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ABSTRACT 
 
This chapter reviews how improvements in the 
sensitivity and specificity of thyroid tests [total and free 
thyroid hormones (T4 and T3), TSH, thyroid 
autoantibodies (TRAb, TPOAb, and TgAb) and 
thyroglobulin (Tg)] have advanced the detection and 
treatment of thyroid disorders. The strengths and 
limitations of current methodologies 
[Radioimmunoassay (RIA), Immunometric assay 
(IMA) and Liquid Chromatography/Tandem Mass 
Spectrometry (LC-MS/MS)] are discussed, together 
with their propensity for analyte-specific and non-
specific interferences relating to analyte heterogeneity 
(TSH, TgAb and Tg), analyte-specific autoantibodies 
(T4Ab, T3Ab, TSHAb and TgAb) and interferences 
from heterophile antibodies (HAb) or assay reagents 
such as Biotin and Rhuthenium. Currently, between-
method differences preclude establishing universal 
thyroid test reference ranges. However, collaborations 
between the International Federation of Clinical 
Chemistry (IFCC), the committee for the 
standardization of thyroid function tests (C-STFT), and 
the in-vitro diagnostic (IVD) industry are now focused 
on eliminating these between-method differences.  
 
INTRODUCTION   
 
Figure 1 shows the timeline for improvements in the 
sensitivity and specificity of thyroid test methodologies 
made over the last 60 years (1). In the 1950s the only 
thyroid test available was an indirect estimate of the 

serum total (free + protein-bound) thyroxine (T4) 
concentration, using the protein bound iodine (PBI) 
technique (2). Early technological advances in 
radioimmunoassay (RIA) (3-6), immunometric assay 
(IMA) (7-11), and most recently, liquid 
chromatography-tandem mass spectrometry (LC-
MS/MS) methodologies (12-14) have progressively 
improved the sensitivity and specificity of thyroid tests. 
Currently, most thyroid testing is made on serum 
specimens using automated IMA methodology to 
measure total thyroid hormones (TT4 and TT3), 
estimate free thyroid hormones (FT4 and FT3) 
(13,15,16), and measure TSH (13) and thyroglobulin 
(Tg) (14,17). Automated IMA methodology is also used 
to detect autoantibodies that target the TSH receptor 
(TRAb) (18-20), the thyroid peroxidase enzyme 
(TPOAb) (21), and the thyroglobulin protein (TgAb) 
(22-24). When indicated, the thyroid hormone binding 
proteins thyroxine binding globulin (TBG), 
transthyretin (TTR)/prealbumin (TBPA), and albumin 
can also be measured (25-27). The IFCC and CDC 
continue their efforts to encourage test manufacturers 
to identify the causes of, and reduce the magnitude of, 
between-method variability in thyroid hormone and 
TSH measurements (12,28-33). Isotope-dilution liquid 
chromatography/tandem mass spectrometry (ID-LC-
MS/MS) has become the reference measurement 
procedure (RMP) for total thyroid hormone 
measurements (28) and free hormone (FT4 and FT3) 
measurement in equilibrium dialysates (15,28,34,35). 
TSH methods are now being re-standardized to the 
new International Reference Preparation (81/615) and 
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harmonized to the all-method mean (13,33,36). 
Although serum Tg can now be detected by LC-
MS/MS as tryptic peptides (37-42), the clinical value 
relative to the expense of this technique is still debated 
(14,41,43). Thus, despite technical improvements in 
sensitivity, specificity and standardization, the problem 
of substantial between-method variabilities remains 
for all tests (13,14,28,30,32,33,35,44-46). 

Establishing universal thyroid test reference ranges 
that would apply to all methods, by removing current 
between-method biases, would greatly benefit 
healthcare systems worldwide. Current guidelines for 
managing pregnant (47,48) and non-pregnant patients 
with hypothyroidism (49-52), hyperthyroidism (53,54), 
thyroid nodules (55), or differentiated thyroid cancers 
(DTC) (17,23,56-60) are also referenced. 

 

 
Figure 1. Timeline for the Major Technical Advances in Thyroid Testing. The figure shows the 
development of increasingly more sensitive TSH tests: first generation, (1G), second generation (2G), 
and third generation (3G), and advances in the methodologies used to measure total thyroid hormones 
(TT4 and TT3), indirectly estimate free thyroid hormones (FT4 and FT3), directly measure FT4, and 
measure the thyroid autoantibodies TPOAb, TgAb, and TRAb and Thyroglobulin (Tg). From reference 
1. 
 
TOTAL THYROID HORMONE MEASUREMENTS 
(TT4 and TT3) 
 
Thyroxine (T4) circulates 99.97 percent bound to the 
plasma proteins, primarily TBG (60-75 %) but also 
transthyretin TTR/TBPA (15-30 %) and albumin (~10 
%) (25,26,61).  In contrast 99.7 % of Triiodothyronine 
(T3) is bound to TBG (26,61). The total (free + protein-
bound) thyroid hormones (TT4 and TT3) circulate at 
nanomolar concentrations that are considerably easier 
to measure than the free hormone moieties (FT4 and 

FT3) that circulate in the picomolar range (62). Serum 
TT4 methods have evolved over the past five decades 
from protein-bound iodine and competitive protein 
binding tests (2,63) to non-isotopic immunometric 
assays and most recently, isotope dilution tandem 
mass spectrometry (ID-LC-MS/MS) methods 
(13,64,65) (66). Since total thyroid hormone 
concentrations are influenced by conditions that 
change the binding protein concentrations (Figure 2), 
the measurement of the free thyroid hormone is 
considered more clinically reliable (13).  
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Figure 2. Conditions that Influence Thyroid Hormone Binding Proteins. From references 25, 27 and 61. 
 
Total thyroid hormone methods typically require the 
inclusion of inhibitors, such as 8-anilino-1-napthalene-
sulphonic acid to block hormone binding to serum 
proteins and facilitate the binding of thyroid hormone 
to the antibody reagent(s) (67). T3 concentrations are 
ten-fold lower than T4, so measuring T3 has always 
presented a greater sensitivity and precision challenge 
than measuring T4. Currently both TT4 and TT3 are 
measured by immunometric assays performed on 
automated platforms using enzymes, fluorescence, or 
chemiluminescent molecules as signals (11,13,62).  
 
Between-method variability among eleven TT4 and 
twelve TT3 immunoassays are shown in Figure 3 (28) 
from sera from healthy individuals and compared with 

values reported by isotope dilution tandem mass 
spectrometry (ID-LC-MS/MS) - the reference 
measurement procedure (RMP) that uses primary T4 
and T3 standards for calibration (13,28). Although 
most methods fell short of the optimal 5 percent goal 
established by the C-STFT, 4/11 TT4 assays agreed 
within 10 percent of the reference, whereas most TT3 
assays exhibited a positive bias that would necessitate 
re-standardization (28,68,69). Thus, as would be 
expected, TT4 assays are more reliable than TT3 
assays. However, variability persists likely resulting 
from matrix differences between calibrators and 
patient sera, the efficiency of the blocking agent 
employed, and reagent lot-to-lot variability (13,69-72). 
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Figure 3. (a) TT4 and (b) TT3 Between-Method Variability. The figure shows the variability among 11 TT4 
(A-P) and 12 TT3 (A-M) methods (shown as assay means ±2 sd) relative to the RMP for the method. For 
the assays differing >10% from the RMP mean, the numerical value of the mean is listed (28). 
 
TT4 and TT3 Reference Ranges 
 
The problem of between-method differences in TT4 
and TT3 measurements (Figure 3) is compounded by 
the continued use of non-SI units by some countries. 
TT4 reference ranges have approximated 58 to 160 
nmol/L (4.5-12.5 µg/dL) for more than four decades. 
However, in euthyroid pregnant women there is an 
approximate 2-fold rise in TBG concentrations by mid-
gestation that produce a steady TT4 increase 
beginning in the first trimester and plateauing at 

approximately 1.5-fold pre-pregnancy levels by mid-
gestation (73-75). As a result, some have suggested 
that the non-pregnant TT4 reference range be 
adjusted by a factor of 1.5 when assessing thyroid 
status in the latter half of gestation (47,73,74,76). TT3 
reference ranges generally approximate 1.2 - 2.7 
nmol/L (80 –180 ng/dL) (77), but as shown in Figure 3, 
TT3 displays more between-method variability than 
TT4 (69,78).  
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FREE THYROID HORMONE TESTS (FT4 and FT3) 
 
In accordance with the free hormone hypothesis, it is 
the free thyroid hormone fractions (0.02 % of TT4 and 
0.2 % of TT3) that exert biologic activity at the cellular 
level (79) and protein-bound hormone is considered 
biologically inert. Since binding-protein abnormalities 
are highly prevalent (Figure 2) (25,27,61), free 
hormone measurements (FT4 and FT3) are preferable 
to total hormone (TT4 and TT3) (13,15). However, the 
measurement of free hormone concentrations 
independent of protein-bound hormone remains 
technically challenging (13,15,80). This is especially 
the case for FT3, because FT3 immunoassays are 
more susceptible to interference by free fatty acids 
and drugs present in the circulation, prompting many 
laboratories to prefer a TT3 over a FT3 assay (13). 
FT4 and FT3 fall into two categories – direct methods 
that employ a physical separation of free from protein-
bound hormone and indirect free hormone estimate 
tests (16).  
 
Direct FT4 and FT3 Methods 
 
Direct free hormone methods have employed 
equilibrium dialysis (ED) (13,81,82), ultrafiltration (83-
85), or gel filtration (86) to separate free hormone from 
the dominant protein-bound moiety. The IFCC has 
now established equilibrium dialysis, isotope dilution, 
liquid chromatography, tandem mass spectrometry 
(ED ID-LC-MS/MS) using primary calibrators as the 
RMP for FT4 measurements (13,32,87-89). 
Specifically, equilibrium dialysis of serum is performed 
under defined conditions before measuring FT4 in the 
dialysate by ID-LC-MS/MS (12,34,35). Manufacturers 
are recommended to use this RMP to recalibrate their 
FT4 immunoassay tests (13). However, even direct 
methods that employ equilibrium dialysis or 
ultrafiltration to separate free from protein-bound 
hormone are not immune from technical problems 
relating to dilution, adsorption, membrane defects, 
temperature, the influence of endogenous binding 
protein inhibitors, fatty acid formation, and sample-
related effects (13,80,82,90). Because direct free 

hormone methods are technically demanding, 
inconvenient, and expensive, they are typically only 
readily available in reference laboratories and most 
clinical laboratories use FT4 and FT3 estimate tests - 
immunoassay “sequestration” methods (see below). 
However, a direct free hormone test can be especially 
useful for evaluating thyroid status when 
immunoassay values appear discordant with the 
clinical presentation and/or the TSH measurement 
(15,91). All current FT4 and FT3 estimate tests remain 
binding-protein dependent to some extent (69).  
 
EQUILIBRIUM DIALYSIS (ED)  
 
Early equilibrium dialysis methods used I131 and later 
I125 labeled T4 tracers to measure the free T4 fraction, 
that when multiplied by a total hormone measurement 
gave an estimate of the free hormone concentration 
(81). Subsequently, symmetric dialysis in which serum 
was dialyzed without dilution (or employing a near-
physiological medium) was used to overcome dilution 
effects (82). By the early 1970s higher affinity T4 
antibodies (>1x1011 L/mol) and high specific activity 
T4-I125 tracers were used to develop sensitive RIA 
methods that could directly measure FT4 and FT3 in 
dialysates and ultrafiltrates (83,92). Subsequent 
improvements have involved employing more 
physiological buffer diluents and improving the dialysis 
cell design (82,92). More recently, isotope-dilution 
liquid chromatography/tandem mass spectrometry 
(ID-LC-MS/MS) (93) has been used to measure FT4 
in ultrafiltrates (94) and dialysates 
(13,32,35,36,87,95,96).  
 
ULTRAFILTRATION METHODS  
 
Ultrafiltration has also been used to remove protein-
bound T4 prior to LC-MS/MS measurement of FT4 in 
the ultrafiltrate (97). Direct FT4 measurements 
employing ultrafiltration are sometimes higher than 
those made by equilibrium dialysis, because 
ultrafiltration avoids dilution effects (98). Moreover, 
ultrafiltration is not influenced by dialyzable inhibitors 
of T4-protein binding that can be present in conditions 
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such as non-thyroidal illness (NTI) (90). However, 
ultrafiltration can be prone to errors when there is a 
failure to completely exclude protein-bound hormone 
and/or adsorption of hormone onto the filters, 
glassware, and tubing (99). In addition, ultrafiltration is 
temperature dependent such that ultrafiltration 
performed at ambient temperature (25°C) will report 
FT4 results that are 67 percent lower than 
ultrafiltration performed at 37°C (97). However, FT4 
concentrations measured by ID-LC-MS/MS following 
either ultrafiltration at 37°C or equilibrium dialysis 
usually correlate (100).  
 
GEL ABSORPTION METHODS   
 
Some early direct FT4 methods used Sephadex LH-
20 columns to separate free from bound hormone 
before eluting the free T4 from the column for 
measurement by a sensitive RIA. However, because 
of a variety of technical issues, assays based on this 
methodologic approach are not currently used (62).  

 
Indirect Free T4 and Free T3 Estimate Tests 
The first free hormone estimate tests were free 

hormone “indexes” (FT4I and FT3I) – a correction of 
the total hormone concentration for the influence of 
binding proteins assessed either using a direct TBG 
measurement or a binding-protein estimate (uptake) 
test (101,102). Current free hormone estimate tests 
are typically automated immunoassays that employ an 
antibody to sequester a small amount of the total 
hormone that is purportedly proportional to the free 
hormone concentration (13,15). Both index tests (FT4I 
and FT3I) and FT4 and FT3 immunoassays are 
typically protein-dependent to some extent and may 
under- or overestimate free hormone when binding 
proteins are grossly abnormal (80,103-105). As with 
TT4 methods, current FT4 immunoassays have 
significant between-method variability and biases 
(relative to the RMP) that far exceed the biological FT4 
variation (Figure 4) (13,28,69). Recalibrating methods 
against the RMP has been shown to significantly 
reduce biases (32). It is hoped that manufacturers will 
continue to work to eliminate between-method biases 
and establish reference intervals that would apply to 
all methods (106). 

 

 
Figure 4. FT4 Between-Method Variability in FT4 Immunoassays. This figure shows deviations in FT4 
measurements made by 13 different immunoassays relative to the reference measurement procedure 
(RMP = ED-ID-LC-MS/MS) (89). 
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TWO TEST INDEX METHODS (FT4I AND FT3I) 
 
 
Free hormone indices (FT4I and FT3I) are unitless 
mathematical calculations made by correcting the total 
hormone test result for the influence of binding 
proteins, primarily TBG (107). These indexes that 
have been used for more than 50 years require two 
separate tests to estimate free hormone (80). The first 
test involves the measurement of total hormone (TT4 
or TT3) whereas the second test assesses the binding 
protein concentration by either a direct TBG 
immunoassay (103), a Thyroid Hormone Binding Ratio 
(THBR) or “Uptake” test (102), or an isotopic 
determination of the free hormone fraction (80,108).  
 
TBG Immunoassays 
 
Data has been conflicting concerning whether indexes 
that employ THBR in preference to a direct TBG are 
diagnostically superior (109). Free hormone indexes 
calculated using TBG measurement (TT4/TBG) may 
offer improved diagnostic accuracy over THBR when 
the total hormone concentration is abnormally high 
(i.e. hyperthyroidism), or when drug therapies interfere 
with THBR tests (110). Regardless, the TT4/TBG 
index is not totally independent of the TBG 
concentration, nor does it correct for albumin or 
transthyretin binding protein abnormalities (figure 2) 
(104).  
 
Thyroid Hormone Binding Ratio (THBR) / "Uptake" 
Tests 
 
The first "T3 uptake" tests developed in the 1950s 
employed the partitioning of T3-I131 tracer between the 
plasma proteins in the specimen and an inert 
scavenger (red cell membranes, talc, charcoal, ion-
exchange resin, or antibody) (111-113). The "uptake" 
of T3 tracer onto the scavenger provided an indirect, 
reciprocal estimate of the TBG concentration in the 
specimen. Initially, T3 uptake tests were reported as 
percent uptakes (free/total tracer). Sera with normal 

TBG concentrations typically had approximately 30 
percent of the T3 tracer taken up by the scavenger. 
During the 1970s methods were refined by replacing 
I131-T3 tracers by I125-T3 with a calculation of the 
hormone uptake based on the ratio of isotopic counts 
between the absorbent, and total minus absorbent 
counts. Results were expressed as a ratio with normal 
sera having an assigned value of 1.00 (108). 
Historically, the use of T3 as opposed to T4 tracer was 
made for practical reasons relating to the ten-fold 
lower affinity of TBG for T3 versus T4, facilitating a 
higher percentage of T3 tracer binding to the 
scavenger, thereby allowing shorter isotopic counting 
times.  Because current methods use non-isotopic 
proprietary T4 or T3 "analogs", counting time is no 
longer an issue and current tests may use a "T4 
uptake" approach - which may be more appropriate for 
correcting for T4-binding protein effects. Differences 
between T3 and T4 "uptakes" have not been 
extensively studied (114). Although all THBR tests are 
to some degree TBG dependent, the calculated FT4I 
and FT3I usually provides an adequate correction for 
mild TBG abnormalities (i.e. pregnancy and estrogen 
therapy) (73,102,103,115) but may fail to correct for 
grossly abnormal binding proteins (26) seen in 
euthyroid patients with congenital TBG extremes 
(103,104,116), familial dysalbuminemias (62,105,117-
119), thyroid hormone autoantibodies (120-122), or 
medications that directly or indirectly influence thyroid 
hormone binding to plasma proteins (13,62,104,123). 
 
Isotopic Index Methods  
 
The first free hormone tests developed in the 1960s 
were indexes calculated from the product of the free 
hormone fraction, measured isotopically by dialysis, 
and TT4 measured by PBI and later RIA (81). These 
early isotopic detection systems were technically 
demanding and included paper chromatography, 
electrophoresis, magnesium chloride precipitation, 
and column chromatography (81,124-126). The free 
fraction index approach was later extended to 
ultrafiltration (83,85) and symmetric dialysis (127), the 
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latter measuring the rate of transfer of isotopically 
labeled hormone across a membrane separating two 
chambers containing the same undiluted specimen. 
Ultrafiltration and symmetric dialysis had the 
advantage of eliminating dilution effects that 
influenced tracer dialysis values (82,128). However, 
free hormone indexes calculated using an isotopic free 
fraction were not completely independent of the TBG 
concentration and were influenced by tracer purity and 
the buffer matrix employed (92,129).  
 
Clinical Utility of Two-Test Index Methods (FT4I and 
FT3I) 
 
In the past some have favored the two-test FT4I 
approach for evaluating the thyroid status of patients 
with abnormal binding protein states like pregnancy or 
NTI (73,82). However, the continued use of these FT4I 
tests remains controversial (130). Until FT4 
immunoassays are re-standardized to remove biases 
(13,69), FT4I remains a useful confirmatory test when 
binding proteins are abnormal or for diagnosing 
central hypothyroidism (69). 
 
Free Thyroid Hormone Immunoassay Methods 
(FT4 and FT3) 
 
Currently, most free hormone testing is made using 
automated FT4 and FT3 immunoassays (62,131). 
These immunoassays are based on "one-step", 
"labeled antibody" or "two-step" principles (80). For 
more than twenty years controversy has surrounded 
the standardization and diagnostic accuracy of these 
methods, especially in pathophysiologic conditions 
associated with the binding protein abnormalities such 
as pregnancy (15,73,131). These assays are subject 
to variability due to polymorphisms, drug interactions, 
high free fatty acid (FFA) levels, or thyroid binding 
inhibitors such as those present in non-thyroidal 
illness (NTI) (11,30, 62, 69, 90, 99,104,105,121,132). 
Studies of the inverse FT4/TSH log/linear relationship 
have emphasized the need to evaluate each method 
with clinical specimens containing abnormal binding 
proteins (94,133,134). Currently, most FT4 and FT3 

immunoassays display significant negative or positive 
biases that exceed the intra-individual biological 
variability (12,13). As shown in Figure 4, all but one of 
the FT4 immunoassays tested had a negative bias 
relative to the FT4 RMP. Although the IVD industry is 
being encouraged to recalibrate their free hormone 
immunoassays against the RMP to reduce between-
method biases (13, 28, 69, 87,135), implementation of 
a global re-calibration effort has been delayed by cost 
as well as practical, educational, and regulatory 
complexity.  
 
ONE-STEP FT4 AND FT3 METHODS 
 
The “one-step” approach uses a proprietary labeled 
hormone analog, designed for minimal interaction with 
thyroid hormone binding proteins, that competes with 
hormone in the specimen for a solid-phase anti-
hormone antibody in a classic competitive 
immunoassay format (15,62,80). After washing away 
unbound constituents, the free hormone concentration 
should be inversely proportional to the labeled analog 
bound to the solid support. Although conceptually 
attractive, the diagnostic utility of the one-step 
approach has been shown to be dependent on the 
degree that the analog is "inert" with respect to binding 
proteins (80,94,133,134).   
 
LABELED ANTIBODY FT4 AND FT3 METHODS 
 
Labeled antibody methods are "one-step" methods 
that use a labeled antibody in preference to a labeled 
hormone analog. The free hormone in the specimen 
competes with solid-phase hormone for the labeled 
antibody and is quantified as a function of the 
fractional occupancy of hormone-antibody binding 
sites in the reaction mixture (15,62,80,136). The 
labeled antibody approach is used as the basis for 
several automated immunoassay platforms because it 
is easy to automate and considered less binding-
protein dependent than the labeled analog approach, 
since the solid phase hormone does not compete with 
endogenous free hormone for hormone binding 
proteins (15,80,137-139). 
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TWO-STEP, BACK TITRATION FT4 AND FT3 
METHODS 
 
The two-step approach was first developed by Ekins 
and colleagues in the late 1970s (79,113). Two-step 
methods typically employ immobilized T4 or T3 
antibody (for FT4 and FT3 immunoassays, 
respectively) to sequester a small proportion of total 
hormone from a diluted serum specimen without 
disturbing the original free to protein-bound 
equilibrium (62,80). After removing unbound serum 
constituents by washing, a labeled probe (originally 125-

I T4, or more recently a macromolecular T4 conjugate) 
is added to quantify unoccupied antibody-binding sites 
that are inversely related to the free hormone 
concentration - a procedure that has been referred to 
as "back-titration (80).  
 
CLINICAL UTILITY OF FT4 AND T3 IMMUNOASSAY 
MEASURMENTS  
 
Current reference ranges for FT4 and FT3 
immunoassays are method-dependent because of 
calibration biases that preclude establishing a 
universal reference range that would apply across 
methods (13,68,86). These biases are evident for FT4 
immunoassay methods shown in Figure 4. Most FT4 
methods give diagnostically reliable results when 
binding proteins are near-normal, provided that a 
method-specific reference range is employed (69). 
However, both TT3 and FT3 immunoassays tend to be 
inaccurate in the low range (78,140) and have no 
value for diagnosing or monitoring treatment for 
hypothyroidism (52,141), although FT3 
measurements can be useful for diagnosing or 
confirming unusual cases of hyperthyroidism.  
 
Ambulatory Patients 
 
FT4 and FT3 tests are used in preference to TT4 or 
TT3 measurements because they have better 
diagnostic accuracy for detecting hypo- and 
hyperthyroidism in patients with abnormal thyroid 

hormone binding proteins (figure 2). FT4 typically 
serves as a second-line test for confirming primary 
thyroid dysfunction detected by an abnormal TSH, but 
is the first-line test when thyroid status is unstable 
(early phase of treating hypo- or hyperthyroidism); in 
the presence of pituitary/hypothalamic disease (when 
TSH is unreliable); or when patients are taking drugs 
such as dopamine or glucocorticoids that are known to 
affect TSH secretion (10,104,110,142). Mild 
"subclinical" thyroid dysfunction is characterized by a 
TSH/FT4 discordance (abnormal TSH/normal FT4) 
reflecting the intrinsic complex nature of the inverse 
log/linear TSH/FT4 relationship (8,10,143) - a 
relationship that is modified by age and sex (144,145). 
Thus, small changes in FT4, even within normal limits, 
are expected to produce a mild degree of TSH 
abnormality - between 0.05 and 0.3 mIU/L (with 
subclinical hyperthyroidism) and 5 and 10 mIU/L (with 
subclinical hypothyroidism). An unexpected TSH/FT4 
discordance if confirmed, should prompt an 
investigation for interference with FT4, TSH or both 
tests (91,146,147). FT4 interference can result from 
severe binding protein abnormalities such as 
congenital TBG excess or deficiency 
(26,62,103,148,149), dysalbuminemias (105,150-
152), thyroid hormone autoantibodies (147,153-155), 
or drug interferences (62,104,123).  
 
Pregnant Patients 
 
Current reference ranges for FT4 immunoassays are 
method-dependent because of calibration biases that 
precludes establishing a universal reference range 
that would apply across methods (Figure 4) (156,157). 
This between-method variability has profound effects 
on the setting of the FT4 reference range for 
pregnancy (Figure 5).  As with non-pregnant patients, 
TSH is the first-line test to use for assessing thyroid 
status during pregnancy (48,158). However, FT4 
measurement is needed for monitoring anti-thyroid 
drug treatment of hyperthyroid pregnant patients who 
have an undetectable TSH. The question whether an 
isolated low FT4 during pregnancy is a maternal or 
fetal risk factor, remains controversial (159,160), 
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although some studies suggest that low FT4 may be a 
risk factor for gestational diabetes and fetal 
complications (161-163). Non-pregnant FT4 reference 
ranges do not apply to pregnancy since FT4 
progressively declines as gestation progresses, 
necessitating the use of a trimester-specific reference 
ranges (73,158,164,165). Setting universal trimester-
specific FT4 reference ranges is currently hampered 
by the between-method differences shown in Figure 4 
and 5 (69,156,165), compounded by the differences 
related to ethnicity (166-170), iodine intake (171-173), 

smoking (174), and BMI (145,166). Establishing 
institution-specific trimester-specific reference ranges 
from the 2.5 to 97.5 percentiles by recruiting at least 
400 pregnant patients (170) is not practical for most 
institutions. After the proposed re-standardization of 
FT4 methods against the RMP the feasibility of 
establishing universal trimester-specific reference 
ranges will improve (13,69,135). However, binding 
protein effects will remain, and population-specific 
factors will still have to be considered. 

 
 

 
Figure 5. Between-Method FT4 Variability Impacts Thyroid Testing in Pregnancy. The figure shows the 
upper and lower FT4 reference limits (2.5–97.5%) from 43 published studies of FT4 measurements made 
in each trimester of pregnancy by four different methods: Abbott (1), Beckman (2), Roche (3) and 
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Siemens (4). The data shows the expected trend for higher FT4 in the first trimester, resulting from 
thyroidal human chorionic gonadotropin (HCG) stimulation which is maximal in early pregnancy. The 
data is re-drawn with permission from reference 156. 
 
Hospitalized Patients with Nonthyroidal Illnesses 
(NTI) 
 
The diagnostic performance of current FT4 methods 
has not been evaluated in hospitalized patients with 
NTI where the severity of illness, binding protein 
inhibitors, and drug therapies can negatively impact 
the reliability of both thyroid hormone and TSH testing 
(10,30,62,90,122,132,181-183). Three categories of 
hospitalized patients deserve special attention: a) 
patients with NTI without known thyroid dysfunction 
who have a high or low T4 status; b) patients with 
primary hypothyroidism and concurrent NTI and, c) 
patients with hyperthyroidism and concurrent NTI (13). 
Because the diagnostic reliability of FT4 testing is still 
questionable in sick hospitalized patients, a 

combination of both T4 (FT4 or TT4) and TSH may be 
needed to assess thyroid status in this setting (10,13). 
 
In most clinical situations where FT4 and TSH results 
are discordant, the TSH test is the most diagnostically 
reliable, provided that the patient does not have 
pituitary failure or receiving medications such as 
glucocorticoids or dopamine that directly inhibit TSH 
secretion (110,142,181). Repetitive TSH testing may 
be helpful in resolving the cause of an abnormal FT4, 
because the TSH abnormalities of NTI are typically 
transient (Figure 6b) whereas the TSH abnormality will 
persist if due to underlying thyroid dysfunction (184-
187). In some cases, it may be useful to test for 
TPOAb as a marker for underlying thyroid 
autoimmunity.  
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Figure 6. Effects of Nonthyroidal Illness (NTI) on Thyroid Tests. Figure 6a shows the magnitude and 
direction of changes in total (TT4 and TT3) and free (FT4 and FT3) thyroid hormone IMA tests versus 
FT4 measured by the RMP (ED-ID-LC-MS/MS), as the severity of illness increases, followed by 
recovery. Figure 6b shows the magnitude and direction of TSH changes as the severity of illness 
increases, followed by recovery. Data redrawn from reference 188 with permission. 
 
Pediatric Patients 
 
The determination of normal reference limits for 
pediatric age groups is especially challenging, given 
the limited number of studies involving large numbers 
of healthy children (175-177). Most studies report that 
serum TSH peaks after birth and steadily declines 
throughout childhood to reach adult levels at puberty. 
Likewise, FT3 declines across the pediatric age 
groups during childhood and approaches the adult 
range at puberty, whereas FT4 levels for infants less 
than a year old are higher than for children 1 to 18 

years old who have FT4 comparable to adults (175-
180).  
 
Interferences with Thyroid Hormone Tests 
 
Only the ordering physician can suspect interference 
with a test result and request that the laboratory 
perform interference checks. This is because the 
hallmark of interference is discordance between the 
test result and the clinical presentation of the patient, 
and most specimens are sent to the laboratory with no 
clinical information. Failure to recognize interferences 
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can have adverse clinical consequences (91,146,189-
197).  
 
Laboratory checks for interferences include, a) 
showing a discordance between different 
manufacturers methods (196,198-200), b) re-
measurement of the analyte after adding a blocker of 
Heterophile antibodies (HAb) (196,200,201), c) 
performing linearity studies or d) precipitating 
interfering immunoglobulins with polyethylene glycol 
(PEG) (196,198). A change in the analyte 
concentration in response to any one of these 
maneuvers suggests interference, but a lack of an 
effect does not rule out interference.  
 
Interferences can be classified as either (a) non-
analyte-specific, or (b) analyte-specific (191,195,199).  
  
NON-ANALYTE SPECIFIC INTERFERENCES  
 
Protein Interferences  
 
Either paraproteins or abnormal immunoglobulins can 
interfere with immunoassays (90,202-205). 
 
Congenital TBG excess or deficiency: Free hormone 
immunoassays and free T4 index tests may be 
susceptible to interference from grossly abnormal 
TBG concentrations, such as seen in congenital TBG 
excess or deficiency states (26,62,103,148,149). 
 
Pregnancy: Estrogen stimulation increases TBG, and 
consequently both TT4 and TT3, concentrations 
progressively rise to plateau at 2.5-fold pre-pregnancy 
values by mid-gestation (73). Despite the rise in total 
hormone, both FT4 and FT3 decline during gestation, 
in accordance with the law of mass action 
(73,157,158,206,207). However, the degree of FT4 
decline during pregnancy is variable and method-
dependent (Figure 5). The declining albumin 
concentrations typical of late gestation also affect 
some methods (208).  
 

Familial Dysalbuminemias and Transthyretin 
Hyperthyroxinemias:  Autosomal dominant mutations 
in the albumin or transthyretin (prealbumin) gene (209) 
can result in altered protein structures with enhanced 
affinity for thyroxine and/or triiodothyronine. These 
abnormal proteins can interfere with FT4 and/or FT3 
measurements and result in inappropriately high FT4 
and/or FT3 immunoassay values (105,151,210-212). 
Familial Dysalbuminemic Hyperthyroxinemia (FDH) is 
a rare condition with a prevalence of ~1.8 percent in 
the Hispanic population (119,213). It arises from a few 
genetic variants in the albumin gene, with the R218H 
being the most common. Some variants result in 
extremely high TT4, whereas other mutations (i.e. 
L66P) affect mainly TT3 (150). Affected individuals are 
euthyroid and have normal TSH and FT4 when 
measured by direct techniques such as equilibrium 
dialysis (105). Unfortunately, most FT4 estimate tests 
(immunoassays and indexes) report falsely high 
values for FDH patients that may prompt inappropriate 
treatment for presumed hyperthyroidism if the 
condition is not recognized (105,119). 
 
Heterophile Antibodies (HAb) 
 
It is well recognized that heterophile antibodies (HAb) 
- human poly-specific antibodies targeting animal 
antigens, can interfere with immunometric assays 
causing falsely high/positive or falsely low/negative 
test results (214,215). The most common interferant is 
human anti-mouse antibodies (HAMA) (199,215-220). 
Rheumatoid factor (RF), an immunoglobulin 
commonly associated with autoimmune conditions, is 
also considered a heterophile antibody that can 
interfere by targeting human antigens 
(199,217,221,222). Although HAb usually causes 
false positive tests, false-negative tests have also 
been reported (214). HAb has been shown to interfere 
with multiple endocrine tests that use IMA principles, 
including free and total thyroid hormones, TSH, Tg, 
and TgAb (138,193,200,214,221,223-225). The 
prevalence of HAbs is variable but has been reported 
as high as eleven percent (223,226,227). In recent 
years assay manufacturers have increased the 
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immunoglobulin blocker reagents added to their tests 
and this has reduced HAb interference somewhat 
(223,225-227). However, interference is still seen in 
some patients with a high enough HAb to overcome 
the assay blocker (198,223,228). HAb interference 
mostly affects non-competitive immunometric assays 
(IMA) that employ monoclonal antibodies of murine 
origin (216). Assays based on the competitive format 
that employ high affinity polyclonal antibody reagents, 
are rarely affected (216). The test marketed by one 
manufacturer can be severely affected, whereas the 
test from a different manufacturer may appear 
unaffected (200). This is why the first step for 
investigating interference is re-measurement of the 
analyte by a different method. It should be noted that 
patients receiving recent vaccines, blood transfusions, 
or monoclonal antibodies (given for treatment or 
scintigraphy), as well as veterinarians and those in 
contact with animals, are especially prone to test 
interferences caused by induced HAb and human anti-
mouse antibodies (HAMA) (198,229). 
 
Anti-Reagent Antibodies 
 
Interference can be caused by antibodies targeting 
assay reagents. For example, a number of reports 
have found that anti-rhuthenium antibodies can 
interfere with TSH, FT4, and FT3 tests (200,230).  In 
addition, antibodies targeting either streptavidin 
(231,232) or Biotin (233,234) can interfere with assays 
employing streptavidin or biotin reagents.  
 
High Dose Dietary Biotin  
 
Some IMA tests have employed a biotin-streptavidin 
separation system (232). Patients who take a high 
dose of dietary biotin risk having test interferences 
with such methods (232). Depending on the specific 
test formulation, biotin interference can cause falsely 
high- or low- test results (234-236). Manufacturers are 
now prioritizing replacing their biotin-streptavidin 
separation systems to eliminate this problem (237). 
 
ANALYTE-SPECIFIC INTERENCES  

 
Analyte-specific interferences typically result from 
autoantibodies targeting the analyte (238). 
Autoantibodies targeting both TSH (macro-TSH) (238-
241) and both thyroid hormones (T4 and/or T3) 
(154,155) have been reported. Autoantibody 
interferences may be more prevalent in patients with 
non-thyroid autoimmune conditions (242,243). 
Depending on the analyte and test formulation, thyroid 
hormone and TSH autoantibodies typically cause 
falsely high tests (239,244).  It should be noted that 
transplacental passage of either HAb or anti-analyte 
autoantibodies (i.e. TSHAb or T4Ab) have the 
potential to interfere with neonatal screening tests 
(245-247). Specifically, maternal TSH autoantibodies 
can cross the placenta and cause a falsely high TSH 
screening test in the newborn mimicking congenital 
hypothyroidism (247), whereas maternal T4 
autoantibodies could cause a falsely high neonatal T4 
test and mask the presence of congenital 
hypothyroidism (246).  
 
Thyroid Hormone Autoantibodies (T4Ab/T3Ab)  
 
T4 and T3 autoantibodies can falsely elevate total 
hormone, free hormone, or THBR measurements 
depending on the method employed (153,155,210). 
The prevalence of thyroid hormone autoantibodies 
occurs in approximately 2 percent of the general 
population but may be present in over 30 percent of 
patients with autoimmune thyroid disease or other 
autoimmune conditions (242,243,248). However, 
despite their high prevalence, significant interference 
caused by thyroid autoantibodies is not common and 
depends on the qualitative characteristics of the 
autoantibody present (i.e. its affinity for the test 
reagents). Furthermore, different methods exhibit 
such interferences to a greater or lesser extent 
(120,154). Because autoantibody interference is 
difficult for the laboratory to detect proactively, it is the 
physician who should first suspect interference from 
an unexpected discordance between the clinical 
presentation of the patient and the test result(s) 
(249,250). 
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TSH (THYROID STIMULATING HORMONE) 
MEASUREMENT  
 
Over the last five decades the dramatic improvements 
in TSH assay sensitivity and specificity have 
revolutionized thyroid testing and firmly established 
TSH as the first-line test for ambulatory patients who 
are not receiving drugs known to alter TSH secretion 
(10,13,251). Serum TSH has become the therapeutic 
target for levothyroxine (L-T4) replacement therapy for 
hypothyroidism (52) and suppression therapy for 
differentiated thyroid cancer (DTC) (57,252,253). The 
diagnostic superiority of TSH versus FT4 
measurement arises from the inverse, predominantly 
log/linear, TSH/FT4 relationship, that is modified to 
some extent by factors such as age, sex, active 
smoking, and TPOAb status 
(8,10,13,143,144,254,255). 
 
TSH Assays 
 
TSH assay "quality" has historically been defined by 
clinical sensitivity – the ability to discriminate between 
hyperthyroid and euthyroid TSH values (8,10,13,256). 
The first generation of RIA methods had a detection 
limit approximating 1.0 mIU/L (1,3,257) that limited 
their clinical utility to diagnosing primary 
hyperthyroidism (258) and necessitated the use of 
TRH stimulation to diagnose hyperthyroidism, 
characterized by an absent TRH-stimulated TSH 
response (259-261). With the advent of immunometric 
assay (IMA) methodology that uses a combination of 
poly- and/or monoclonal antibodies targeting different 
TSH epitopes in a "sandwich" format (262-264), a ten-
fold improvement in TSH assay sensitivity (~ 0.1 
mIU/L) was achieved when using isotopic (I125) signals 
(265). This level of sensitivity facilitated the 
determination of the lower TSH reference limit (0.3-0.4 
mIU/L) and the detection of overt hyperthyroidism 
without the need for TRH stimulation (266,267) but 
was still insufficient for distinguishing between differing 
degrees of hyperthyroidism (i.e. subclinical versus 
overt) (268). Assay sensitization continued until a third 

generation of TSH IMAs was developed by employing 
non-isotopic signals that could achieve a sensitivity of 
0.01 mIU/L (8,251,267). Initially different non-isotopic 
signals were used that gave rise to a lexicon of 
terminology to distinguish between assays: 
immunoenzymometric assays (IEMA) used enzyme 
signals; immunofluorometric assays (IFMA) used 
fluorophors as signals, immunochemiluminometric 
assays (ICMA) used chemiluminescent molecules as 
signals, and immunobioluminometric assays (IBMA) 
used bioluminescent signal molecules (112,267). 
Current TSH methods are mostly automated ICMAs 
that achieve third generation functional sensitivity (FS 
= ≤0.01 mIU/L) - a FS level that has now become the 
standard of care (10,13,269). 
 
FUNCTIONAL SENSITIVITY (FS) = THE LOWEST 
REPORTABLE ASSAY LIMIT  
 
During the period of active TSH assay sensitization, 
different non-isotopic IMAs made competing claims for 
sensitivity. Methods were described as: "sensitive", 
"highly sensitive", "ultrasensitive", or "supersensitive" 
- marketing terms that had no scientific definition. This 
confusion led to a debate concerning what was the 
most clinically relevant parameter to use to determine 
the lowest reliable reportable TSH value for clinical 
practice (10,251,267). Functional sensitivity (FS) 
became defined as the lowest analyte concentration 
measured with 20 percent coefficient of variation (10) 
established over a clinically relevant timespan (6-8 
weeks for TSH). FS is now recognized as the 
parameter that best represents the between-run 
precision for measuring low analyte concentrations in 
clinical practice (10,270,271). FS is used to define the 
lower reportable limit for not only TSH but also Tg and 
TgAb, as well as other non-thyroid assays for which 
analytic sensitivity is critical (10). FS protocols 
recognize that immunoassays tend to be matrix-
sensitive and specify that precision be determined in 
human sera rather than a quality control material that 
uses an artificial protein matrix (71,72,272). The 
timespan used for determining precision is also 
analyte-specific and should reflect the frequency of 
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testing employed in clinical practice - 6 to 8 weeks for 
TSH, but 6 to 12 months for the Tg and TgAb - assays 
that are used as tumor markers for monitoring DTC. 
An optimal timescale is important, because low-end 
precision erodes over time due to a myriad of variables 
including reagent lot-to-lot variability (71). Note that 
the FS parameter is more stringent than other 
biochemical sensitivity parameters such as limit of 
detection (LOD - a within-run parameter) and limit of 
quantitation (LOQ - a between-run parameter without 
stipulations regarding the matrix and the timespan 
used for determining precision (72,271,273). A ten-fold 
difference in FS has been used to define each 
generation of increasingly more sensitive methods 
(17,251,271,274). Thus, TSH RIA methods with FS 
approximating 1.0 mIU/L were designated "first 
generation", the TSH immunoradiometric (IRMA) 
methods that had a functional sensitivity 
approximating 0.1 mIU/L were designated " second 
generation", and current TSH ICMAs with FS 
approximating 0.01 mIU/L are now designated "third 
generation" assays (267,270,275).  
 
TSH BIOLOGIC VARIABILITY  
 
TSH is a heterogeneous glycoprotein (276-278), and 
TRH-mediated changes in TSH glycosylation and thus 
detection by IMA methodology (279,280) have the 
potential to influence immunoactivity (277,281). 
Alterations in TSH glycosylation can occur in a number 
of pathophysiologic circumstances (278,282). 
Seasonal variability in TSH has been shown with 10% 
higher TSH levels in the winter than in the summer 
months (283). However, FT4 and FT3 levels show no 
such seasonal variability (283). The demonstration 
that harmonization of TSH methods successfully 
minimizes between-method differences (69), 
suggesting that under normal conditions current TSH 
IMAs appear to be "glycosylation blind" and detect 
different TSH glycoforms in an equimolar fashion 
(277,278). However, future studies need to include 
sera from conditions where TRH dysregulation may 
lead to abnormal TSH glycosylation and bioactivity, 

such as pituitary dysfunction, NTI, and aging 
(278,280,281,284-286).  
 
TSH intra-individual variability is relatively narrow (20-
25 percent) in both non-pregnant and pregnant 
subjects, as compared with between-person variability 
(13,287,288). In fact, the serum TSH of euthyroid 
volunteers was found to vary only ~0.5 mIU/L when 
tested every month over a span of one year (287). 
Twin studies suggest that there are genetic factors that 
determine hypothalamic-pituitary-thyroid setpoints 
(289-291). These studies report that the inheritable 
contribution to the serum TSH level approximates 65 
percent (290,291). This genetic influence appears in 
part to involve single nucleotide polymorphisms in 
thyroid hormone pathway genes such as the 
phosphodiesterase gene (PDE8B) (292), 
polymorphisms causing gain (293) or loss of function 
TSH receptors (294), and the type II deiodinase 
enzyme polymorphisms (293). Undoubtedly, such 
polymorphisms account for some of the euthyroid 
outliers that skew TSH reference range calculations 
(295). The narrow TSH within-person variability and 
low (< 0.6) index of individuality (IoI) (287,288) limits 
the clinical utility of using the TSH population-based 
reference range to detect thyroid dysfunction in an 
individual patient (288,296-298). When evaluating 
patients with marginally (confirmed) low (0.1–0.4 
mIU/L) or high (4–10 mIU/L) TSH abnormalities, it is 
more important to consider the degree of TSH 
abnormality relative to patient-specific risk factors for 
cardiovascular disease rather than the degree of the 
abnormality relative to the TSH reference range 
(13,52,299). 
 
TSH REFERENCE RANGES    
 
As with the thyroid hormone tests, the significant 
biases between different TSH methods (Figure 7) 
prevent establishing universal population or trimester-
specific reference ranges that would apply across 
methods (13,170). These method biases also impact 
the detection of subclinical hypothyroidism (299,300). 
Since TSH is a complex glycoprotein, no reference 
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measurement procedure (RMP) is available, or will 
likely be feasible in the future (13), given the current 
lack of commutability between the pituitary TSH 
reference preparations and patient specimens (33). A 
harmonization approach (31,301), whereby methods 
are recalibrated to the "all method mean", has been 
shown to have the potential to effectively eliminate 
current between-method TSH differences that are 
most pronounced at pathophysiologic levels (29,302). 
Better harmonization may also be possible using a 
reference panel of serum specimens (33). The IFCC 
is actively working with the IVD industry to encourage 
manufacturers to harmonize their methods. A 
reduction of between-method variability could 
eliminate the need to establish method-specific TSH 

reference ranges - a practice that is costly and 
inconvenient given the large numbers of rigorously 
screened participants that are necessary to establish 
reliable 2.5th to 97.5th percentiles for a population 
(87,303). However, even after harmonization 
minimizes inter-method differences, it remains to be 
determined to what extent universal ranges would be 
impacted by other factors such as age (254,304), 
ethnicity (254), and iodine intake (305). It may be that 
a reference range established in one geographic 
location may not be representative of a different locale 
or population. The harmonization of TSH methods 
would be advantageous for consolidating data from 
different studies and establishing universal reference 
limits (13). 

 

 
Figure 7. TSH Between-Method Variability. Figure shows deviations in TSH measurements made in the 
low (<0.5), medium (0.5-5.0), and high (>5) mIU/L range using 14 different immunoassays. Data is 
expressed as deviations from the trimmed all method mean (88). 
 
 
 
 
TSH POPULATION REFERENCE RANGE  
 
The log/linear TSH/FT4 relationship 
(8,10,143,144,255) dictates that TSH will be the first 
abnormality to appear as mild (subclinical) as hypo- or 
hyperthyroidism develops. It follows that the setting of 

the TSH reference limits critically influences the 
frequency of diagnosing subclinical thyroid disease 
(50,53). It is recommended that “TSH reference 
intervals should be established from the 95 percent 
confidence limits of the log-transformed values of at 
least 120 rigorously screened normal euthyroid 
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volunteers who have: (a) no detectable thyroid 
autoantibodies, TPOAb or TgAb; (b) no personal or 
family history of thyroid dysfunction; (c) no visible or 
palpable goiter and, (d) who are taking no medications 
(except estrogen)”  (10,303). 
 
Multiple factors influence population TSH reference 
limits, especially the upper (97.5th percentile) limit. 
Different methods report different ranges for the same 
population resulting from between-methods biases 
(Figure 7) (13). A key factor affecting the upper limit is 
the stringency used for eliminating individuals with 
thyroid autoimmunity from the population (306-308). 
Other factors relate to population demographics such 
as sex (254), ethnicity (254,309,310), iodine intake 
(311,312), BMI (313,314), and smoking status 
(311,315). The relationship between TSH and age is 
complex with most studies in iodine sufficient 
populations reporting an increase in the TSH upper 
limit with age (143,254,308,309,316). This has led to 
the suggestion that age-and sex-specific TSH 
reference limits be used (50,316). Conflicting data on 
this issue could merely represent population 
differences with an increasing prevalence of thyroid 
autoimmunity in iodine-sufficient populations 
(254,317). Whereas in iodine deficient populations, 
increasing autonomy of nodular goiter can result in 
decreased TSH with aging (318). Some studies have 
reported that a mild TSH elevation in elderly 
individuals may convey a survival benefit (319), 
whereas other studies dispute this (320). However, 
TSH is a labile hormone, and studies cannot assume 
that a TSH abnormality found in a single determination 
is representative of thyroid status in the long-term 
(321). 
 
PEDIATRIC TSH REFERENCE RANGES  
 
The adult TSH population reference range does not 
apply to neonates or children. Serum TSH values are 
generally higher in neonates and then gradually 
decline until the adult range is reached after puberty 
(178,179,322,323). This necessitates using age-

specific TSH reference ranges for diagnosing thyroid 
dysfunction in different pediatric age groups.  
 
SUBCLINICAL THYROID DYSFUNCTION   
 
Subclinical Hyperthyroidism (SCHY) is defined as a 
low (<2.5th percentile) but detectable TSH (0.01 - 0.3 
mIU/L range) without a FT4 abnormality. SCHY seems 
relatively independent of the method used (324-326). 
Endogenous SCHY prevalence is low (0.7 %) in 
iodine-sufficient populations (254) but may increase 
as an iatrogenic consequence of L-T4 replacement 
therapy (327-330). SCHY is a risk factor for 
osteoporosis and increased fracture risk (331) as well 
as atrial fibrillation and cardiovascular disease 
(325,332-334), especially in older patients. 
 
Subclinical Hypothyroidism (SCHO) is defined as a 
TSH above the upper (>97.5th percentile) TSH 
reference limit without a FT4 abnormality 
(50,300,308,335). However, the setting of the TSH 
upper limit remains controversial, thus the prevalence 
of SCHO is highly variable - 4 to 8.5 percent rising to 
15 percent in older populations (254,299,307,335). In 
most cases, SCHO is associated with TPOAb 
positivity, indicative of an autoimmune etiology (307). 
The clinical consequences of SCHO relate to the 
degree of TSH elevation (336,337). Most guidelines 
recommend L-T4 treatment of SCHO when TSH is 
above 10 mIU/L (49,50), but below 10 mIU/L L-T4 
treatment is usually based on patient-specific risk 
factors (50). There is active debate concerning the 
efficacy of treating SCHO to prevent progression (338-
340), or improve renal (341), cardiovascular 
(333,336,342-346), or lipid (347,348) abnormalities 
that can be associated with SCHO. 
 
THYROID DYSFUNCTION IN PREGNANCY   
 
Overt hypo- or hyperthyroidism is associated with both 
maternal and fetal complications (349-352). However, 
the impact of maternal subclinical thyroid dysfunction 
remains controversial (51), although no maternal or 
fetal complications appear associated with subclinical 
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hyperthyroidism during pregnancy (349,353). First 
trimester "gestational hyperthyroidism" is typically 
transient and hCG-related (354). In contrast, short-
term and long-term outcome studies of maternal 
subclinical hypothyroidism (51,355) are complicated 
by heterogeneity among studies arising from a myriad 
of factors influencing TSH cutoffs, such as gestational 
stage, TSH method used, maternal TPOAb status, and 
current and pre-pregnancy iodine intake (160,172). 
Using gestational age-specific reference intervals the 
frequency of SCHO in first trimester pregnancy 
approximates 2-5 percent (355,356). Studies have 
found that subclinical hypothyroidism is associated 
with increased frequency of maternal and fetal 
complications, especially when TPOAb is positive 
(51,160,349,357-362).  Maternal complications have 
included miscarriage (358), preeclampsia (363,364), 
placental abruption (350), preterm delivery 
(349,358,365,366), and post-partum thyroiditis (359). 
Fetal complications have included intrauterine growth 
retardation and low birth weight (350,353) and 
possible impaired neuropsychological development 
(367,368). It remains controversial whether L-T4 
treatment of SCHO in early gestation decreases the 
risk of complications (358,362,369).  
 
Trimester-Specific TSH Reference Ranges. As with 
non-pregnant patients, TSH is the first-line test used 
for assessing thyroid status during pregnancy when 
gestation-related TSH changes occur 
(47,51,76,158,355). Currently, method specific TSH 
reference ranges are needed for each trimester 
because of between-method variability (Figure 8). In 
the first trimester, there is a transient rise in FT4 
caused by high hCG concentrations stimulating the 
TSH receptor - because hCG shares some homology 
with TSH (370-372). The degree of TSH suppression 
is inversely related to the hCG concentration and can 

be quite profound in patients with hyperemesis who 
have an especially high hCG (165,370,372-374). As 
gestation progresses, TSH tends to return towards 
pre-pregnancy levels (165). Recent studies from 
different geographic areas with diverse iodine intakes 
using different TSH methods have reported higher 
trimester-specific TSH upper limits than 
recommended by previous guidelines 
(51,159,164,165, 355, 375). In response, the 
American Thyroid Association have revised their 
pregnancy guidelines (47,48) to replace trimester-
specific reference limits by a universal upper TSH limit 
of 4.0 mIU/L, when TPOAb is negative and no local 
reference range data is available (376). However, at 
this time between-method biases (Figure 7) clearly 
preclude proposing universal TSH cut offs that would 
apply to all methods and all populations including 
pregnant patients (69,87,164,165). IVD manufacturers 
are being encouraged to harmonize their TSH 
methods so that universal reference limits can be 
established for pregnancy (69,87). Requiring each 
institution to establish their own trimester-specific 
reference ranges is impractical, given the costs, 
logistics and ethical considerations involved in 
recruiting the more than 400 disease-free pregnant 
women that would be needed to represent each 
trimester (158). Even after methods are re-
standardized (FT4) or harmonized (TSH), trimester-
specific reference ranges would still be influenced by 
differences in ethnicity and iodine intake, especially 
the pre-pregnancy iodine intake that influences 
thyroidal iodine stores (172). In addition, since the 
TSH upper limit is skewed by the inclusion of 
individuals with thyroid autoimmunity, reliable method-
specific TPOAb cutoffs need to be established 
(165,372,377).  
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Figure 8. Between-Method TSH Variability Impacts Thyroid Testing in Pregnancy. The figure is a 
summary of 43 published studies showing the upper and lower TSH reference limits (2.5–97.5 %) 
measured in each trimester of pregnancy by four different methods – Abbott (1), Beckman (2), Roche 
(3), and Siemens (4). The data shows the expected trend for a lower TSH in the first trimester, resulting 
from thyroidal human chorionic gonadotropin (HCG) stimulation of thyroxine, which is maximal in the 
first trimester. The data is re- drawn with permission from reference 156. 
 
 
 
 
 
 
Clinical Utility of TSH Measurement  
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AMBULATORY PATIENTS  
 
In the outpatient setting the reliability of TSH testing is 
not usually influenced by the time of day of the blood 
draw, because the diurnal TSH peak occurs between 
midnight and 0400 (378-381). However, seasonal 
changes in TSH have been shown, with TSH 
approximately 10 % higher in winter than in summer 
(283). Third generation TSH assays (FS ~0.01 mIU/L) 
have now become the standard of care because they 
can reliably detect the full spectrum of thyroid 
dysfunction from overt hyperthyroidism to overt 
hypothyroidism, provided that hypothalamic-pituitary 
function is intact, and thyroid status stable 
(10,49,382,383). TSH is also used for optimizing L-T4 
therapy - a drug with a narrow therapeutic range 
(49,384). Because TSH secretion is slow to respond 
to changes in thyroxine status there is no need to 
withhold the L-T4 dose on the day of the blood test 
(10,384). In addition, in differentiated thyroid cancer 
(DTC) patients, targeting the degree of TSH 
suppression relative to recurrence risk plays a critical 
role in management (57,385,386).  
 
HOSPITALIZED PATIENTS WITH NONTHYROIDAL 
ILLNESSES (NTI) 
 
Non-thyroidal illness, sometimes called the "sick 
euthyroid syndrome" is associated with alterations in 
hypothalamic/pituitary function and thyroid hormone 
peripheral metabolism, often exacerbated by drug 
influences (104,181,186,387-389). Routine thyroid 
testing in the hospital setting is not recommended 
because thyroid test abnormalities are frequently seen 
in sick euthyroid patients (Figure 6) (388-391). TSH 
also usually remains within normal limits or may 
become somewhat depressed in the early phase, 
especially in response to drug therapies such as 
dopamine or glucocorticoid (104,110,181). During the 
recovery phase, TSH frequently rebounds above the 
reference range (184).  High TSH may also be seen 
associated with psychiatric illness (392). It is important 
to distinguish the generally mild, transient TSH 
alterations typical of NTI from the more profound and 

persistent TSH changes associated with hyper- or 
hypothyroidism (10,183,185,390). 
 
Causes of Misleading TSH Measurements   
 
A diagnostically misleading TSH can result from 
biological factors or interferants in the serum such as 
drugs, heterophile antibodies (i.e. HAMA), or 
endogenous TSH autoantibodies 
(91,195,197,378,393). In most cases such 
interferences cause a falsely high TSH. 
 
BIOLOGIC FACTORS CAUSING MISLEADING TSH  
 
Unstable Thyroid Function 
 
TSH can be misleading when there is unstable thyroid 
status - such as in the early phase of treating hypo- or 
hyperthyroidism or non-compliance with L-T4 therapy 
- when there is a lag in the resetting of pituitary TSH to 
reflect a new thyroid status (394). During such periods 
of instability TSH will be misleading and FT4 will be 
the more diagnostically reliable test.   
 
 Pituitary/Hypothalamic Dysfunction 
 
Pituitary dysfunction is rare in ambulatory patients 
(395). TSH measurement is unreliable in cases of both 
central hypothyroidism and central hyperthyroidism 
(285,395-397).    
 
Central hypothyroidism (CH) is rare, 1/1000 less 
prevalent than primary hypothyroidism, 1/160,000 
detected by neonatal screening) (395). CH can arise 
from disease at either the pituitary or hypothalamic 
level, or both (395). A major limitation of using a TSH-
centered screening strategy is that current TSH tests 
will miss a diagnosis of CH because TSH IMAs are 
“glycosylation blind” and detect the abnormally 
glycosylated biologically inactive TSH as “normal” 
TSH, despite clinical hypothyroidism (276,285,396). 
This limitation necessitates that the clinical diagnosis 
of CH be confirmed biochemically as a low 
FT4/normal-low TSH discordance. and that L-T4 
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replacement therapy for CH be optimized using the 
serum FT4 not TSH. It should be noted that in the 
absence of clinical suspicion, investigations for 
pituitary dysfunction should only be initiated after 
ruling-out technical interference.  
 
TSH secreting pituitary adenomas are characterized 
by a non-suppressed TSH associated with high thyroid 
hormone levels and clinical hyperthyroidism 
(397,398). Since this is a rare type of pituitary 
adenoma (0.7 %), technical interferences such as 
heterophile antibody (HAb) or TSH autoantibodies 
(macro TSH) should be excluded before initiating 
inconvenient and unnecessary pituitary imaging or 
dynamic diagnostic testing such as T3 suppression or 
TRH stimulation. This clinical/biochemical 
discordance reflects the TSH isoforms with enhanced 
biologic activity secreted by the adenoma. As with CH, 
current TSH IMA methods cannot distinguish these 
abnormal isoforms from normal TSH. Failure to 
diagnose the pituitary as the cause of the 
hyperthyroidism can lead to inappropriate thyroid 
ablation. The treatment of choice is surgery but in 
cases of surgical failure somatostatin analog 
treatment has been found effective (398). Note that the 
biochemical profile (high thyroid hormones and non-
suppressed TSH) resembles that seen with thyroid 
hormone resistance syndromes (399,400) or 
interference from thyroid autoantibodies (120).  
 
Resistance to Thyroid Hormone (RTH) 
 
Resistance to thyroid hormone is caused by 
mutations in the THRB gene encoding the thyroid 
hormone receptor B and is biochemically 
characterized by high thyroid hormone (FT4 +/- T3) 
levels and a non-suppressed, sometimes slightly 
elevated TSH (402,403). Tissues expressing primarily 
the thyroid hormone receptor B  are hypothyroid (e.g. 
the liver), whereas organs with a predominant 
expression of thyroid receptor A (e.g. the heart) display 
alterations consistent with thyroid hormone excess 
(400,401). Early cases of thyroid hormone resistance 
were shown to result from mutations in the thyroid 

hormone receptor B (400). More recently the 
syndromes with decreased sensitivity to thyroid 
hormones have been broadened to include mutations 
in thyroid hormone transporters (e.g. MCT8), the 
metabolism of thyroid hormone (e.g. SBP2), and 
resistance mediated by mutations in thyroid receptor A 
(401) (for detailed discussion see the Endotext 
chapter entitled “Impaired Sensitivity to Thyroid 
Hormone: Defects of Transport, Metabolism and 
Action”). These insensitivity and resistance 
syndromes display a spectrum of clinical and 
biochemical profiles and can now be identified by 
genetic testing. 
 
Activating or Inactivating TSH Receptor Mutations 
 
Non-autoimmune hyperthyroidism resulting from an 
activating mutation of the TSH receptor (TSHR) is rare 
(293,402). A spectrum of loss-of-function TSHR 
mutations (TSH resistance) causing clinical and 
subclinical hypothyroidism despite high thyroid 
hormone levels, have also been described 
(295,400,403,404). Because TSHR mutations are a 
rare cause of TSH/FT4 discordances, technical 
interferences should first be excluded before 
considering a TSHR mutation as the cause of these 
discordant biochemical profiles. 
 
TECHNICAL FACTORS CAUSING MISLEADING 
TSH  
 
Non-Analyte Specific Interferences 
 
Heterophile Antibodies (HAbs) such as Human Anti 
Mouse Antibody (HAMA) can cause falsely high TSH 
IMA tests (200,220,241,405,406) and interfere with 
neonatal TSH screening (407). Since the HAb in some 
patient's sera interfere strongly with some 
manufacturers tests but appear inert in others (200), 
re-measurement using a different manufacturers 
assay should be the first test to identify interference. A 
fall in TSH in response to a blocker-tube treatment (43) 
is typically used to confirm HAb interference. 
 

http://www.endotext.org/


 
 

 
www.EndoText.org 23 

Anti-Reagent Antibody Interferences. As discussed for 
free hormone tests, some patients have antibodies 
that target test reagents such as rhuthenium and 
cause interference with TSH tests. (408). It should be 
noted that the anti-rhuthenium antibodies of different 
patients may affect different analytes to differing 
degrees (230,409,410).  
 
Biotin Interferences. Tests employing streptavidin or 
biotin reagents are prone to interferences from 
antibodies targeting either streptavidin (231) or biotin 
(233). Alternatively, high dose biotin ingestion has 
been known to produce interference in an analyte-
specific, platform-specific manner (241,411). The 
popularity of biotin therapy is now prompting assay 
manufacturers to reformulate their tests to remove 
biotin interference (237,412). 
 
Analyte-Specific Interferences 
 
Analyte-specific interferences typically result from 
autoantibodies targeting the analyte. Depending on 
the analyte and test formulation, autoantibody 
interferences most commonly cause falsely high test 
results. It should be noted that transplacental passage 
of both heterophile antibodies or anti-analyte 
autoantibodies (i.e. TSHAb or T4Ab) have the 
potential to interfere with neonatal screening tests 
(245-247,413). Patients with autoantibodies targeting 
both TSH and prolactin (PRL) have been described 
(414). 
 
TSH Autoantibodies (Macro TSH). Analytically 
suspicious TSH measurements are not uncommon 
(205,238,239,244,415) and have been reported in up 
to five percent of specimens subjected to rigorous 
screening (405). There have been many reports of 
TSHAb, often referred to as "macro TSH” causing 
spuriously high TSH results in a range of different 
methods used for both adult (238,416) and neonatal 
screening (244,415). The prevalence of TSHAb 
approximates 0.8 percent but can be as high as 1.6 
percent in patients with subclinical hypothyroidism 
(238). The most convenient test for TSHAb is to show 

a lowering of TSH in response to a polyethylene glycol 
(PEG) precipitation of immunoglobulins (415-417). 
Alternatively, column chromatography can show TSH 
immunoactivity in a high molecular weight peak 
representing a bioinactive TSH-immunglobulin 
complex (415,416). 
 
TSH Variants. TSH variants are a rare cause of 
interference (403). Nine different TSH beta variants 
have been identified to date (286). These mutant TSH 
molecules may have altered immunoactivity and be 
detected by some TSH IMA methods but not others 
(403). The bioactivity of these TSH mutants is variable 
and can range from normal to bio-inert (286,403), 
resulting in discordances between the TSH 
concentration and clinical status (403) and/or a 
discordant TSH/FT4 relationship (286). These TSH 
genetic variants are one of the causes of central 
congenital hypothyroidism (418,419).  
 
THYROID SPECIFIC AUTOANTIBODIES (TRAb, 
TPOAb and TgAb) 
 
Tests for antibodies targeting thyroid-specific antigens 
such as thyroid peroxidase (TPO), thyroglobulin (Tg) 
and TSH receptors (TSHR) are used as markers for 
autoimmune thyroid conditions (420-422). Over the 
last four decades, thyroid antibody test methodologies 
have evolved from semi-quantitative agglutination, 
complement fixation techniques and whole animal 
bioassays to specific ligand assays using recombinant 
antigens or cell culture systems transfected with the 
human TSH receptor (20,420). Unfortunately, the 
diagnostic and prognostic value of these tests has 
been hampered by methodologic differences as well 
as difficulties with assay standardization (423,424). 
Although most thyroid autoantibody testing is currently 
made on automated immunoassay platforms, 
methods vary in sensitivity, specificity, and the numeric 
values they report because of standardization issues 
(45,377,425).  Thyroid autoantibody testing can be 
useful for diagnosing or monitoring treatment for 
several clinical conditions, although these tests should 
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be selectively employed as adjunctive tests to other 
diagnostic testing procedures. 
 
TSH Receptor Autoantibodies (TRAb) 
 
The TSH receptor (TSHR) serves as a major 
autoantigen (19,422,426-428). Thyroid gland 
stimulation occurs when TSH binds to the TSHR on 
thyrocyte plasma membranes and activates the cAMP 
and phospholipase C signaling pathways (427). The 
TSH receptor belongs to the G protein-coupled class 
of transmembrane receptors. It undergoes complex 
posttranslational processing in which the ectodomain 
of the receptor is cleaved to release a subunit into the 
circulation (426). The TSH-like thyroid stimulator 
found uniquely in the serum of Graves’ disease 
patients was first described using a guinea pig 
bioassay system in 1956 (429). Later, a mouse thyroid 
bioassay system was used to show this serum factor 
displayed a prolonged stimulatory effect as compared 
to TSH and hence was termed to be a “long-acting 
thyroid stimulator” or LATS (430,431). Much later, the 
LATS factor was recognized not to be a TSH-like 
protein but an antibody capable of stimulating the TSH 
receptor that was the cause of Graves’ 
hyperthyroidism (432). TSH receptor antibodies 
(TRAb) have also become implicated in the 
pathogenesis of Graves’ ophthalmopathy (432-436). 
TRAbs are heterogeneous (polyclonal) and fall into 
two general classes both of which can be associated 
with autoimmune thyroid disorders – (a) thyroid 
stimulating autoantibodies (TSAb) that mimic the 
actions of TSH and cause Graves’ hyperthyroidism 
and (b), blocking antibodies (TBAb) that block TSH 
binding to its receptor and can cause hypothyroidism 
(19,20,420,427,432,437-440). TSH, TSAb and TBAb 
appear to bind to different sites on the TSH receptor 
ectoderm with similar affinities and often overlapping 
epitope specificities (441). In some cases of Graves’ 
hyperthyroidism, TBAb have been detected in 
association with TSAb (442,443) and the dominance 
of one over the other can change over time in 
response to treatment (444,445). Because both TSAb 
and TBAb can be present in the same patient, the 

relative concentrations and receptor binding 
characteristics of these two classes of TRAb can 
influence the severity of Graves’ hyperthyroidism and 
the response to antithyroid drug therapy or pregnancy 
(426,442,446-448). For completeness, it should also 
be mentioned that a third class of “neutral” TRAb has 
also been described, of which the functional 
significance has yet to be determined 
(432,438,448,449).  
 
Two different methodologic approaches have been 
used to quantify TSH receptor antibodies 
(425,437,450,451): (a) TSH receptor antibody tests 
(TRAb assays) also called TSH Binding Inhibition 
Immunoglobulin (TBII) assays, and (b) Bioassays that 
use whole cells transfected with human or chimeric 
TSH receptors that produce a biologic response 
(cAMP or bioreporter gene) when TSAb or TBAb are 
present in a serum specimen. In recent years 
automated immunometric assays using recombinant 
human TSHR constructs have been shown to have 
high sensitivity for reporting positive results in Graves' 
disease sera (18,425). However, assay sensitivity 
varies among current receptor versus bioassay 
methods (452). 
 
TSH RECEPTOR (TRAb)/TSH BINDING 
INHIBITORY IMMUNOGLOBULIN (TBII)  
 
TRAb methods detect serum immunoglobulins that 
bind TSHR but do not functionally discriminate 
stimulating from blocking antibodies (453). TRAb 
methods are based on standard competitive or 
noncompetitive principles. The first generation of 
methods were liquid-based whereby immunoglobulins 
in the serum inhibited the binding of 125I-labeled TSH 
or enzyme-labeled TSH to a TSH receptor preparation 
(451). These methods used TSH receptors of human, 
guinea pig, or porcine origin (454). After 1990, a 
second generation of both isotopic and non-isotopic 
methods were developed that used and immobilized 
porcine or recombinant human TSH receptors 
(451,455). These second-generation methods were 
shown to have significantly more sensitivity for 
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detecting Graves' thyroid stimulating immunoglobulins 
than first generation tests (425). In 2003 a third 
generation of non-isotopic methods were developed 
that were based on serum immunoglobulins 
competing for immobilized TSHR preparation 
(recombinant human or porcine TSHR) with a 
monoclonal antibody (M22) (420,425,451,455-457). 
Third generation assays have also shown a good 
correlation and comparable overall diagnostic 
sensitivity with bioassay methods (425,442,458). 
Current third generation TRAb tests have now been 
automated on several immunoassay platforms (425). 
However, between-method variability remains high 
and between assay precision is often suboptimal (CVs 
> 10 %) despite calibration using the same 
International Reference Preparation (08/204) 
(423,459). This fact makes it difficult to compare 
values using different methods and indicates that 
further efforts focused on additional assay 
improvements are needed (420,423,455).  
 
Over the last ten years automated IMA methods have 
dramatically lowered the cost and increased the 
availability of TRAb testing (18,428,452). Automated 
TRAb IMAs are not functional tests and do not 
distinguish between stimulating and blocking TRAbs 
(455), however, this distinction is usually unnecessary, 
since it is evident from clinical evidence of hyper- or 
hypothyroid features. Also, both TSHR stimulating and 
blocking antibodies may be detected simultaneously 
in the same patient and cause diagnostic confusion 
(460). Because the sensitivity and specificity of current 
third generation TRAb tests is over 98 percent, TRAb 
testing can be useful for determining the etiology of 
hyperthyroidism (425,428), as an independent risk 
factor for Graves’ ophthalmopathy (435,436,440), and 
may be useful for monitoring responses to therapy 
(76,425). TRAb measured prior to radioiodine therapy 
for Graves' hyperthyroidism can also help predict the 
risk for exacerbating ophthalmopathy (433,436,461). 
There is conflicting data concerning the value of using 
TRAb to predict the response to antithyroid drug 
treatment or the risk of relapse (443,458,462,463). An 
important application of TRAb testing is to detect high 

TRAb concentrations in pregnant patients with a 
history of autoimmune thyroid disease or active or 
previously treated Graves’ hyperthyroidism, in whom 
transplacental passage of stimulating or blocking 
TRAb can cause neonatal hyper- or hypothyroidism, 
respectively (76,352,425,437,451,464-466). Because 
the expression of thyroid dysfunction may be different 
in the mother and infant, automated IMA methods 
have the advantage of being able to detect both 
stimulating and blocking antibodies (467). It is 
currently recommended that TRAb be measured in the 
first trimester in all pregnant patients with active 
Graves’ hyperthyroidism or who have received prior 
ablative (radioiodine or surgery) therapy for Graves’ 
disease in whom TRAb can remain high even after 
patients have been rendered hypothyroid and are 
being maintained on L-T4 replacement therapy 
(47,48). When TRAb is high in the first trimester 
additional TRAb testing is recommended at 18-22 and 
30-34 weeks (47,48,76,420,442,468). 
 
BIOASSAY METHODS (TSAb/TBAb) 
 
The first TSH receptor assays used surgical human 
thyroid specimens, mouse, or guinea pig thyroid cells, 
or rat FRTL-5 cell lines to detect TSH receptor 
antibodies. These methods typically required pre-
extraction of immunoglobulins from the serum 
specimen (429,437,439,469,470). Later, TRAb 
bioassays used cells with endogenously expressed or 
stably transfected human TSH receptors and 
unextracted serum specimens (471-473). Current 
TRAb bioassays are functional assays that use intact 
(typically CHO) cells transfected with human or 
chimeric TSH receptors, which when exposed to 
serum containing TSH receptor antibodies use cAMP 
or a reporter gene (luciferase) as a biological marker 
for any stimulating or blocking activity in a serum 
(425,451,463). Bioassays are more technically 
demanding than the more commonly used receptor 
assays because they use viable cells. However, these 
functional assays can be modified to detect TBAb that 
may coexist with TSAb in the same sera and make 
interpretation difficult (451). The most recent 
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development is for second generation assays to use a 
chimeric human/rat LH TSHR to effectively eliminate 
the influence of blocking antibodies. This new 
approach has shown excellent sensitivity and 
specificity for diagnosing Graves' hyperthyroidism and 
clinical utility for monitoring the effects of anti-thyroid 
drug therapy (463).  
 
Thyroid Peroxidase Autoantibodies (TPOAb) 
 
TPO is a large, dimeric, membrane-associated, 
globular glycoprotein that is expressed on the apical 
surface of thyrocytes. TPO autoantibodies (TPOAb) 
found in sera typically have high affinities for an 
immunodominant region of the intact TPO molecule. 
When present, these autoantibodies vary in titer and 
IgG subclass and display complement-fixing 
properties (474). Studies have shown that epitope 
fingerprints are genetically conserved suggesting a 
possible functional importance (475). However, it is 
still unclear whether the TPOAb epitope profile 
correlates with the presence of, or potential for, the 
development of thyroid dysfunction (474-477). TPOAb 
antibodies were initially detected as antibodies against 
thyroid microsomes (antimicrosomal antibodies, AMA) 
using semi-quantitative complement fixation and 
tanned erythrocyte hemaagglutination techniques 
(478). Studies have identified the principal antigen in 
AMA tests as the thyroid peroxidase (TPO) enzyme, a 
100 kD glycosylated protein present in thyroid 
microsomes. Manual agglutination tests have now 
been replaced by more specific, automated TPOAb 
immunoassay or immunometric assay methods that 
use purified or recombinant TPO (10,420,479-482). 
There is considerable inter-method variability of 
current TPOAb assays (correlation coefficients 0.65 
and 0.87), despite calibration against the same 
International Reference Preparation (MRC 66/387) 
(420,479,480,482). It appears that both the 
methodologic principles of the test and the purity of the 
TPO reagent used may influence the sensitivity, 
specificity, and reference range of the method 
(420,479). The variability in sensitivity limits and the 
reference ranges of different methods has led to 

different interpretations regarding the normalcy of 
having a detectable TPOAb (377,420,424,482). 
 
TPOAb CLINICAL SIGNIFICANCE   
 
Estimates of TPOAb prevalence depend on the 
sensitivity and specificity of the method employed 
(377,424,482). In addition, ethnic and/or geographic 
factors (such as iodine intake) influence the TPOAb 
prevalence in population studies (317). For example, 
TPOAb prevalence is significantly higher (~11 percent) 
in countries like the United States and Japan where 
dietary iodine is sufficient, as compared with iodine 
deficient areas in Europe (~ 6 percent) (254,483). The 
prevalence of TPOAb is higher in women of all age 
groups and ethnicities, presumably reflecting the 
higher propensity for autoimmunity as compared with 
men (254,483). Approximately 70-80 percent of 
patients with Graves' disease and virtually all patients 
with Hashimoto’s or post-partum thyroiditis have 
detected TPOAb (479,484).  TPOAb has, in fact, been 
implicated as a cytotoxic agent in the destructive 
thyroiditic process (477,485,486). 
 
TPOAb prevalence is also significantly higher in 
various non-thyroidal autoimmune disorders in which 
no apparent thyroid dysfunction is evident (487). Aging 
is associated with an increasing prevalence of TPOAb 
that parallels the increasing prevalence of both 
subclinical and clinical hypothyroidism (254). In fact, 
the NHANES III survey reported that TPOAb 
prevalence increases with age and approaches 15-20 
percent in elderly females even in the iodine-sufficient 
United States (254). This same study found that the 
odds ratio for hypothyroidism was strongly associated 
with the presence of TPOAb but not TgAb, suggesting 
that primarily TPOAb contribute to the autoimmune 
etiology of hypothyroidism (254). Although the 
presence of TgAb alone did not appear to be 
associated with hypothyroidism or TSH elevations, the 
combination of TPOAb and TgAb versus TPOAb alone 
may be more pathologically significant (Figure 9), 
however further studies would be needed to confirm 
this (254,307,477). It is now apparent that the 
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presence of TPOAb in apparently euthyroid individuals 
(TSH within reference range) appears to be a risk 
factor for future development of overt hypothyroidism 
that subsequently becomes evident at the rate of 

approximately two percent per year in such 
populations (474,488,489). Furthermore, TPO-
positivity in pregnant women is a risk factor for preterm 
birth (490).  

 

 
Figure 9. Prevalence of thyroid antibodies in women (A) and men (B). Abscissa TSH values correspond 
to the upper and lower limits of the intervals spanning each set of bars. Asterisks denote a significant 
difference in prevalence from the TSH range with lowest antibody prevalence, 0.1 and 1.5 mIU/liter for 
women and 0.1 and 2.0 mIU/liter for men from reference 307. 
 
TPOAb measurement can serve as a useful 
prognostic indicator for future thyroid dysfunction 
(489,491). However, a hypoechoic ultrasound pattern 
can often be seen before the biochemical TPOAb 
abnormality appears (492). Further, some individuals 
with unequivocal TSH elevations, presumably 
resulting from autoimmune destructive disease of the 
thyroid, do not have TPOAb detected (307). 
Presumably, this paradoxical absence of TPOAb in 
some patients with elevated TSH likely reflects the 

suboptimal sensitivity and/or specificity of current 
TPOAb tests or a non-autoimmune cause of thyroid 
failure (i.e. atrophic thyroiditis) (254,307,482,493).  
 
Although changes in autoantibody concentrations 
often occur with treatment, or reflect a change in 
disease activity, serial TPOAb measurements are not 
recommended for monitoring treatment for 
autoimmune thyroid diseases (49,479,494). This is not 
surprising since treatment of these disorders 
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addresses the consequence (thyroid dysfunction) and 
not the cause (autoimmunity) of the disease. However, 
where it may have an important clinical application is 
to use the presence of serum TPOAb as a risk factor 
for developing thyroid dysfunction in patients receiving 
amiodarone, interferon-alpha, interleukin-2, or lithium 
therapies which all appear to act as triggers for 
initiating autoimmune thyroid dysfunction in 
susceptible (especially TPOAb-positive) individuals 
(10,110,495-500). 
 
During pregnancy the presence of TPOAb has been 
linked to reproductive complications such as 
miscarriage, infertility, IVF failure, fetal death, pre-
eclampsia, pre-term delivery, post-partum thyroiditis, 
and depression (47,76,484,501-508). However, 
whether this association represents cause or effect 
remains unresolved. 
 
Thyroglobulin Autoantibodies (TgAb)  
 
Thyroglobulin autoantibodies belong predominantly to 
the immunoglobulin G (IgG) class, are not 
complement fixing and are generally conformational 
(509). Tg autoantibodies were the first thyroid antibody 
to be detected in the serum of patients with 
autoimmune thyroid disorders using tanned red cell 
hemagglutination techniques (478). Subsequently, 
methodologies for detecting TgAb have evolved in 
parallel with those for TPOAb measurement, from 
semi-quantitative techniques to more sensitive ELISA 
and RIA methods and now to non-isotopic competitive 
or non-competitive immunoassays 
(45,420,482,510,511). Unfortunately, the between-

method variability of TgAb assays is even greater than 
that of the TPOAb tests (Figure 10) (45,420,510-512). 
Additionally, high levels of thyroglobulin in the serum 
have the potential to influence TgAb measurements 
(511). Between-method variability is influenced by the 
purity and the epitope specificity of the Tg reagent, as 
well as the patient-specific epitope specificity of the 
TgAb secreted (513). As with TPOAb methods, TgAb 
tests have highly variable sensitivity limits and 
manufacturer-recommended cut-off values for 
"positivity", despite the use of the same International 
Reference Preparation (MRC 65/93) (Figure 10) 
(45,510-512,514). Whereas the FS limit is the 
recommended cutoff to define TgAb-positivity for DTC 
monitoring, the FS is typically much lower than the 
manufacturer-recommended cut-off for “positivity” 
(Figure 10) (10,45). This is because manufacturer-
recommended cutoffs (MCO) are set for diagnosing 
thyroid autoimmunity and are too high to detect the low 
TgAb levels that can interfere with Tg measurements 
(515,516). Although there are reports that low levels of 
TgAb may be present in normal euthyroid individuals, 
it is unclear whether this represents assay noise due 
to matrix effects or "natural" antibodies (21). Further 
complicating this question are studies suggesting that 
there may be qualitative differences in TgAb epitope 
specificities expressed by normal individuals versus 
patients with either differentiated thyroid cancers 
(DTC) or autoimmune thyroid disorders (517). These 
differences in test sensitivity and specificity negatively 
impact the reliability of determining the TgAb status 
(positive versus negative) of specimens prior to Tg 
testing of DTC patients. 
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Figure 10. TgAb Measurements Made by Different Methods. Figure shows the relative TgAb 
concentrations reported for 143 DTC patient sera with evidence of TgAb interference with serum Tg 
measurements. Each serum was measured by four different methods each with a different 
manufacturer-recommended cutoff value for “TgAb positivity” (open bars) and with different 
experimentally determined (10) functional sensitivity limits (closed bars). From reference 45. 
 
CLINICAL UTILITY OF TgAb TESTING  
 
Tg autoantibodies (TgAb) are encountered in 
autoimmune thyroid conditions, usually in association 
with TPOAb (254,489,490). However, the NHANES III 
survey found that only three percent of subjects with 
no risk factors for thyroid disease had serum TgAb 
present without detectable TPOAb (Figure 9) 
(254,307). Furthermore, there was no association 
between the isolated presence of TgAb and TSH 
abnormalities in these subjects (254,307). This 
suggests that it is unnecessary to measure both 
TPOAb and TgAb for a routine evaluation for thyroid 
autoimmunity (307,420,489). However, when 
autoimmune thyroid disease is present, there is some 
evidence that assessing the combination of TPOAb 
and TgAb has greater diagnostic utility than the 
TPOAb measurement alone (Figure 9) 
(307,489,490,518). In pregnant women, both TPOAb 

and TgAb-positivity have been shown to be risk factors 
for preterm birth (490). 
 
The role of TgAb for monitoring patients with DTC is 
two-fold: 1) to authenticate that a Tg measurement is 
not compromised by TgAb interference, and 2) as an 
independent surrogate tumor-marker (519,520). 
Immunoassay methods detect TgAb in approximately 
25 percent of patients presenting with DTC, double the 
TgAb prevalence of the general population 
(45,254,521,522). In patients with thyroid nodules the 
presence of TgAb is a risk factor for lymph node 
metastases (520,523,524) and may be a useful 
marker for papillary thyroid cancer in cases of 
indeterminate cytology (523,525,526). The prevalence 
of TgAb is typically higher in patients with papillary 
versus follicular tumors (22,510,519,527-529). After 
TgAb-positive patients are rendered disease-free by 
surgery, TgAb concentrations typically progressively 
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decline during the first few post-operative years and 
typically become undetectable after a median of three 
years of follow-up (22,530,531). In contrast, a rise in, 
or de novo appearance of, TgAb is often the first 
indication of tumor recurrence (14,22,531,532). In 
patients with persistent disease, serially determined 
TgAb concentrations may serve as an independent 
surrogate tumor marker for changes in tumor mass 
(Figure 11) (14,17,22,520,530,531,533-536). 
However, the use of the TgAb trend as a surrogate 
tumor marker necessitates that TgAb be measured by 
the same method in preferably the same laboratory, 
because of the large differences in the sensitivities and 
cut off values for “positivity” between different methods 
(Figure 10) (9,45,511,512,514,519,521).  
 
THYROGLOBULIN (Tg)  
 
Thyroglobulin plays a central role in a variety of 
pathophysiologic thyroid conditions, including acting 
as an autoantigen for thyroid autoimmunity 
(421,509,537). Serum Tg levels can serve as a marker 
for iodine status of a population (538-540) and genetic 
defects in Tg biosynthesis causing 
dyshormonogenesis can result in congenital 
hypothyroidism (10,541,542). Because Tg has a 
thyroid-tissue specific origin, a serum Tg 
measurement can be used to investigate the etiology 
of congenital hypothyroidism (athyreosis versus 
dyshormonogenesis) (543,544). Likewise, a 
paradoxically low serum Tg can be used to distinguish 
factitious hyperthyroidism from the high Tg expected 
with endogenous hyperthyroidism (14,545-547). 
However, the primary clinical use of Tg measurement 
is as a post-operative tumor-marker test used to 
monitor patients with follicular-derived (differentiated) 
thyroid cancer (DTC) (14,17,57,271,274,548-550).  
 
Most Tg testing is currently by rapid, automated 
immunometric assays (IMA), most of which now have 
second generation functional sensitivity (FS≤ 0.1 µg/L) 
- a sensitivity level that obviates the need for 
recombinant human TSH (rhTSH) stimulation 
(57,274,551-554). TgAb interference, causes falsely 

low/undetectable serum Tg IMA tests and this is the 
major limitation of using IMA methodology since this 
direction of interference can mask disease 
(14,17,23,512,521,555,556). Currently, most 
laboratories first establish the TgAb status of the 
specimen (negative or positive) and restrict Tg-IMA 
testing to TgAb-negative sera, while reflexing TgAb-
positive specimens to other methodologies believed 
less prone to TgAb interference from TgAb - RIA 
(14,274,512,521) or LC-MS/MS 
(14,24,43,555,557,558). 
 
Technical Limitations of Tg Methods 
 
Thyroglobulin measurement remains technically 
challenging. Five methodologic problems impair the 
clinical utility of this test: (a) suboptimal functional 
sensitivity; (b) between-method biases; (c) "hook" 
problems (some IMA methods) and interferences 
caused by (e) Heterophile antibodies (HAb) and/or (f) 
Tg autoantibodies (TgAb). 
 
Tg ASSAY SENSITIVITY   
 
As with TSH, assay functional sensitivity (FS) 
represents the lowest analyte concentration that can 
be measured in human serum with 20 percent CV, 
calculated from runs made over a clinically relevant 
timespan (6 -12 months for Tg) and using at least two 
different lots of reagents (10). These stipulations are 
necessary because assay precision erodes over time, 
especially during the long clinical interval (6-12 month) 
typically used when monitoring Tg as a tumor marker 
for DTC, during which time assay reagents and 
conditions can change (9,71,559). The use of FS as 
the assay sensitivity limit is more relevant than either 
a limit of detection (LOD) or limit of quantitation (LOQ) 
calculation - parameters that do not stipulate using a 
clinically relevant time span for assessing precision 
(10,560). The FS protocol (10) also stipulates that 
precision be determined in human sera rather than a 
commercial QC preparation, because instruments and 
methods are matrix-sensitive (72,560). Tg IMA 
methods should have precision determined in TgAb-
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negative human sera (560) and TgAb-positive human 
serum pools should be used to determine the 
precision of Tg methodologies used to measure TgAb-
positive specimens - most commonly RIA or LC-
MS/MS. 

 
In accord with TSH a generational approach to Tg 
assay nomenclature has been adopted (1,17). Early 
Tg RIAs (5) had FS approximating 1 μg/L and were 
designated "first generation" assays. Currently, some 
RIAs, IMAs and LC-MS/MS methods still only have 
first generation functional sensitivity (FS = 0.5-1.0 
µg/L) (17,271,274,512,561,562). However, in recent 
years 2nd generation assays (FS 0.05-0.10 µg/L) have 
become the standard of care 
(57,271,274,549,550,561,563). These second-
generation tests obviate the need for recombinant 
human TSH (rhTSH) stimulation, because basal Tg 
correlates with rhTSH-stimulated Tg (17,57,561). 
However, the use of a second-generation assay does 
not eliminate the need for periodic ultrasound 
examinations, because many histologically confirmed 
lymph nodes metastases may not secrete enough Tg 
to be detected (14,563,564).  
 
SERUM Tg REFERENCE RANGES  
 
The adult serum Tg reference range approximates 2-
40 µg/L (10,565). Newborn infants have a higher 
serum Tg that falls to the adult range after two years 
of age (566). However, most Tg testing is made 
following surgery (thyroidectomy or lobectomy) for 
DTC, the Tg reference range is only relevant in the 
preoperative period (567-570). Different Tg methods 
may report two-fold differences in numeric values for 
the same serum specimen (14,274,571). This 
between-method variability reflects differences in 
assay standardization as well as the assay specificity 
for detecting different Tg isoforms in the serum 
(512,572-576). When evaluating a thyroidectomized 
patient, the assay reference range should be adjusted 
for thyroid mass (thyroidectomy versus lobectomy) as 
well as the TSH status of the patient (10,570). 
 

BETWEEN METHOD Tg BIASES  
 
Thyroglobulin in frozen sera is remarkably stable. The 
between-run precision for repetitive serum Tg 
measurements made over 6-12 months (the typical 
DTC monitoring interval), approximates 10 percent. In 
contrast, between-method variability can exceed 30 
percent (14,274,516,571) despite CRM-457 
standardization (584,585). In fact, in some cases 
different methods can report more than a two-fold 
difference in Tg for the same serum specimen 
(14,274,571). This between-method variability 
significantly exceeds the biologic variability of Tg in 
normal euthyroid subjects (~16 %) (559,577).  This 
between-method variability reflects matrix differences 
between methods as well as specificity differences for 
detecting different Tg isoforms in the serum 
(45,512,572-574,576).  
 
Some Tg should be detected in all TgAb-negative 
normal euthyroid subjects when using a second-
generation IMA method standardized against the 
International Reference Preparation CRM-457. 
Although the intra-individual serum Tg variability is 
relatively narrow (CV ~15 %) (577), the Tg population 
reference range is quite broad (2-40 µg/L) 
(512,565,575,578). It follows that 1 gram of normal 
thyroid tissue gives rise to ~1.0 µg/L Tg in the 
circulation, unless TSH is elevated (10,579). Following 
a lobectomy, euthyroid patients should be evaluated 
using a mass-adjusted reference range (1.5 - 20 µg/L). 
The range should be lowered a further 50 percent 
(0.75 - 10 µg/L) during TSH-suppression (10,570). 
After thyroidectomy, the typical 1-to-2-gram thyroid 
remnant (580) would be expected to produce a serum 
Tg below 2 µg/L (at low-normal TSH) (581,582). By 
this same reasoning, truly athyreotic patients would be 
expected to have no Tg detected irrespective of their 
TSH status (10). However, a rising Tg trend after 
lobectomy in the absence of recurrent disease is not 
unexpected due to a compensatory increase in normal 
remnant tissue (583). 
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Since TgAb interferes with different methods to 
differing extents (14,45,586), a false negative TgAb 
test could also lead to significant between-method 
differences with the potential to disrupt serial Tg 
monitoring and negatively impact clinical management 
(516). Between method variability is the reason 

current guidelines stress the necessity of using the 
same Tg method (and preferably the same laboratory) 
for monitoring Tg trends and the need to re-baseline 
the Tg level if a change in method becomes necessary 
(57,587). 

 

 
Figure 11. Between-Method Serum Tg Variability in DTC Patients +/- TgAb. Serum Tg measured by 
different methodologies in patients with distant metastatic DTC who were either TgAb-negative (panel 
A) or TgAb-positive (panel B). Three Tg methodologies were compared: IMA, LC-MS/MS (MS-M = Mayo; 
MS-Q = Quest), and RIA. Tg measurements below the assay FS limit are indicated in the shaded areas 
and expressed as a percentage relative to the total number of tests performed with that method. 
Patients who died of DTC-related complications are shown by solid symbols. From reference 14. 
 
HIGH-DOSE HOOK EFFECT  
 
Tumor marker tests employing IMA methodology can 
be prone to so-called "high-dose hook effects", 
whereby very high antigen concentrations can 
overwhelm the binding capacity of the monoclonal 
antibody reagents leading to a falsely normal/low 

value (9,588-591). Manufacturers have largely 
overcome hook problems by adopting a two-step 
procedure, whereby a wash step is used to remove 
unbound antigen after the first incubation of specimen 
with the capture monoclonal antibody before 
introducing the labeled monoclonal during which the 
signal binds the captured antigen during a second 
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incubation (580). When using IMA methodology, it is 
the laboratory’s responsibility to determine whether a 
hook effect is likely to generate falsely normal or low 
values.  
 
There are two approaches for detecting and 
overcoming hook effects with Tg IMA methods when 
an unexpectedly low serum Tg value is encountered 
for a patient with known metastatic disease: 1) 
Measure the Tg in the specimen at two dilutions. For 
example, a hook effect is likely present when the value 
of the test serum measured at a 1/5 or 1/10 dilution is 
higher than that obtained with the undiluted specimen. 
2) Assess the recovery of added Tg antigen. If a hook 
effect is present, the Tg result will be inappropriately 
low. 
 
INTERFERENCES WITH Tg MEASUREMENT     
 
Heterophile Antibody (HAb) Interferences  
 
HAb interferes with Tg IMAs, but not RIA or Tg-LC-
MS/MS methodologies (43, 214, 221, 223, 228, 592-
595). HAb interferences are thought to reflect the 
binding of HAb to the monoclonal antibody IMA 
reagents (murine origin).  RIA methods are not prone 
to HAb interference because their polyclonal antibody 
reagents (rabbit origin) do not bind human IgG. In most 
cases HAb interferences are characterized by a false-
positive Tg-IMA result (223,228,592), although falsely 
low Tg IMA results have also been reported (214,596). 
Recent reports find that Tg LC-MS/MS methodology 
appears free from HAb interferences (43,595). A 
presumptive test for HAb interference is a lowering of 
the analyte value in the presence of a blocking agent 
(43,201,597). The laboratory cannot proactively test 
for HAb because specimens are typically sent to the 
laboratory without clinical information. Physicians 
should request the laboratory test for HAb interference 
when an apparently disease-free patient has an 
unexpectedly high Tg result.  

 
 
 

Tg Autoantibody (TgAb) Interference  
 
TgAb interference with Tg measurement remains the 
major limitation for using Tg as a DTC tumor marker. 
TgAb has the potential to interfere with Tg measured 
by each of the current methodologies: IMA, RIA and 
LC-MS/MS. The prevalence of TgAb in DTC patients 
approximates 25 percent - twice that of the general 
population (9,254,522). There appears to be no 
threshold TgAb concentration that precludes TgAb 
interference (45,57,386,510,512,521). TgAb is 
thought to interfere by both in vitro (epitope masking) 
(45,512,521,598) and/or in vivo mechanisms such as 
enhanced TgAb-mediated Tg clearance (599-603). 
High TgAb concentrations do not necessarily interfere, 
whereas low TgAb may profoundly interfere 
(9,22,45,521,555,598,604,605). Unfortunately, the 
recovery approach appears to be unreliable for 
detecting TgAb interference (512,521,598). 
 
TgAb Interference - In-Vivo Mechanisms. Studies over 
past decades have suggested that the presence of 
TgAb enhances Tg metabolic clearance. In 1967 
Weigle showed enhanced clearance of endogenously 
I25-labeled Tg in rabbits, after inducing TgAb by 
immunizing the animals with an immunogenic Tg 
preparation (599,603). In humans, Tg and TgAb acute 
responses to sub-total thyroidectomy have also 
suggested that TgAb may increase Tg metabolic 
clearance (603,606). Changes (a rise or fall) in TgAb 
versus Tg-RIA concentrations have typically been 
concordant and appropriate for clinical status, 
whereas the direction of change in Tg-IMA is typically 
discordant with Tg-RIA and clinical status 
(45,274,521,556). In general, the change in TgAb 
concentrations tends to be steeper than for Tg-RIA 
(521), as would be consistent with TgAb-mediated Tg 
clearance, perhaps because some TgAbs act as 
"sweeper" antibodies that facilitate clearance of 
antigen (602,603,607).  

 
TgAb Interference - In-Vitro Mechanisms. TgAb 
interferes with Tg measurement in a qualitative, 
quantitative, and method-dependent manner 
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(22,45,521,608,609). The potential for in vitro 
interference is multifactorial and depends not only on 
the assay methodology (IMA, RIA or LC-MS/MS) (39), 
but also the concentration and epitope specificity of 
the TgAb secreted by the patient (22,512,610). RIA 
methodology appears to quantify total Tg (free Tg + 
TgAb-bound Tg) whereas IMA primarily detects only 
the free Tg moiety, i.e. Tg molecules with epitopes not 
masked by TgAb complexing. Steric masking of Tg 
epitopes is the reason why TgAb interference with IMA 
methodology is always unidirectional 
(underestimation) and why a low Tg-IMA/Tg-RIA ratio 
has been used to indicate TgAb interference 
(45,521,555,611,612). The recently developed Tg-LC-
MS/MS methodology uses trypsin digestion of Tg-
TgAb complexes to liberate a proteotypic Tg peptide. 
This conceptually attractive approach was primarily 
developed to overcome TgAb interference with IMA 
methods thereby eliminating falsely low/undetectable 
Tg-IMA results that can mask disease. However, 
recent studies report that a high percentage (>40 %) 
of TgAb-positive DTC patients with structural disease 
have paradoxically undetectable Tg-LC-MS/MS tests 
(14,24,43,555,557,558). More studies are needed to 
determine why LC-MS/MS fails to detect Tg in TgAb-
positive DTC patients with disease. Possibilities to 
investigate include tumor Tg polymorphisms that 
prevent the production of the Tg-specific tryptic 
peptide (38), suboptimal trypsinization of Tg-TgAb 
complexes, or Tg levels that are truly below detection 
because of increased clearance of Tg-TgAb 
complexes by the hepatic asialoglycoprotein receptor 
(599-602).  

 
TgAb interference with Tg-RIA Methodology. 
Radioimmunoassay (RIA) was the earliest 
methodology used to measure Tg (5). Thyroglobulin 
antigen (from serum or added 125I-Tg tracer) competes 
for a low concentration of polyclonal (PAb) (usually 
rabbit) Tg antibody. After incubation, the Tg-PAb 
complex is precipitated by an anti-rabbit second 
antibody and the serum Tg concentration is quantified 
from the 125I-Tg in the precipitate. The first Tg-RIAs 
developed in the 1970s were insensitive (~2 µg/L) 

(5,613). Over subsequent decades some Tg-RIAs 
have achieved first generation functional sensitivity 
(FS = 0.5 µg/L) by using a long (48-hour) pre-
incubation before adding a high specific activity 125I-Tg 
tracer (614,615). The use of a high affinity polyclonal 
antibody (616) coupled with a species-specific second 
antibody appears to minimize TgAb interference. 
Resistance to TgAb interference is evidenced by 
appropriately normal Tg-RIA values for TgAb-positive 
euthyroid controls (512) and detectable Tg-RIA in 
TgAb-positive DTC patients with structural disease 
(14,555). The clinical performance of this Tg-RIA 
contrasts with IMA methods that fail to detect Tg in 
some TgAb-positive normal euthyroid subjects (512), 
some TgAb-positive Graves' hyperthyroid patients 
(14,617), or TgAb-positive patients with structural 
disease (14,512,618). It should be noted that the 
propensity of TgAb to interfere with Tg-RIA 
determinations and cause under- or overestimation 
(546,608) depends on the patient-specific interactions 
between Tg and TgAb in the specimen and the RIA 
reagents (609).  
 
TgAb interference with Tg-IMA Methodology. Most Tg 
testing is currently made by automated IMAs, whereby 
antigen is captured by two monoclonal antibodies 
(MAb) that target different epitopes on the Tg protein 
(619). TgAb interferes with IMA methodology by steric 
inhibition – i.e. by blocking the epitope(s) necessary 
for Tg to bind the MAb(s), so that the MAb-Tg-MAb 
reaction cannot take place and Tg is reported as 
falsely low or undetectable. This mechanism of 
epitope masking is supported by timed recovery 
studies. Clinically, TgAb interference is evident from 
the paradoxically low/undetectable Tg-IMA seen for 
TgAb-positive normal controls (512), patients with 
Graves' hyperthyroidism (14,617), and DTC patients 
with active disease (Figures 10 and 11) (14,43,555). 
High Tg concentrations can overwhelm the TgAb 
binding capacity rendering Tg-IMA concentrations 
detectable and lessening the degree of interference 
(45,555). It follows that as Tg concentrations rise, 
more Tg is free, the influence of TgAb lessens and the 
discordance between Tg-IMA and Tg-RIA lessens 
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(Figure 11B) (45,555). Although some IMA methods 
have claimed to overcome TgAb interference by using 
monoclonal antibodies directed against specific 
epitopes not involved in thyroid autoimmunity (580), 
this approach has not overcome TgAb interferences in 
clinical practice, possibly because less restricted TgAb 
epitopes are associated with thyroid carcinomas than 
with autoimmune thyroid conditions (510,517,620). 
 
TgAb Interference with Tg LC-MS/MS. Liquid 
Chromatography, Tandem Mass Spectrometry (LC-
MS/MS) is the newest methodology used to measure 
Tg. This methodology measures Tg by trypsinizing the 
Tg-TgAb complexes in the serum to generate a Tg-
specific peptide(s) that can be measured by LC-
MS/MS (37-39,41,580,621). Most Tg LC-MS/MS 
methods only have first generation functional 
sensitivity (FS ~ 0.5 µg/L) (24,39,40) although more 
sensitive methods are being developed (621). Tg-LC-
MS/MS methodology has been shown free from HAb 
interferences (43,595) and has been promoted as 
being free from TgAb interference (24,39,40). 
However, these claims are not supported by clinical 
studies in which paradoxically undetectable LC-
MS/MS Tg tests are seen for many TgAb-positive DTC 
patients with structural disease 
(14,24,43,555,557,558). The higher the TgAb, the 
more likely that no Tg would be detected by LC-
MS/MS in patients with disease (558).  It currently 
appears that when TgAb is present LC-MS/MS 
methodology offers no diagnostic advantage over 
IMA. 
 
Clinical Utility of TGAb Used as a Surrogate DTC 
Tumor Marker    
 
The serum TgAb trend has become recognized as a 
postoperative surrogate DTC tumor-marker. A 
declining TgAb trend is a good prognostic sign, 
whereas a stable or rising TgAb may indicate 
persistent/recurrent disease 
(23,57,509,519,521,530,531,533,536,612,622-624). 
The TgAb half-life in blood approximates 10 weeks 
(522). Following successful surgery (± radioiodine 

treatment), TgAb typically falls more than 50 percent 
in first post-operative year and often decreases to <10 
percent after 3-4 years eventually becoming 
undetectable with reduced stimulation of the immune 
system by lower Tg antigen levels 
(45,57,274,522,524,530,531,625). The time needed 
for a TgAb-positive patient to become TgAb-negative 
in response to successful treatment is inversely 
related the initial TgAb concentration, perhaps 
representing the long-lived memory of plasma cells 
(274,626). Patients exhibiting a TgAb decline of more 
than 50 percent by the end of the first post-operative 
year have been shown to have a low recurrence risk 
(515,531,534,612,627). However, a significant 
percentage (~5 %) of TgAb-negative patients may 
develop transient de novo TgAb-positivity in the early 
post-operative period, presumably in response to Tg 
antigen released by surgical trauma (532,628,629). A 
rise in TgAb can also be seen soon after fine needle 
aspiration (FNA) biopsy (630-632) or more chronically 
(months) in response to radiolytic damage following 
radioiodine treatment (22,633,634). However, the 5 
percent of DTC patients that display a sustained de 
novo TgAb appearance are likely to have recurrent 
disease (Figure 11B) (532,635). These TgAb-negative 
to TgAb-positive conversions are the reason why 
guidelines mandate that TgAb be measured with every 
Tg test (23,57,635). Patients with persistent disease 
may exhibit only a marginal TgAb decline or have 
stable, rising or a de novo TgAb appearance 
(511,521,531-533,612,622). If serum Tg remains 
detectable after TgAb becomes negative (~3 % of 
cases), the risk for disease remains (Figure 11A). 
Since TgAb tests differ in sensitivity and specificity 
(Figure 10) (23,45,513,514,636) it is essential to 
measure the serum TgAb trend by the same method, 
preferably in the same laboratory 
(23,45,57,482,511,512,514,535,636).  
 
Serum Tg Monitoring of Patients with DTC 
 
Over the past decade, the incidence of DTC has 
substantially risen with the detection of small thyroid 
nodules and micropapillary cancers by ultrasound and 
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other anatomic imaging modalities (57,637-640). 
Although most DTC patients are rendered disease-
free by their initial surgery, approximately 15 percent 
of patients experience recurrences and approximately 
5 percent die from disease-related complications 
(580,641-644). A risk-stratified approach to diagnosis 
and treatment is now recommended by current 
guidelines (57). 
 
In most cases, persistent/recurrent disease is 
detected within the first five post-operative years, 
although recurrences can occur decades after initial 
surgery necessitating life-long monitoring for 
recurrence (642,643). Since most patients have a low 
pre-test probability for disease, protocols for follow-up 
need a high negative predictive value (NPV) to 
eliminate unnecessary testing, as well as a high 
positive predictive value (PPV) for identifying patients 
with persistent/recurrent disease. Because Tg testing 
is generally recognized as being more sensitive for 
detecting disease than diagnostic 131I whole body 

scanning (645), biochemical testing (serum Tg. + 
TgAb) is used in conjunction with periodic ultrasound 
(57,645). The persistent technical limitations of Tg and 
TgAb measurements necessitate close physician-
laboratory cooperation.    
 
The majority (~75 %) of DTC patients have no Tg 
antibodies detected (521). In the absence of TgAb, 
four factors influence the interpretation of serum Tg 
concentrations: (1) the mass of thyroid tissue present 
(normal tissue + tumor); (2) The intrinsic ability of the 
tumor to secrete Tg; (3) the presence of any 
inflammation of, or injury to, thyroid tissue following 
fine needle aspiration biopsy, surgery, RAI therapy, or 
thyroiditis; and (4) the degree of TSH receptor 
stimulation by TSH, hCG, or TSAb (10). The presence 
of TgAb necessitates a shift in focus from monitoring 
serum Tg as the primary tumor-marker, to monitoring 
the serum TgAb trend as a surrogate tumor-marker 
(519). 
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Figure 12. TgAb Effects on Serial Tg IMA and Tg RIA Measurements. Serial TgAb, Tg-RIA and Tg-IMA 
measurements made in two DTC patients who underwent a change in TgAb status (panel A, positive to 
negative) or (panel B negative to positive) before death from structural DTC. These cases illustrate why 
a Tg measurement cannot be interpreted without knowing the TgAb status of the patient (57). The de 
novo appearance of TgAb (Patient B) either reflects a change in tumor-derived Tg heterogeneity 
(secretion of a more immunogenic Tg molecule), or recognition of tumor-derived Tg by the immune 
system. In contrast, TgAb can become undetectable despite the exacerbation of disease (Patient A). 
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Figure 13. TgAb Trends in Response to Treatment. Typical trends in TgAb following thyroidectomy in 
patients rendered disease-free by thyroidectomy (pattern A) versus patents with persistent/recurrent 
disease (pattern B). TgAb levels may rise or become detectable de novo in response to an increase in 
Tg antigen following surgical injury, lymph node recurrence(s), lymph node resection(s), FNA biopsy of 
metastatic lymph nodes or radioiodine therapy.   
 
PRE-OPERATIVE Tg MEASUREMENT  
 
An elevated Tg is merely a non-specific indicator of 
thyroid pathology and cannot be used to diagnose 
malignancy (568). However, studies have reported 
that a Tg elevation detected decades before a DTC 
diagnosis, is a risk factor for thyroid malignancy (567-
569,646-648). This suggests that most thyroid cancers 
secrete Tg protein to an equal or greater degree than 
normal thyroid tissue, underscoring the importance of 
using Tg as a DTC tumor marker. Approximately 50 
percent of DTC patients have an elevated 
preoperative serum Tg the highest being seen in 
follicular > oncocytic (formerly “Hurthle cell cancer”) > 
papillary thyroid carcinoma (567-569). Up to one-third 
of tumors may be poor Tg secretors relative to tumor 
mass, especially BRAF-positive tumors that are 
associated with reduced expression of Tg protein 
(649). Although current guidelines do not recommend 
routine pre-operative serum Tg measurement 
(57,549,650), some believe that a preoperative serum 
Tg (drawn before or more than two weeks after FNA) 
can provide information regarding the tumor’s intrinsic 
ability to secrete Tg and thus aid with the interpretation 
of postoperative Tg changes (567-569,648,650). For 

example, knowing that a tumor is an inefficient Tg 
secretor could prompt a physician to focus more on 
anatomic imaging and less on postoperative Tg 
monitoring (649,651,652).  
 
POST-OPERATIVE Tg MEASUREMENT  
 
Because TSH exerts such a strong influence on serum 
Tg concentrations it is important to promptly initiate 
thyroid hormone therapy after surgery to establish a 
stable post-operative Tg baseline to begin biochemical 
monitoring. When surgery is followed by RAI treatment 
it may take time (months) to establish a stable Tg 
baseline because the Tg rises in response to TSH-
stimulation and may be augmented by Tg release from 
radiolytic damage of the thyroid remnant. Short-term 
rhTSH stimulation is expected to produce an 
approximate 10-fold serum Tg elevation (561), 
whereas chronic endogenous TSH stimulation 
following thyroid hormone withdrawal results in an 
approximate 20-fold serum Tg rise (653). Serum Tg 
measurements performed as early as 6 to 8 weeks 
after thyroidectomy have been shown to have 
prognostic value - the higher the serum Tg the greater 
the risk of persistent/recurrent disease (526, 654, 
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655). Since the half-life of Tg in the circulation 
approximates 3 days (656), the acute Tg release 
resulting from the surgical trauma and healing of 
surgical margins should largely resolve within the first 
six months, provided that post-operative thyroid 
hormone therapy prevents TSH from rising. Patients 
who receive RAI for remnant ablation may exhibit a 
slow Tg decline over subsequent years, presumably 
reflecting the long-term radiolytic destruction of 
remnant tissue (657,658).  
 
The Tg secretion expected from the ~1 gram of normal 
remnant tissue left after thyroidectomy (580) is 
expected to produce a serum Tg concentration ~1.0 
µg/L, provided TSH is not elevated (10). A recent study 
found that in the first six months following 
thyroidectomy (without RAI treatment) disease-free 
PTC patients had a serum Tg nadir < 0.5 µg/L when 
TSH was maintained below 0.5 mIU/L (274,581,582). 
This is consistent with earlier studies using receiver 
operator curve (ROC) analysis that found a 6-week 
serum Tg of <1.0 µg/L, when measured during TSH 
suppression, had a 98 percent negative predictive 
value (NPV) for disease (although positive predictive 
value (PPV) was only 43 percent) (654).  
 
LONG-TERM Tg MONITORING (WITHOUT TSH 
STIMULATION)  
 
The higher the post-operative serum Tg measured 
without TSH stimulation, the greater the risk for 
persistent/recurrent disease (654). If a stable TSH is 
maintained (≤0.5 mIU/L) (274,582) changes in serum 
Tg will reflect changes in tumor mass. Under these 
conditions a rising Tg would be suspicious for tumor 
recurrence whereas declining Tg levels suggests the 
absence or regression of disease. When using a 
sensitive Tg-IMA method, the trend in serum Tg 
(measured without TSH stimulation) is a more reliable 
indicator of disease status than using a fixed Tg cutoff 
value for disease (57,274,548,562,587,654,659-661). 
It is the degree of Tg elevation, not merely a 
"detectable" Tg that is the risk factor for disease, since 
Tg “detectability” varies according to the method used 

(563,575,578,582). As with other tumor-markers, such 
as calcitonin, the Tg doubling time (measured without 
TSH stimulation) is a useful prognostic marker that 
has an inverse relationship to mortality 
(252,581,660,662-666).  However, between-method 
variability necessitates that the serum Tg trend be 
established using the same method, and preferably 
the same laboratory (Figure 11) (57,587). One 
approach used to mitigate between-run imprecision 
and improve the reliability of assessing the Tg trend 
has been to measure the current specimen 
concurrently (in the same run) with the patient’s 
previous archived specimen, thereby eliminating run-
to-run variability and increasing the confidence to 
detect small Tg changes (9,10,587).  
 
SERUM Tg RESPONSES TO TSH STIMULATION  
 
The degree of tumor differentiation determines the 
presence and density of TSH receptors that in large 
part determines the magnitude of the serum Tg 
response to TSH stimulation (667,668). The serum Tg 
rise in response to endogenous TSH (thyroid hormone 
withdrawal) is twice that seen with short-term rhTSH 
stimulation (~20-fold versus ~10-fold, respectively) 
(386,653,669). Recombinant human TSH (rhTSH) 
administration was adopted as a standardized 
approach for stimulating serum Tg into the 
measurable range of the insensitive first-generation 
tests (386,549,561,653,669,670). A rhTSH-stimulated 
serum Tg cut-off of ≥2.0 µg/L, measured 72 hours after 
the second dose of rhTSH, was found to be a risk 
factor for disease (653,669). A "positive" rhTSH 
response had a higher NPV (>95 percent) than the 
basal Tg measured by an insensitive first-generation 
test, (553,564,654,671). However, a negative rhTSH 
test did not guarantee the absence of tumor (653,671). 
Furthermore, the reliability of adopting a fixed numeric 
rhTSH-Tg cut-off value for a positive response is 
problematic, given that different methods can report 
different numeric Tg values for the same specimen 
(Figure 11) (14, 512, 575). Other variables include 
differences in the dose of rhTSH delivered relative to 
absorption from the injection site as well as the surface 
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area and age of the patient (672,673). One critical 
variable is the TSH sensitivity of tumor tissues, with 
poorly differentiated tumors having blunted TSH-
mediated Tg responses (649,651,652,668). When 
using a sensitive second-generation Tg-IMA, an 
undetectable basal Tg (<0.10 µg/L) had a comparable 
NPV to rhTSH stimulation and was rarely associated 
with a "positive" rhTSH-stimulated response (>2.0 
µg/L) (561, 563, 575, 674, 675). This would be 
expected given the strong relationship between basal 
Tg and rhTSH-stimulated Tg values 
(553,561,578,676). Once sensitive Tg-IMA methods 
had become the standard of care, it became apparent 
that rhTSH-stimulation provided no additional 
information over and above a basal Tg measured by 
second generation assay (57, 553, 561, 563, 575, 578, 
674-676).  
 
One potential use of rhTSH-stimulated Tg would be to 
test for HAb interferences. Specifically, when a Tg-IMA 
value appears clinically inappropriate (usually high), 
an absent rhTSH-stimulated Tg response would 
suggest interference that could be confirmed by a 
blocker tube test (561). An alternative reason for an 
absent/blunted rhTSH-stimulated response would be 
the presence of TgAb (578), with TgAb-enhanced 
clearance of Tg-TgAb complexes (599,602,606).  
 
Tg MEASUREMENT IN FNA NEEDLE WASHOUTS 
(FNA-Tg) 
 
Because the Tg protein is tissue-specific, the detection 
of Tg in non-thyroidal tissues or fluids (such as pleural 
fluid) indicates the presence of metastatic thyroid 
cancer (677). Struma ovarii is the only (rare) condition 
in which the Tg in the circulation does not originate 
from the thyroid (678,679). Cystic thyroid nodules are 
commonly encountered in clinical practice, the large 
majority arising from follicular epithelium and the 
minority from parathyroid epithelium. A high 
concentration of Tg or parathyroid hormone (PTH) 
measured in the cyst fluid provides a reliable indicator 
of the tissue origin of the cyst (thyroid versus 
parathyroid, respectively), information critical for 

surgical decision-making (677,680). Lymph node 
metastases are found in up to 50 percent of patients 
with papillary cancers but only 20 percent of follicular 
cancers (681,682). High-resolution ultrasound has 
now become an important component of postoperative 
surveillance for recurrence (57,386,669). Although 
ultrasound characteristics are helpful for distinguishing 
benign reactive lymph nodes from those suspicious for 
malignancy, the finding of Tg in the needle washout of 
a lymph node biopsy has higher diagnostic accuracy 
than the ultrasound appearance (632,683-691). An 
FNA needle washout is now widely accepted as a 
useful adjunctive test that improves the diagnostic 
sensitivity of a cytological evaluation of a suspicious 
lymph node or thyroid mass, even in the presence of 
TgAb (683-687). The current protocol for obtaining 
FNA-Tg samples recommends rinsing the biopsy 
needle in 1.0 mL of saline and sending this specimen 
to the laboratory for Tg analysis. In thyroidectomized 
patients a common cutoff value for a "positive" FNA-
Tg result is 1.0 µg/L, however this cutoff can vary by 
method and institution (685,686,690-692). For 
investigations of suspicious lymph nodes in patients 
with an intact thyroid, a higher FNA-Tg cutoff value 
(~35-40 µg/L) is recommended (683). There is still 
controversy whether TgAb interferes with FNA-Tg 
analyses (528,684). It should be noted that when the 
serum TgAb concentration is high there can be TgAb 
contamination of the FNA wash fluid. Although a ~40-
fold dilution of TgAb in the wash fluid would be 
expected, this could still be insufficient to lower TgAb 
below detection and eliminate the possibility of TgAb 
interference with the FNA-Tg IMA test producing a 
falsely low result. The FNA needle wash-out 
procedure can also be used to detect calcitonin in neck 
masses of patients with primary and metastatic 
medullary thyroid cancer (680,693,694). In addition, 
FNA-PTH determinations may be useful for identifying 
lymph nodes arising from parathyroid tissue (680). 
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THYROID SPECIFIC mRNAs USED AS THYROID 
TUMOR MARKERS  
 
Reverse transcription-polymerase chain reaction (RT-
PCR) has been used to detect thyroid-specific mRNAs 
(Tg, TSHR, TPO and NIS) in the peripheral blood of 
patients with DTC (579,695-697). Initial studies 
suggested that circulating Tg mRNA might be 
employed as a useful tumor marker for thyroid cancer, 
especially in TgAb-positive patients in whom Tg 
measurements were subject to TgAb interference 
(695,698,699). More recently, this approach has been 
applied to the detection of NIS, TPO, and TSH 
receptor (TSHR) mRNAs (699,700). Although some 
studies have suggested that thyroid specific mRNA 
measurements could be useful for cancer diagnosis 
and detecting recurrent disease, most studies have 
concluded that they offer no advantages over sensitive 
serum Tg measurements (579,699,701). Further, the 
recent report of false positive Tg mRNA results in 
patients with congenital athyreosis (702) suggests that 
Tg mRNA can arise as an assay artifact originating 
from non-thyroid tissues, or illegitimate transcription 
(703,704). Conversely, false negative Tg mRNA 

results have also been observed in patients with 
documented metastatic disease (705,706). Although 
Tg, TSHR, NIS and TPO are generally considered 
“thyroid specific” proteins, mRNAs for these antigens 
have been detected in non-thyroidal tissues such as 
lymphocytes, leukocytes, kidney, hepatocytes, brown 
fat and skin (427,707,708)). Additional sources of 
variability in mRNA analyses relate to the use of 
primers that detect splice variants, sample-handling 
techniques that introduce variability, and difficulties in 
quantifying the mRNA detected (701,705). The 
general consensus is that thyroid specific mRNA 
measurements lack the optimal specificity and 
practicality to be useful tumor markers (579,699,701). 
MicroRNA (miRNA) has recently been proposed as an 
alternate candidate biomarker when Tg measurement 
is unreliable (709). The growing number of reports of 
functional TSH receptors and Tg mRNA present in 
non-thyroidal tissues further suggests that these 
mRNA measurements will have limited clinical utility in 
the management of DTC in the future (427,707,708). 
Further studies in thyroid cancer genomics may yield 
additional DTC tumor markers with optimal sensitivity 
and specificity to monitor DTC (710). 
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