, where it protects the coactivator 
binding groove for ultimately unfavorable protein-
protein interactions. Specifically bound to DNA, the 
N/C interaction is lost allowing cofactor binding (119). 
Several mutations in the ligand binding domain, 
detected in patients with the syndrome of androgen 
insensitivity, negatively affect the interaction of the 
NH2-terminal domain with the ligand binding domain, 
while androgen binding was impaired, indicating the 
importance of this interaction (120). 
 
In addition to the role of the NH2-terminal domain in 
protein-protein interactions it has also been reported 
to modulate DNA binding, leading to a lower apparent 
binding affinity for both selective and non-selective 
response elements (see also below) (121). These 
findings suggest a further role of the NH2-terminal 
domain, in interdomain interactions and allosteric 
regulation of receptor activity. 
  
The DNA-binding Domain  
 
The DNA-binding domain is the best conserved 
among the members of the receptor superfamily 
[Figure 5]. It is characterized by a high content of 
basic amino acids and by nine conserved cysteine 
residues [Figure 9A]. Detailed structural information 
has been published on the crystal structure of the 
DNA-binding domain of the glucocorticoid receptor 
complexed with DNA (122). 3D-information is also 
available for the androgen receptor-DNA interaction 
on an artificial DNA response element (123) [Figure 
9B]. The folding of the DBD is similar to that reported 
for the glucocorticoid and estrogen receptor DBDs.  
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Figure 9. Structure of the DNA binding domain of the androgen receptor. A) The protein structure is 
represented in the one letter code. The domain consists of two zinc cluster modules, which are 
stabilized by the coordination binding of a zinc atom (red dot) by 4 cysteine residues (yellow). The first 
zinc cluster contains the P-box (proximal box) of which three residues determine androgen response 
element recognition. The second zinc cluster contains the D-box (distal box) in which amino acids are 
located that are involved in protein-protein interactions with a second receptor molecule in the 
homodimer complex. B) Structure of the AR-DBD bound to DNA (Pdb 1R41). C) Consensus androgen 
receptor response element.    
 
Briefly, the DNA-binding domain has a compact, 
globular structure in which three substructures can be 
distinguished: two zinc clusters and a more loosely 
structured carboxy terminal extension (CTE) (124). 
Both zinc substructures contain centrally one zinc 
atom which interacts via coordination bonds with four 
cysteine residues [Figure 9].  
 
The two zinc coordination centers are both C-
terminally flanked by an α-helix (122, 123). The two 
zinc clusters are structurally and functionally different 
and are encoded by two different exons [see Figures 
7 and 8]. The α-helix of the most N-terminal located 
zinc cluster interacts directly with nucleotides of the 
hormone response element in the major groove of the 
DNA. Three amino acid residues at the N-terminus of 
this α-helix are responsible for the specific recognition 
of the DNA-sequence of the responsive element 
[Figure 9A]. These three amino acid residues, the so-
called P(proximal)-box [Gly; Ser; Val;] are identical in 
the androgen, progesterone, glucocorticoid and 
mineralocorticoid receptors, and differ from the 
residues at homologous positions in the estradiol 

receptor. It is not surprising therefore, that the 
androgen, progesterone, glucocorticoid and 
mineralocorticoid receptors can recognize the same 
response element. The receptor DNA binding domain 
requires a CTE of minimally four residues (amino 
acids 626 – TLGA – 629) for proper binding to an ARE 
(androgen response element) with an inverted repeat 
of high affinity ARE-half sites and a CTE of at least 
twelve residues (amino acids 626 – TLGARKLKKLGN 
– 637) for binding to an ARE with one high and one 
low affinity half site (125). For the hormone and tissue-
specific responses of the different receptors additional 
determinants are needed. Important in this respect are 
DNA-sequences flanking the hormone response 
element, receptor interactions with other proteins and 
receptor concentrations. The second zinc cluster motif 
is involved in protein-protein interactions such as 
receptor dimerization via the so-called D(distal)-box 
[Figure 9A and B] (122, 123). 
 
DNA Response Elements for the Androgen 
Receptor 
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In vitro the androgen receptor binds to 15 bp 
palindromic sequences [Figure 9C]. These non-
selective elements are also recognized and bound by 
the glucocorticoid, mineralocorticoid and 
progesterone receptors. In contrast, androgen 
response elements demonstrate selectivity for the 
receptor. In an animal model, termed Specificity-
affecting androgen receptor Knock-in or SPARKI, 
where the androgen receptor-DBD has been replaced 
by that of the glucocorticoid receptor-DBD, binding to 
selective AREs is disrupted (126). These mice have a 
reproductive phenotype, with male reproductive 
tissues having reduced weight and size and the 
animals showing reduced fertility. Interestingly the 
SPARKI males also demonstrated differential gene 
expression with the Rhox5 mRNA significantly 
reduced which correlated with a role for a selective 
ARE, necessary for receptor-dependent transcription 
of this gene (126).  
 
More recently a number of genome-wide studies, 
using chromatin immunoprecipitation (ChIP), have 
increased our knowledge of androgen-regulated 
genes and have demonstrated a significant variability 
in DNA response element architecture, with imperfect 
palindromic sequences and half-sites identified as 
potential receptor binding sites (30, 127-131). These 
studies have also highlighted the enrichment of 
pioneering factors, such as FOXA1 and GATA2 in 
close proximity to receptor binding sites (30, 127-131). 

  
The Hinge Region  
 
Between the DNA-binding domain and the ligand 
binding domain is located a non-conserved hinge 
region, which is also variable in size in different steroid 
receptors [Figure 5]. The hinge region can be 
considered as a flexible linker between the ligand 
binding domain and the rest of the receptor molecule. 
The hinge region is important for nuclear localization 
and contains a bipartite nuclear localization signal. Co-
repressor binding can also occur via the hinge region 
(125). In some nuclear receptors, including the 
androgen receptor, acetylation can occur in the hinge 
region at a highly conserved consensus site [KLLKK] 
[Figure 11, see below] (132, 133). 
  
The Ligand Binding Domain  
 
Finally, the second-best conserved region is the 
hormone binding domain. This domain is encoded by 
approximately 250 amino acid residues in the C-
terminal end of the molecule [Figure 5, see above] (37, 
60-63, 134). The crystal structure of the human 
androgen receptor ligand binding in complex with the 
synthetic ligand methyltrienolone (R1881) and 5α-
dihydrotestosterone, respectively, have been 
determined [Figure 10A and B] (135, 136).  
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Figure 10. Structure of the ligand binding domain of the human androgen receptor. A) The crystal 
structure of the LBD with DHT bound (pdb 1137). Specific amino acid- hormone interactions are 
illustrated in the right-hand panel. B) The LBD structure with the synthetic agonist R1881 and a 
coactivator peptide with an FxxLF motif bound to AF2 region (pink oval) (pdb 1XOW). C) Structure of 
the LBD showing the location of the BF3 pocket (blue oval) with triiodothyroacetic acid/TRIAC bound 
(pdb 2PKL).  
 
The 3-dimensional structure has the typical nuclear 
receptor ligand binding domain fold (59). Interestingly 
the ligand binding pocket consists of 18 amino acid 
residues interacting more or less directly with the 
bound ligand, with a relatively small number of specific 
hydrogen-bonds and hydrophobic interactions 
determining hormone-selectivity [Figure 10A] (135). 
The ligand binding pocket is somewhat flexible and 
can accommodate ligands with different structures. 
The structural data are being used in designing 
optimized selective androgen receptor modulators 
(SARMs) (137, 138). Several AR mutations found in 
prostate tumors have been investigated functionally, 
including T878S, T878A, H875T, V716M, W742C, and 
L702H as a single mutation or in combination with 
T878A. Similar to T878A these AR mutations have a 
broadened ligand specificity and are activated by 
different low affinity ligands like estradiol, 
progesterone, glucocorticoids and different partial and 
full antagonists (139-146). 
 
Crystallographic data on the ligand binding domain 
complexed with agonist predict 11 helices (no helix 2) 

with two anti-parallel β-sheets arranged in a so-called 
helical sandwich pattern. In the agonist-bound 
conformation the carboxy-terminal helix 12 is 
positioned in an orientation allowing a closure of the 
ligand binding pocket. Upon hormone binding the fold 
of the ligand binding domain results in a globular 
structure with an interaction surface for binding of 
interacting proteins like co-activators (AF2) [Figure 
10B]. In this way the androgen receptor selectively 
recruits a number of proteins and can communicate 
with other partners of the transcription initiation 
complex. Crystallization studies of wild type androgen 
receptor ligand binding domain with antagonists have 
not been reported so far. However, the structural 
consequences of surface modulatory compounds on 
the receptor LBD crystals complexed with DHT are 
promising for future developments of new androgen 
receptor modulators including a new type of androgen 
receptor antagonists (147). 
 
The androgen receptor can use different 
transactivation domains (AF1 and AF5, respectively, 
in the NH2-terminal domain and AF2 in the COOH-
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terminal domain) depending on the "form" of the 
receptor protein [Figure 8, see above] (103). The AF2 
function in the ligand binding domain is strongly 
dependent on the presence of nuclear receptor 
coactivators. In vivo experiments favor a ligand-
dependent functional interaction between the AF-2 
region in the ligand-binding domain with the NH2-
terminal domain (113, 115). In fact, the AF2 surface 
demonstrates a preference for more bulky 
hydrophobic amino acids over the LxxLL motif and the 
structural basis for this has been described (148-150). 
Thus, the receptor NTD FxxLF motif [Figure 10B] is 
more effective at forming a charge clamp with Glu898 
and Lys721 and burying the phenylalanine residues 
into the AF2 pocket, whereas peptides containing the 
sequence LxxLL make weaker and fewer contacts 
with the LBD.  
 
Interestingly, a previously unknown regulatory surface 
cleft, named BF-3, has been identified in the receptor 
LBD (147) [Figure 10C]. BF-3 comprises of Ile-673, 
Phe-674, Pro-724, Gly-725, Asn-728, Phe-827, Glu-
830, Asn-834, Glu-838 and Arg-841. The androgen 
receptor transcriptional activity and co-activator 
binding can be decreased by binding of thyroid 
hormones triiodothyronine (T3) and TRIAC and three 
non-steroidal anti-inflammatory drugs to the BF-3 
pocket. In addition, several mutations of the amino 
acid residues of BF-3 have been found in subjects with 
either androgen insensitivity syndrome (AIS, loss of 
function mutation) or in prostate cancer (gain of 
function mutation) (151). Mutational analyses have 
shown the requirement of several of these amino acid 
residues for receptor-dependent transcriptional 
activity. However, these analyses have been 
performed only in the presence of DHT (147). The 
influence of each of these residues in the presence of 
T3, TRIAC or other nonsteroidal anti-inflammatory 
drugs is therefore unknown. 
 
A long-standing question in the field concerning 
dimerization of the AR-LBD has recently been 
resolved with new crystallographic studies (152, 153). 

The work from the Estébanez-Perpiñá group identified 
sequences in helix 5 as novel dimerization interface. 
Significantly, a number of point mutations associated 
with androgen insensitivity or prostate cancer map to 
this region emphasizing its functional importance for 
AR signaling (152). 
 
Androgen Receptor Splice Variants Lacking the 
LBD 
 
Deletions in the ligand binding domain abolish 
hormone binding completely (154). Deletions in the N-
terminal domain and DNA-binding domain do not 
affect hormone binding. Deletion of the ligand binding 
domain leads to a constitutively active androgen 
receptor protein with trans-activation capacity 
comparable to the full-length androgen receptor (154). 
Thus, it appears that the hormone binding domain acts 
as a repressor of the trans-activation function in the 
absence of hormone. This regulatory function of the 
androgen receptor ligand binding domain in the 
absence of hormone, is not unique for the androgen 
receptor and has been reported also for the 
glucocorticoid receptor (155).  
 
The generation of NH2-terminal splice variants 
involves the use of cryptic exons (AR-v1and -v7) or 
exon skipping (AR-v12) [Figure 8] (156). Androgen 
receptor variants have been shown to regulate similar 
patterns of gene expression to the full-length 
hormone-bound receptor (157). However, intriguingly 
there are a growing number of studies reporting 
unique sets of genes expressed by AR-v7 (157, 158), 
both expected and variant-specific target genes for 
AR-v12 (159) or differential regulation of classical 
androgen receptor-target genes (160). Importantly, 
these constitutively active splice variants have been 
identified in prostate cancer cell-lines, xenographs and 
prostate cancer patients undergoing androgen 
ablation therapy (157-159, 161-163). 
 
Structural Insights from a DNA-bound Complex of 
Full-length Androgen Receptor 
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A major development in our understanding of AR 
mechanism of action has been the recent description 
of the structure of the full-length receptor bound to 
DNA and co-regulatory proteins (SRC-3 and p300) 
(164). The structures of the receptor alone or in a 
transcriptional active complex were solved by cryo-EM 
at resolution of 12 to 20 Å and reveal several 
interesting features. Particularly striking is the folding 
of the NTD of each monomer into a ‘life buoy ring’ 
surround the LBD-DBD dimer, creating a platform for 
SRC-3 and p300 binding, as well as N/C interaction 
and contacts between the NTDs (164). In contrast to a 
similar structure of the estrogen receptor α (165), only 
one molecule of SRC-3 is bound to the AR and the 
conformation of each NTD is proposed to be different 
based on visualizing antibodies recognizing the very 
N-terminus and AF1 regions resulting in an 
asymmetric appearance. This could have implications 
for protein-protein interactions and transcriptional 
regulation: for, example does the conformation of the 
NTDs change depending on the nature of the DNA 
binding site? It was also of note that the binding of 

p300 was enhanced in the presence of SRC-3, 
suggesting the latter stabilized the binding of the 
former. However, it is worth noting that previous 
biochemical studies demonstrated folding of the AR-
AF1, using a chemical chaperone (TMAO) or an SRC-
1 polypeptide, similarly enhanced subsequent co-
regulatory protein binding (166) supporting a model of 
induced folding of AF1 and assembly of transcription 
complexes. 
 
Androgen Receptor Posttranslational 
Modifications 
  
Methylation, Acetylation, Ubiquitination and 
SUMOylation 
 
The androgen receptor protein can be extensively 
covalently modified either by methylation, acetylation, 
ubiquitination, SUMOylation or phosphorylation 
[Figure 11] (132, 133, 167-171). 

 
 

 
Figure 11. Post-translational modifications of the human androgen receptor. AC, acetylation of lysine 
residues (631, 633, and 634); CH3, methylation of lysine (633); P, phosphorylation of serines (16, 83, 96, 
215, 258, 310, 426, 516, 651, and 792); SUMO-1, sumoylation on lysines (388 and 521); Ub, 
ubiquitination of lysines (846 and 848). 
 
All these reactions are reversible and consequently 
enzymes that mediate dephosphorylation, 
deacetylation, deubiquitination, demethylation and de-
SUMOylation are also potential regulators of androgen 
receptor activity. A total of 23 sites in the androgen 
receptor protein have been identified undergoing 

direct modification (170). These posttranslational 
modifications can contribute significantly to androgen 
receptor structure, activity and stability. It has been 
shown for instance that the histone methyltransferase 
SET9 is able to methylate the receptor in the hinge 
region at the Lysine residues 631 and 633 resulting in 
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enhancement of transcriptional activity of the receptor 
(172, 173). The same Lysine residues together with 
Lysine 634 can be acetylated and the acetylation-
deficient mutants have a decreased transcriptional 
activity, while the acetylation-mimetic mutations 
showed an enhanced transcriptional activity (132, 
174). Recently, phosphorylation of serine 83 was 
observed to result in recruitment of the histone 
acetyltransferase p300, acetylation of the receptor and 
enhanced receptor stabilization and transcriptional 
activity (175).  
 
Conversely, disruption of acetylation, through 
mutating the lysine residues or knock-down of p300 
resulted in receptor ubiquitination and degradation. 
This study elegantly demonstrates how different post-
translational modifications of the androgen receptor 
can work in concert to regulate receptor expression 
and activity. RNF6 dependent ubiquitination of Lysine 
residues 846 and 848 in the receptor protein results in 
recruitment of the coregulator ARA54 by the androgen 
receptor and directly determines promoter selectivity 
and specificity of the receptor (176).  
 
SUMOylation of the androgen receptor occurs at two 
sites Lysine residues 388 and 521, but SUMOylation 
only at Lysine 388 results in a significant reduction of 
transcriptional activity (177). However, recent, whole 
genome analysis revealed that SUMOylation 
regulated both receptor recruitment to DNA and target 
gene selection (178). Significantly, the physiological 
importance of SUMOylation has been demonstrated in 
a knock-in mouse model, ARKI, where the 
SUMOylation sites were mutated to arginine (179). 
Male animals developed normally but were found to 
be infertile due to defects in epididymal sperm 
maturation. Crucially, In the ARKI animals the AR-
dependent transcriptional activity was impaired in the 
epididymis and there was an absence of receptor 
SUMOylation linking this PTM to normal male 
reproduction and fertility (179). 
 
Phosphorylation 
 

The androgen receptor can be phosphorylated at 
serine, threonine and tyrosine residues (170, 171, 
180, 181). Immediately after translation the androgen 
receptor becomes phosphorylated resulting in the 
appearance of two isoforms separable by SDS-
polyacrylamide gel electrophoresis (182). The non-
phosphorylated faster migrating 110 kDa isoform is 
converted into a 112 kDa phospho-isoform. Mutational 
analysis of serine 83 or serine 96 in the androgen 
receptor NH2-terminal domain abolishes this up-shift 
indicating that phosphorylation of these serine 
residues likely contributes to the phosphorylation of 
the 112 kDa androgen receptor isoform (70, 183). 
Phosphorylation of Serine 83 by CDK9 stabilizes 
androgen receptor chromatin binding, mediates 
transcriptional activity and can influence prostate 
cancer cell growth (184, 185). This serine residue is 
also phosphorylated after stimulation of Plexin-B1 
resulting in nuclear translocation of the receptor 
protein (186). Three other androgen receptor 
phosphorylation sites have been identified using 
mutational analysis and trypsin-digestion of 32P-
labelled androgen receptor followed by HPLC analysis 
and Edman degradation (183, 187, 188). These 
include the serine residues at position 516, 651, and 
663. Ser-516 phosphorylation by MAP kinase is linked 
to altering the nuclear cytoplasmic shuttling and to the 
EGF-induced increase in androgen receptor 
transcriptional activity (189). Furthermore, androgen 
receptor intranuclear localization and transcriptional 
activity has been correlated with phosphorylation of 
serine 310 by CDK1, demonstrating a role for 
phosphorylation in regulating the receptor in a cell-
cycle-dependent manner (181, 190). Transcription 
factor TFIIH also phosphorylates the receptor at 
Ser516 and is an essential partner in the cyclic 
recruitment of the transcription machinery (191). 
Substitution of serine 651 reduced androgen receptor 
activity by up to 30%. Furthermore, dephosphorylation 
of receptor phosphorylated at serine 651 by protein 
phosphatase 1 (PP1) can modulate androgen receptor 
translocation to the nucleus (192). More recently, 
PP1α has been shown to bind to the receptor-LBD and 
prevent ubiquitination and receptor degradation (193). 
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Several other sites have been identified in the NH2-
terminal domain at positions S16, S215, S258, S310, 
and S426 (180, 194-196). The function of 
phosphorylation of these sites is in the majority of the 
cases unknown or controversial. Two additional sites 
(S579 and S792) have been identified and 
characterized in the DNA-binding and ligand binding 
domains, respectively (189, 197). Phosphorylation of 
serine 579 by PKC kinase alters the nuclear 
cytoplasmic shuttling and elimination of 
phosphorylation at serine 579 eliminates EGF-induced 
transcriptional activation (189).  
 
Besides the basal phosphorylation resulting in the 
110-112 kDa doublet, addition of androgen induces 
another shift and the generation of a 110-112-114 kDa 
androgen receptor triplet (70). This triplet is the result 
of both an addition and a redistribution of 
phosphorylated sites, however, it is unknown which 
exact residues are involved (198). Interestingly, 
mutations that inactivate androgen receptor function, 
such as mutations resulting in loss of DNA binding or 
transactivation, inhibit the formation of the 114 kDa 
isoform. This suggests that part of the androgen - 
induced phosphorylation occurs during or after 
androgen receptor transcription regulation (70).  
 
Functional phosphorylation at three tyrosine residues 
has also been demonstrated and extensively studied. 
The androgen receptor tyrosine residue 536 is highly 
phosphorylated. This phosphorylation is induced by 
EGF via activation of Src tyrosine kinase and may be 
important for prostate cancer cell growth under 
androgen-depleted conditions (199, 200). Activation of 
Cdc42-associated tyrosine kinase Ack1 can result in 
phosphorylation of tyrosine residues 269 and 365 
enhancing androgen receptor transcriptional function 
and promoting androgen independent prostate cell 
growth (200, 201) and disrupting phosphorylation 
primarily of tyrosine 269 results in impaired nuclear 
localization (202). Recently it was reported that 
threonine phosphorylation of the receptor can also 
occur. Aurora A induces androgen receptor 

transactivation activity by phosphorylation of 
Threonine residue 284 (203). 
 
In conclusion, phosphorylation of the androgen 
receptor can occur at serine, threonine and tyrosine 
residues by specific kinases and can be directly or 
indirectly linked to activation upon hormone binding, 
altering of nuclear cytoplasmic shuttling, modulation of 
DNA binding and transcriptional activity (168, 170, 
181, 199, 204). Furthermore, phosphorylation of the 
androgen receptor can play an essential role in the 
hormone-independent activation of the androgen 
receptor by protein kinases in the MAPK and AKT 
(protein kinase B) signaling pathways, activated either 
through HER-2/neu or growth factors (205, 206).  
 
ANTI-ANDROGENS AND SELECTIVE ANDROGEN 
RECEPTOR MODULATORS 
 
Androgen receptor antagonists are compounds that 
interfere in some way in the biological effects of 
androgens and are frequently used in the treatment of 
androgen-based pathologies. The steroidal anti-
androgens, cyproterone acetate (CPA) and RU38486 
(RU486; mifepristone), have partial agonistic and 
antagonistic actions. Interestingly both compounds 
also display partial progestational and glucocorticoid 
actions and are therefore not considered to be pure 
anti-androgens. The non-steroidal anti-androgens 
hydroxyflutamide, nilutamide and bicalutamide [see 
Figure 1] are pure antiandrogens (207-209). Recent 
developments have led to the generation and 
marketing of second-generation non-steroidal 
antiandrogens, such as enzalutamide (formerly called 
MDV3100) [Figure 1], which have been reported to be 
more effective at blocking receptor nuclear 
translocation and activity (210). Recently, two new 
anti-androgens apalutamide and darolutamide have 
received FDA approval for treatment of non-metastatic 
castrate resistant prostate cancer (see 211, 212). 
However, resistance to enzalutamide has now also 
been identified as a result of an Phe876Leu point 
mutation in the LBD (213) and the expression of NH2-
terminal domain splice variants (163) in CRPC, 
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emphasizing the need for continued research and 
development of strategies to switch off androgen 
receptor signaling. 
 
Mechanism of Action of Antiandrogens  
 
In contrast to the full antagonists hydroxyflutamide and 
bicalutamide, CPA and RU486 can partially activate 
the androgen receptor with respect to transcription 
activation (214). With a limited proteolytic protection 
assay, it was demonstrated that binding of androgens 
by the androgen receptor results in two consecutive 
conformational changes of the receptor molecule. 
Initially, a fragment of 35 kDa, spanning the complete 
ligand binding domain and part of the hinge region, is 
protected from digestion by the ligand. After prolonged 
incubation times with the ligand a second 
conformational change occurs resulting in protection 
of a smaller fragment of 29 kDa (214, 215). In the 
presence of several anti-androgens (e.g., cyproterone 
acetate, hydroxyflutamide and bicalutamide) only the 
35 kDa fragment is protected from proteolytic 
digestion, and no smaller fragments are detectable 
upon longer incubations. Obviously, the 35 kDa 
fragment can be associated with an inactive 
conformation, whereas the second conformational 
change, only inducible by agonists and considered as 
the necessary step for transcription activation, is 
lacking upon binding of anti-androgens.  
 
During treatment of advanced prostate cancers, 
resistance develops to several of the above-
mentioned anti-androgens, mostly due to mutations 
rendering the receptor protein less sensitive to anti-
androgens. Promising results were reported for a 
newly developed second generation of antiandrogens 
for castration resistant prostate cancer (CRPC): ASC-
J19, enzalutamide (MDV3100), apalutamide (ARN-
509), AZD 3514, Compound30 and VPC-3033. (87, 
210, 216-220). Characteristics of this new generation 
of anti-androgens are androgen displacement, 
inhibition of receptor- mediated transcription and 
enhancement of androgen receptor degradation. 
Clinical applications in prostate cancer were reported 

for enzalutamide (221-223). However, resistance to 
enzalutamide and apalutamide has been reported in 
prostate cancer due to a mutation at residue 
Phe877Leu (213, 224). Interestingly this mutation is 
located in a residue next to the LNCaP prostate cancer 
cell line mutation Thr878Ala (139, 225), supporting the 
view that this region in the ligand binding domain of 
the androgen receptor is very susceptible to 
mutagenesis in prostate cancer, which may lead to the 
tumor becoming resistant to hormone-based 
therapies. 
 
Selective Androgen Receptor Modulation 
(SARMs)  
 
Androgen signaling via the androgen receptor can 
occur in a non-genomic, rapid and sex-nonspecific 
way by crosstalk with the Scr, Raf-1, Erk-2 pathway 
[Figure 6, see above] (31, 32, 226). The anti-apoptotic 
action via the androgen receptor in bone cells 
(osteocytes, osteoblasts), and also in HeLa cells, 
could be induced by androgens and estrogens and 
inhibited by antiandrogens as well as anti-estrogens. 
The anti-apoptotic action appeared to be dissociated 
from the genomic action of the androgen receptor. The 
progesterone-induced oocyte maturation in Xenopus 
laevis also appears to be mediated in a non-genomic 
way by androgens and the androgen receptor via 
activating the MAPK pathway after the rapid 
conversion of progesterone to androstenedione and 
testosterone (33). These findings stimulated the 
development of new compounds (SARMs) which can 
selectively activate the androgen receptor either in a 
non-genomic pathway or in a genotropic 
transcriptional activation pathway. The term SARM (= 
Selective Androgen Receptor Modulator) was 
introduced in 1999 in analogy of the term SERM 
(Selective Estrogen Receptor Modulator) (227). A 
SARM can be defined as a molecule that targets the 
androgen receptor, and elicits a biological response, 
in a tissue-specific way. In a sense, anti-androgens 
(molecules that specifically target the androgen 
receptor pathway resulting in inhibition of the 
biological effects of androgens) can be considered as 
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a special subtype of SARMs. Extensive overviews of 
current clinical trials with newly developed SARMs by 
several different pharmaceutical companies have 
been presented (228-230).  
 
The structural basis for SARM binding and activity has 
been reviewed (138). Based on the conformational 
changes of the androgen receptor ligand binding 
domain induced by androgens or anti-androgens, it 
can be concluded that the different transcriptional 
activities displayed by either full agonists 
(testosterone, 5α-dihydrotestosterone, 
methyltrienolone), partial agonists (RU486 and CPA) 
or full antagonists (hydroxyflutamide, bicalutamide, 
enzalutamide) are the result of recruitment of a 
different repertoire of co-regulators (coactivators or 
corepressors) as a consequence of these 
conformational changes. The differential recruitment 
of co-regulators can be considered as a special form 
of ligand-selective modulation of the androgen 
receptor ligand binding domain and can also be 
applied in a broader sense to the tissue selective 
modulation of androgen action, where levels of co-
activators and co-repressors may ultimately determine 
the final activity (229-232).  
 
TISSUE-SPECIFIC ANDROGEN RECEPTOR 
MEDIATED ACTIONS IN MOUSE MODELS 
 
Genetic mouse models in which the androgen 
receptor gene has been inactivated (so-called ARKO 
[androgen receptor knock-out] mouse models) are 
valuable tools to understand in detail the role of 
receptor-mediated pathways in male and female 
reproductive functions. For this purpose several 
different mouse models have been developed for 
studying androgen receptor mediated tissue-specific 
action in almost all known androgen target tissues, 
although the application of the mouse findings to the 
human situation has its limitation (233-238). 
Furthermore, the development of a mouse model for 
imaging of luciferase activity under control of 
endogenous androgen receptor activity has 
contributed to a further elucidation of tissue-specific 
receptor action (239). 
 

ANDROGEN RECEPTOR DISORDERS 
  
There is growing evidence for the involvement of the 
androgen receptor in the gender biases seen in a wide 
range of pathological conditions, from cancers of non-
reproductive tissues (i.e., bladder, liver) (see 240, 241) 
to cardiovascular and metabolic disease (see 242-
244). However, in this review we will focus on receptor 
mutations leading to defects of male development and 
fertility. 
 
Androgen Insensitivity Syndrome  
 
It has been known for quite some time that defects in 
male sexual differentiation in 46, XY individuals have 
an X-linked pattern of inheritance. It was Reifenstein 
who reported in 1947 on families with severe 
hypospadias, infertility, and gynecomastia (245). The 
end-organ resistance to androgens has been 
designated as androgen insensitivity syndrome (AIS) 
and is distinct from other XY disorders of sex 
development (XY, DSD; formerly named male 
pseudohermaphroditism) like 17β-hydroxy-steroid 
dehydrogenase type 3 deficiency or 5α-reductase type 
2 deficiency (3, 246-248). It is generally accepted that 
defects in the androgen receptor gene can prevent the 
normal development of both internal and external male 
structures in 46, XY individuals and information on the 
molecular structure of the human androgen receptor 
gene has facilitated the study of molecular defects 
associated with androgen insensitivity. Due to the X-
linked character of the syndrome, only 46, XY 
individuals are affected, while in female carriers only 
sporadic reports are available on delayed menarche 
(249). Naturally occurring mutations in the androgen 
receptor gene are an interesting source for the 
investigation of receptor structure-function 
relationships. In addition, the variation in clinical 
phenotypes provides the opportunity to correlate a 
mutation in the androgen receptor structure with the 
impairment of a specific physiological function. 
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Clinical Features of the Complete Androgen 
Insensitivity Syndrome (CAIS)  
 
The main phenotypic characteristics of individuals with 
the complete androgen insensitivity syndrome (CAIS) 
are: female external genitalia, a short, blind ending 
vagina, absence of Wolffian duct derived structures 
like epididymides, vasa deferentia, and seminal 
vesicles, the absence of a prostate, the absence of 
pubic and axillary hair and the development of 
gynecomastia (250, 251). Müllerian duct derived 
structures are usually absent because anti-Mullerian 
hormone action is normal due to the presence of both 
testes in the abdomen or in the inguinal canals. 
Usually, testosterone levels are within the normal 
range (10 - 40 nmol/L) or elevated, while elevated 
luteinizing hormone (LH) levels (> 10 IU/L) are also 
found indicating androgen resistance at the 
hypothalamic-pituitary level. The high testosterone 
levels are also substrate for aromatase activity, 
resulting in substantial amounts of estrogens, which 
are responsible for further feminization in CAIS 
individuals. 
  
Clinical Features of the Partial Androgen 
Insensitivity Syndrome (PAIS)  
 
In the partial androgen insensitivity syndrome (PAIS) 
several phenotypes ranging from individuals with 
predominantly a female appearance (e.g., external 
female genitalia and pubic hair at puberty, or with mild 
clitoromegaly, and some fusion of the labia) to persons 
with ambiguous genitalia or individuals with a 
predominantly male phenotype (also called 
Reifenstein syndrome) (250, 251). Patients from this 
latter group can present with a micropenis, perineal 
hypospadias, and cryptorchidism. In the group of PAIS 
individuals, Wolffian duct derived structures can be 
partially to fully developed, depending on the 
biochemical phenotype of the androgen receptor 
mutation. At puberty, elevated luteinizing hormone, 
testosterone, and estradiol levels are observed, but in 
general, the degree of feminization is less as 
compared to individuals with CAIS. Individuals with 

mild symptoms of undervirilization (mild androgen 
insensitivity syndrome) and infertility have been 
described as well. Phenotypic variation between 
individuals in different families has been described for 
several mutations (251-254). However, in cases of 
CAIS no phenotypic variation has been described 
within one single family, in contrast to families with 
individuals with PAIS (255).  
 
Genetics of Androgen Insensitivity Syndrome 
(AIS)  
 
Since the cloning of the androgen receptor cDNA in 
1988 and the subsequent elucidation of the genomic 
organization of the androgen receptor gene, molecular 
diagnostic tools have been available for the molecular 
analysis of the androgen receptor gene in individuals 
with AIS. In addition to endocrinology data, such as 
levels of testosterone, luteinizing hormone, 
androstenedione, and 5α-dihydrotestosterone, which 
can vary widely in AIS individuals, the most reliable 
approach is the sequencing of each individual 
androgen receptor exon and the flanking intron 
sequences. In general, AIS can be routinely analyzed 
and separated from entirely different syndromes 
presenting with similar phenotypes including testicular 
enzyme deficiencies, 5α-reductase type 2 deficiency, 
and Leydig cell hypoplasia due to inactivating 
luteinizing hormone receptor mutations. Furthermore, 
in pedigree analysis intragenic polymorphisms like the 
highly polymorphic (CAG)nCAA repeat encoding a 
poly-glutamine stretch, the polymorphic GGN repeat 
encoding a poly-glycine stretch, the HindIII 
polymorphism [Figure 8, see above] (39) and the StuI 
polymorphism (256), can be used as X-chromosomal 
markers (67, 257, 258). Extensive general information 
can be obtained at the internet site, 
www.genecards.org for the androgen receptor gene 
(NR3C4) and on the 233 identified single nucleotide 
polymorphisms (SNP’s).  
 
Mutations in the Androgen Receptor Gene  
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In the androgen receptor gene, 4 different types of 
mutations have been detected in 46, XY individuals 
with AIS: single point mutations resulting in amino acid 
substitutions or premature stop codons, nucleotide 
insertions or deletions most often leading to a frame 
shift and premature termination, complete or partial 
gene deletions (>10 nucleotides), and intronic 
mutations in either splice donor or splice acceptor 
sites which affect the splicing of androgen receptor 
RNA (151). In general, in 70% of the cases, androgen 
receptor gene mutations are transmitted in an X-linked 
recessive manner, but in 30% the mutations arise de 
novo. When de novo mutations occur after the zygotic 
stage, they result in somatic mosaicisms (259). The 
most recent update on androgen receptor gene 
mutations is available at 
http://www.mcgill.ca/androgendb/ (151).  
 
MUTATIONS IN THE NH2-TERMINAL DOMAIN  
 
Mutations in the NH2-terminal domain (exon 1 of the 
gene) do not occur frequently and the vast majority of 
the mutations result directly in a stop codon or in 
premature termination due to frameshifts caused by 
nucleotide insertions or deletions. Mutations in 103 
different codons have been reported in the NH2-
terminal domain, which is approximately 18 % of all 
codons in exon 1 (!""#$%%&'()*+,'(-./0+122.0&% ) (151, 
260-264).  
 
An interesting mutation is described in the fourth 
nucleotide, which results in a decreased translational 
efficiency of the androgen receptor mRNA in an 
individual with PAIS (265). Three other missense 
mutations were reported in combination with 
mosaicism or with a mutation in another region of the 
gene. In a family with PAIS associated with severe 
hypospadias, the length of the androgen receptor NH2-
terminal poly-glutamine repeat has been reported to 
be shortened to only 12 glutamine residues (266). The 
shortened glutamine stretch as such is not the cause 
for the androgen resistance, but it seems to increase 
the thermolability of the androgen receptor in 

combination with a point mutation in exon 5 (Y764C) 
in the ligand binding domain. This point mutation 
causes rapid dissociation of hormone, but no 
thermolability. These data support a functional 
interaction of the two separated regions in the 
androgen receptor and indicates further that the defect 
becomes critical in only some of the androgen target 
tissues because of the partial character of the 
androgen resistance found in this family (266).  
 
MUTATIONS IN THE DNA-BINDING DOMAIN   
 
In general, mutations in the DNA binding domain (e.g., 
single nucleotide substitutions) result in a normal 
hormone-binding protein, which is defective in DNA-
binding/dimerization and consequently in transcription 
activation. In total, 71 different mutations have been 
reported in 38 different codons in the DNA-binding 
domain, which is approximately 43% of all codons in 
exons 2 and 3 (!""#$%%&'()*+,'(-./0+122.0&% ) (151, 
260, 264, 267, 268). Thirty-four mutations were 
observed in the first zinc cluster and thirty-two in the 
second zinc cluster. Since the 3D structure of the 
DNA-binding domain of several nuclear receptors 
have been published earlier than that of the androgen 
receptor DNA-binding domain, the consequence of 
several mutations in the androgen receptor DNA-
binding domain have been predicted initially on basis 
of the structure of the glucocorticoid receptor DNA-
binding domain (122, 123).This is illustrated in two 
studies in which 3D-modelling of the mutated DNA 
binding domain of the androgen receptor predicts the 
functional activity of mutant receptors (269, 270). A 
mutation (G578R) in the so-called P-box [Figure 9, see 
above], which is involved in androgen response 
element recognition, was found in a PAIS individual. 
This mutation differentially affects transactivation of 
several natural and synthetic promoters, suggesting 
that androgen target genes may be differentially 
affected by this mutation (271). An interesting 
observation was made with respect to the second zinc 
cluster in which either one of two adjacent arginine 
residues (Arg608 & Arg609) were found to be mutated 
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in PAIS individuals who developed breast cancer 
[Figure 9, see above] (272, 273). It is speculated that 
a decrease in androgen action within the breast cells 
could account for the development of male breast 
cancer by the loss of a protective effect of androgens. 
However, the same mutations in several other PAIS 
individuals did not result in breast cancer 
development.  
 
The mutation Ala597Thr in the second zinc cluster in 
the so-called D-box resulted in abolishment of 
dimerization in a PAIS individual [Figure 9, see above] 
(274). A similar mutation at an identical position in the 
second zinc cluster of the glucocorticoid receptor 
DNA-binding domain has been created to discriminate 
between dimerization/DNA binding of the 
glucocorticoid receptor and protein-protein 
interactions with other transcription factors such as the 
AP-1 transcription complex (275). It appeared that the 
dimerization mutant did not affect the cross-talk with 
other transcription factors. In this way, a tissue-
specific response can be influenced by a single amino 
acid change and if this is also true for the mutant 
androgen receptor then the partial phenotype can be 
explained. Interestingly a Ser580Arg, also located in 
the D-box can cause significantly different phenotypes 
ranging from under-virilization to a normal male 
phenotype (276). 
  
MUTATIONS IN THE HINGE REGION   
 
In the so-called hinge region, located between amino 
acid residues 623 and 671 [Figure 8, see above], only 
nine mutations have been reported. The relatively low 
number of mutations in the hinge region (only in 18 % 
of all codons) indicates that this region might be very 
flexible and that some variation in composition and 
length of this region is not detrimental for androgen 
receptor function (!""#$%%333./0+122.0&%&'()*+,'(-%) 
(151).  Four amino acid substitutions within the hinge 
region have been described that resulted in CAIS, four 
in PAIS and one in MAIS 
(!""#$%%333./0+122.0&%&'()*+,'(-% (151). The 

Ile665Asn substitution on the border of the hinge 
region and ligand-binding domain, resulted in a 
decreased hormone binding (277). 
  
MUTATIONS IN THE LIGAND-BINDING DOMAIN   
 
It can be expected that mutations in the ligand binding 
domain might affect different functional aspects (e.g., 
loss of ligand binding, changes in ligand binding 
affinity and specificity, changes in co-activator 
receptor interactions, changes in receptor stability and 
thermolability). A large number of mutations (283 
different mutations in 164 codons, which is in 66 % of 
all codons of the ligand binding domain) in the ligand 
binding domain have been reported in all 5 exons in 
individuals with either CAIS, PAIS or MAIS 
(!""#$%%&'()*+,'(-./0+122.0&% ) (151, 260, 265, 278-
286). Most mutations are located in exons 4 (62 
mutations), 5 (77 mutations) and 7 (54 mutations). 
Interestingly mutations are found in 13 of the 18 amino 
acid residues considered to interact with the ligand 
directly (120). For some mutations (in total 25, 
distributed over the whole ligand binding domain) 
either a complete (CAIS) as well as a partial (PAIS) 
phenotype (13 cases) or a CAIS and a PAIS and a mild 
(MAIS) phenotype (4 cases) or a PAIS and a MAIS 
phenotype (8 cases) has been described, indicating 
that phenotype does not always match with genotype. 
In the AF-2 core region (894-EMMAEIIS-901) of the 
androgen receptor ligand-binding domain a relatively 
low number of mutations have been reported [see 
Figure 10 for location of AF-2]. At positions methionine 
895 (deletion), Met896, Ala897, Glu898 and Ile899 (all 
substitutions) have been described in individuals with 
the complete syndrome (287, 288). It can be 
speculated that in this part of helix 12 mutations in the 
androgen receptor ligand-binding domain are very 
deleterious for androgen receptor function as well as 
those in helix 5 and in the β-turn, wherein almost every 
amino acid residue has been found to be mutated in 
AIS individuals (!""#$%%&'()*+,'(-./0+122.0&% ) (151). 
Functional analysis of an androgen receptor mutation, 
Gln903Lys in helix 12, in an individual with partial 
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androgen insensitivity, indicated that this residue is 
important for modulation of NH2/COOH terminal 
interaction and TIF-2 activation (289). Interestingly a 
mutation, Phe827Leu, found in a PAIS patient, 
displayed an unexpected increased N/C interaction 
and TIF2 coactivation (290). An explanation for the 
phenotype of the patient could be that the receptor 
mutant recruits a different repertoire of co-activators 
absent in genital tissues. Alternatively, an altered 
conformation of the ligand binding domain may 
enhance preferential recruitment of co-repressors. 
 
Several reports have established the pathogenic 
nature of androgen receptor mutations found in AIS 
individuals with different functional assays (260, 289-
292). In order to optimize molecular diagnosis an 
extensive functional analysis of receptor mutations is 
desired. For counselling strategies and for future 
outcome predictions a correct functional diagnosis is 
very important as well as for prognosis on the risks of 
gonadal malignancy (293). A combination of different 
functional analyses, designed to test androgen 
receptor mutations at different stages in receptor 
functioning (e.g., hormone binding, transcriptional 
activation, cofactor binding, translocation to the 
nucleus and nuclear dynamics) will provide a more 
accurate prediction of androgen receptor action and 
will help to establish a more exact phenotypic 
characterization. 
 
DELETIONS AND DUPLICATIONS OF THE 
ANDROGEN RECEPTOR GENE   
 
Only a few cases (8 different deletions in 15 different 
patients) have been reported on partial or complete 
androgen receptor gene deletions, indicating the 
relatively low frequency of this type of androgen 
receptor defect (!""#$%%&'()*+,'(-./0+122.0&%) (151, 
294). All cases reported are found in CAIS individuals, 
with the exception of two cases, one in which an exon 
4 deletion was found in a person with azoospermia 
(295) and another one in which a large intron 2 
deletion of at least 6 kb was reported involving a 

branch point site, which resulted in a partial exon 3 
skipping during the splicing process (294).  
 
Deletion of either exon 3 or exon 4 occur both in-frame 
and result in a non-functional protein lacking either the 
second zinc cluster or the hinge region and the NH2-
terminal part of the ligand-binding domain [see Figure 
7 for genomic organization of the androgen receptor 
gene]. In case of an exon 3 deletion, an intact and 
functional ligand-binding domain is present [Figure 7]. 
So far, functionally significant mutations in the 
androgen receptor promoter region or in the 5'- and 3'- 
untranslated regions of the gene have not been 
reported. 
  
SPLICE SITE MUTATIONS AFFECTING 
ANDROGEN RECEPTOR RNA SPLICING   
 
A special group of interesting, but rare, mutations are 
the splice donor and splice acceptor site mutations in 
the androgen receptor gene in AIS individuals 
(!""#$%%&'()*+,'(-./0+122.0&% ) (151). For all splice 
donor sites in the gene, the consensus splice donor 
site sequence GTAAG/A is present. The twelve 
reported mutations in donor splice sites are all 
substitutions either at position +1 (G à A or G à T), 
position +2 (T à C), position +3 (A à T), position + 4 
(AàT) or position + 5 (G à A) and result in defective 
splicing with the consequence of one or more exons 
spliced out, or the use of a cryptic splice donor site 
within the preceding exon (264, 296-301). In 11 of the 
reported cases, the phenotype is complete androgen 
insensitivity. In one case, an insertion of one 
nucleotide (T) at position + 4 in the splice donor site of 
intron 6 has been reported, resulting in a partial 
androgen insensitive phenotype (300). Only 5 
mutations have been reported in splice acceptor sites, 
which all affect the splicing of the androgen receptor 
RNA. Interestingly, a substitution at position -11 (T 
àG) has been found in the pyrimidine-rich region of 
the splice acceptor site of intron 2, resulting in the 
activation of a cryptic splice acceptor site at position -
70/-69 and consequently in the insertion of 69 
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nucleotides (corresponding to 23 additional amino 
acid residues) in the mRNA between exons 2 and 3 
(302). The corresponding protein is defective in DNA-
binding because the insertion has occurred between 
the first and second zinc cluster. In another CAIS 
patient a splice junction mutation at the intron2/exon3 
splice acceptor site resulted in the utilization of the 
same cryptic splice acceptor site and also in the 
insertion of 69 bp in the mRNA, predicting the insertion 
of 23 amino acid residues in frame between the two 
zinc clusters (303). 
 
Androgen Receptor Gene Mutations in Cancers 
 
Mutations in the androgen receptor gene have also 
been reported to be associated with prostate cancers, 
breast cancers, larynx cancers, liver cancers and 
testicular cancers (http://androgendb.mcgill.ca/ ) 
(151). 
 
ANDROGEN METABOLISM DISORDERS  
 
The metabolism of testosterone to 5α-
dihydrotestosterone by the enzyme 5α-reductase type 
2 (SRD5A2) is essential for the initiation of the 
differentiation and development of the urogenital sinus 
into the prostate. The differentiation of the male 
external genitalia (penis, scrotum and urethra) also 
strongly depends on the conversion of testosterone to 
5α-dihydrotestosterone in the urogenital tubercle, 
labioscrotal swellings and urogenital folds, 
respectively [Figure 2B, see above] (3, 4). Interestingly 
in the SPARKI mouse expression of Srd5α2 gene is 
significantly impaired in the epididymis and the 
androgen-regulation of the gene was demonstrated to 
involve three selective AREs (304).   
  
Clinical Features of the Syndrome of 5α-
reductase Type 2 Deficiency  
 
46, XY individuals with impairment of 5α-reductase 
type 2 have normally virilized Wolffian duct derived 
structures, with seminal vesicles (although small 

seminal vesicles have been reported as well), with 
vasa deferentia, epididymides and ejaculatory ducts 
and no Mullerian duct derived structures (3, 305, 306). 
However, differentiation of the urogenital sinus and 
genital tubercle is not observed, resulting in absence 
of the prostate and in ambiguous or in female external 
genitalia at birth (3, 305, 306). Affected 46, XY 
individuals are therefore often raised as girls. At 
puberty all affected individuals show some or a severe 
degree of virilization often resulting in deepening of the 
voice, an increased muscle mass, growth of the penis, 
scrotal development, testicular descent and 
sometimes leading to a gender change (3, 307). 
  
Gynecomastia in adulthood does not occur. The 
additional virilization may result from the action of 
testosterone because testosterone is available at high 
levels during puberty. In addition, some testosterone 
may be converted to 5α-dihydrotestosterone by some 
residual 5α-reductase activity and by the action of 5α-
reductase type 1, which is expressed in non-genital 
skin, pubic skin, liver and certain brain regions. In the 
affected 46, XY individuals a typical female pubic hair 
pattern develops, while the facial and body hair 
amount is absent or reduced (4). This last observation 
points to a role for 5α-reductase type 2 in the normal 
development of this type of body hair. Male pattern 
baldness has never been observed. 5α-reductase 
type 2 deficient patients are usually infertile due to the 
absence or underdevelopment of the prostate and 
seminal vesicles, in addition to oligospermia or 
azoospermia due to maldescent of the testes. 
However, paternity has been reported in some cases, 
either by intrauterine insemination or after in vitro 
fertilization in combination with intracytoplasmic sperm 
injection (3, 305, 308-310). 46, XX female carriers 
have normal fertility, decreased body hair and delayed 
menarche, normal sebum production but no history of 
acne (3, 305). This suggests a role of 5α-reductase 
type 2 enzyme in females in the physiology and 
pathophysiology of body hair growth, menarche and 
follicular development (305).  
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Molecular Basis for the Syndrome of 5α-
Reductase Type 2 Deficiency  
 
A reflection of defective or absence 5α-reductase type 
2 enzyme activity can be obtained in patients’ serum 
and urine samples by measuring testosterone levels 
(elevated), 5α-dihydrotestosterone levels (decreased) 
and by measuring the ratio of testosterone/5α-
dihydrotestosterone (increased after hCG stimulation) 
(3). Furthermore, in cultured genital skin fibroblasts (if 
available) the conversion of testosterone to 5α-
dihydrotestosterone can be assessed and is an option 
for establishing a defective enzyme. In broken cell 
preparations at pH 5.5, the type 2 isozyme activity is 

measured more specifically and can be compared with 
a preparation from a normal person (3).  
 
Genetic analysis of 5α-reductase type 2 deficiency has 
become possible since the cloning of the cDNA (17). 
The gene is located on chromosome 2 at locus 2p23. 
The enzyme is encoded by 5 exons and the most 
reliable approach to detect gene mutations is the 
sequencing of each individual exon and the flanking 
intron sequences [Figure 12]. A relatively large 
number of loss of function mutations in the type 2 
steroid 5α-reductase has been identified in 46XY 
individuals with this rare autosomal recessive disorder 
of sex development (46XY, DSD).  

 

 
Figure 12. Mutations in the 5α-reductase type 2 gene (SDR5A2) reported in patients with the syndrome 
of 5α-reductase deficiency. The 5α-reductase type 2 enzyme is encoded by 5 different exons and 
mutations have been reported in all 5 exons, as well as a complete gene deletion, small deletions of 
nucleotides, and splice site mutations.  
 
Interestingly worldwide 87 different mutations have 
been detected in the 5α-reductase type 2 gene in 
patients with the syndrome of 5α-reductase type 2 
deficiency in several different ethnic groups [Figure 
12] (3, 4, 285, 305-307, 311-339). Identical mutations 
have been reported in different ethnic groups and 
some of them can be considered to be due to a 

founder effect and some to have occurred de novo 
(340-342). The mutations were found in all five exons 
of the gene, although the majority of the mutations are 
reported in exons 1 and 4 [Figure 12]. 
 
The mutations comprise of 57 amino acid substitutions 
(65.5%), one complete gene deletion (3, 306), one 
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complete exon 1 deletion (16), one substitution at stop 
codon 255 resulting in a Serine residue (336), ten 
small deletions resulting in either a premature stop 
codon or in an in-frame amino acid residue deletion, 
four small insertions (335), nine nonsense mutations 
and four splice site mutations, resulting in aberrant 
splicing [Figure 12]. The majority of the reported 
patients are homozygous for one of the mutations. A 
smaller number of patients appeared to be compound 
heterozygous, while a small group of patients are 
heterozygous (331, 340, 341).  
 
In general male carriers of a single mutant allele have 
normal fertility as is the case for female carriers. The 
largest investigated kindreds were found in the 
Dominican Republic, in Turkey and in New Guinea (3, 
305, 333). In all three kindreds the high incidence can 
be directly related to a founder affect in geographical 
isolated populations with a high degree of inbreeding. 
For other cases also a large incidence of proven 
consanguinity is reported (3, 305). 
 
In prostate cancer de novo mutations in the 5α-
reductase type 2 have been reported, resulting in 
increased 5α-reductase activity (317, 333, 343, 344).  
This finding indicates a role for increased 5α-
dihydrotestosterone levels in the prostate, during 
prostate cancer progression in a subset of patients. 
The V89L mutant significantly reduced SRD5A2 
enzymatic activity by almost 30% (316, 342, 343). The 
rare allele frequency of the V89L variant is 22%, 
23,5%, and 46,1% for African Americans, Caucasians, 
and Asians, respectively, paralleling a substantial 
racial/ethnic variation in prostate cancer risk, 
indicating that this polymorphism might be implicated 
in prostate cancer carcinogenesis (343-346). 
 
CONCLUSIONS-KEY POINTS 
 
Androgenic steroids are important for normal 
development and function of male reproductive 

tissues and for anabolic actions in muscle and bone. 
The multiple actions of the main circulating androgen 
testosterone and the more potent metabolite DHT are 
mediated by a single intracellular receptor protein, the 
androgen receptor. The hormone-bound receptor acts 
primarily to differentially regulate gene expression in 
target tissues and its encoding gene is located on the 
X chromosome, making it a single-copy gene in males. 
Thus, genetic changes affecting expression or 
structure/function of the receptor protein will lead to a 
range of diseases associated with loss or impaired 
androgen signaling, including disruption of male 
development, infertility or a late onset 
neurodegenerative disease (SBMA). Furthermore, 
altered expression and genetic changes in the 
receptor are also key drivers in progression of prostate 
cancer to a therapy-resistant stage. 
 
Since the first cloning of the androgen receptor cDNA, 
over thirty years ago, considerable progress has been 
made in our understanding of receptor structure and 
function. Advances include: the availability of 3D-
structures of the isolated LBD with different ligands 
bound and the isolated DBD; structural 
characterization of the intrinsically disordered NH2-
terminal domain; first glimpse of the structure of full-
length AR transcriptional complex on DNA; the 
identification of a plethora of co-regulatory proteins 
binding to the ligand- and NH2-terminal domains; 
identification of gene regulatory pathways in target 
cells; and a better understanding of the impact of 
genetic changes affecting receptor structure/function. 
Future research will likely focus on the mechanisms 
determining cell/tissue-selective expression and 
function of the androgen receptor in both normal and 
pathophysiological conditions and a more complete 
structural descriptions of the full-length receptor bound 
to different DNA response elements and co-regulatory 
proteins. 
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