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ABSTRACT 
In this chapter we discuss a representative variety of 
methods currently available for estimating insulin 
sensitivity/resistance. These range from complex, time 
consuming, labor-intensive, invasive procedures to 
simple tests involving a single fasting blood sample. It 
is important to understand the physiological concepts 
informing each method so that relative merits and 
limitations of particular approaches are appropriately 
matched with proposed applications and data is 
interpreted correctly. The glucose clamp method is the 
reference standard for direct measurement of insulin 
sensitivity. Regarding simple surrogates, QUICKI and 
Log (HOMA) are among the best and most extensively 
validated. Dynamic tests are useful if information 
about both insulin secretion and insulin action are 
needed. 

 

INTRODUCTION 
Insulin resistance plays a major pathophysiological 
role in type 2 diabetes and is tightly associated with 
major public health problems including obesity, 
hypertension, coronary artery disease, dyslipidemias, 

and a cluster of metabolic and cardiovascular 
abnormalities that define the metabolic syndrome (1, 
2, 3). 

 

A global epidemic of obesity is driving the increased 
incidence and prevalence of type 2 diabetes and its 
cardiovascular complications (4). Insulin resistance is 
commonly associated with visceral adiposity, glucose 
intolerance, hypertension, dyslipidemia, 
hypercoagulable state, endothelial dysfunction, 
and/or elevated markers of inflammation. Therefore, 
the presence of these clinical abnormalities is usually 
characteristic of an insulin resistant state. In addition 
to clinical manifestations of the “Insulin Resistance 
Syndrome,” insulin resistance predisposes to 
accelerated cardiovascular disease (CVD). Therefore, 
it is of great importance to develop tools for quantifying 
insulin sensitivity/resistance in humans that may be 
used to appropriately investigate the epidemiology, 
pathophysiological mechanisms, outcomes of 
therapeutic interventions, and clinical course of 
patients with insulin resistance (5). In this chapter, we 
will discuss some currently used methods for 
assessing insulin sensitivity, their applications, merits, 
and limitations. 
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INSULIN SENSITIVITY AND RESISTANCE 
Metabolic actions of insulin help to maintain glucose 
homeostasis and promote glucose utilization (6). 
Insulin increases glucose utilization in peripheral 
organs (e.g., skeletal muscle and adipose tissue) and 
suppresses hepatic glucose production (HGP) and 
adipose tissue lipolysis. In addition to these classical 
metabolic target tissues, insulin has many other 
important physiological targets. These include the 
brain, pancreatic β-cells, heart, and vascular 
endothelium that help to coordinate and couple 
metabolic and cardiovascular homeostasis under 
healthy conditions (6-9). Insulin has concentration- 
dependent saturable actions to increase whole-body 
glucose disposal. The maximal effect of insulin defines 
“insulin responsiveness” while the insulin 
concentration required for a half-maximal response 

defines “insulin sensitivity” (Fig. 1). Although, other 
actions of insulin on fat and amino-acid metabolism, 
cardiovascular, kidney, and brain function also 
exhibit a concentration-dependent response, the 
term “insulin sensitivity” typically refers to insulin’s 
metabolic actions to promote glucose disposal. 

 
The concept of insulin resistance was proposed as 
early as 1936 to describe diabetic patients requiring 
high doses of insulin (10). Insulin resistance is typically 
defined as decreased sensitivity and/or 
responsiveness to insulin- mediated glucose disposal 
and/or inhibition of HGP and adipose tissue lipolysis. 
Rigorous evaluation of altered sensitivity and 
responsiveness therefore requires a comparison of 
insulin dose-response curves. 
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Figure 1. Schematic representation of concentration-response relationships between plasma insulin 
concentrations and insulin-mediated whole-body glucose disposal. Curve a: normal insulin sensitivity 
and responsiveness. Curve b: rightward shift in insulin concentration-response curve. This represents 
decreased insulin sensitivity (increased EC50) with normal insulin responsiveness. Curve c: 
Decreased insulin sensitivity (increased EC50) and reduced insulin responsiveness. Curve d: Leftward 
shift in the insulin concentration- response curve. This represents increased insulin sensitivity 
(decreased EC50) with normal insulin responsiveness. 
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DIRECT MEASURES OF INSULIN SENSITIVITY 
 

Hyperinsulinemic Euglycemic Glucose Clamp 
 

PROCEDURE 
 

The glucose clamp technique, originally developed by 
Andres and DeFronzo is widely accepted as the 
reference standard for directly determining metabolic 
insulin sensitivity in humans (11). After an overnight 
fast, insulin is infused intravenously at a constant rate 
that may range from 5 - 120 mU/m2/min (dose per 
body surface area per minute). This constant insulin 
infusion results in a new steady-state insulin level that 
is above the fasting level (hyperinsulinemic). As a 
consequence, glucose disposal in skeletal muscle and 
adipose tissue is increased while HGP is suppressed. 
Under these conditions, a bedside glucose analyzer is 
used to frequently monitor blood glucose levels at 5 – 
10 min intervals while 20% dextrose is given 
intravenously at a variable rate in order to “clamp” 

blood glucose concentrations in the normal range 
(euglycemic). An infusion of potassium phosphate is 
also given to prevent hypokalemia resulting from 
hyperinsulinemia and increased glucose disposal. 
After several hours of constant insulin infusion, 
steady-state conditions are typically achieved for 
plasma insulin, blood glucose, and the glucose 
infusion rate (GIR). Assuming that the 
hyperinsulinemic state is sufficient to completely 
suppress hepatic glucose production, and since there 
is no net change in blood glucose concentrations 
under steady- state clamp conditions, the GIR must be 
equal to the glucose disposal rate (M) (Fig. 2). Thus, 
whole body glucose disposal at a given level of 
hyperinsulinemia can be directly determined. M is 
typically normalized to body weight or fat-free mass to 
generate an estimate of insulin sensitivity. 
Alternatively, an insulin sensitivity index derived from 
clamp data can be defined as SIClamp = M/(G x ΔI), 
where M is normalized for G (steady-state blood 
glucose concentration) and ΔI (difference between 
fasting and steady-state plasma insulin 
concentrations) (12). 
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Figure  2  Schematic representation of the “steady state” dynamics of glucose and insulin 
during an euglycemic hyperinsulinemic glucose clamp. 
 

The validity of glucose clamp measurements of insulin 
sensitivity depends on achieving steady-state 
conditions. “Steady-state” is often defined as a period 
greater than 30- min (at least 1 h after initiation of 
insulin infusion) during which the coefficient of 
variation for blood glucose, plasma insulin, and GIR 
are less than 5% (12, 13). It is possible to use stable 
isotope or radio-labeled glucose tracer under clamp 
conditions to estimate HGP so that appropriate 
corrections can be made to M in the event HGP is not 
completely suppressed (14, 15, 16,17). An alternative 
approach is to use an insulin infusion rate sufficiently 
high to completely suppress HGP according to the 
insulin sensitivity/resistance of the population to be 
studied. M is routinely obtained at only a single insulin 
infusion rate and therefore comparisons between M or 
SIClamp among different subjects is valid only if the 
same insulin infusion rate is used for all subjects. 
When glucose tracers are used during a clamp study, 
the tracer is infused at constant rate throughout the 
study. HGP estimated during the last 20 or 30 min of 

the clamp is a measure of insulin- mediated 
suppression of HGP, an estimate of hepatic insulin 
sensitivity. Similarly, lipolytic rates can be assessed at 
baseline and hyperinsulinemia during clamp by using 
isotopic tracers (e.g., palmitate). A single or multistep 
hyperinsulinemic euglycemic clamp can be used to 
measure adipose tissue insulin sensitivity. The linear 
relationship between log transformed rates of 
palmitate flux and plasma insulin concentrations 
provides an IC50 (pmol/L) for suppression of lipolysis 
(18). 

 

ADVANTAGES AND LIMITATIONS 
 

The principal advantage of the glucose clamp in 
humans is that it directly measures whole body 
glucose disposal at a given level of insulinemia under 
steady-state conditions. Conceptually, the approach is 
straightforward and there are a limited number of 
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assumptions which are clearly defined. In research 
settings where assessing insulin sensitivity/resistance 
is of primary interest and feasibility is not an issue 
(e.g., study population < 100) it is appropriate to use 
the reference standard glucose clamp technique. The 
main limitations of the clamp approach are that it is 
time-consuming, labor intensive, expensive, and 
requires an experienced operator to manage technical 
difficulties. Thus, for epidemiological studies, large 
clinical investigations, or routine clinical applications 
(e.g., following changes in insulin resistance after 
therapeutic intervention in individual patients) 
application of the glucose clamp is not feasible. 
Nevertheless, when measured in relatively large 
cohorts, the M values showed a bimodal pattern, with 
an optimal cutoff of 5 mg/min/kg-FFM using a 40 
mU/min·m2. However, IR was defined as a glucose 
disposal rate below 4.9 mg/min/kg, using a 120 
mU/min·m2 dose (80, 81). 

 

Insulin-Suppression Test (IST) 
 

PROCEDURE 
 

The insulin-suppression test, another method that 
directly measures metabolic insulin 
sensitivity/resistance, was introduced by Shen et. al. 
in 1970 and subsequently modified by Harano et. al. 
(19, 20). After an overnight fast, somatostatin (250 
μg/h) or the somatostatin analogue octreotide (25 µg 
bolus, followed by 0.5 µg/min) (21) is intravenously 
infused to suppress endogenous secretion of insulin 
and glucagon. Simultaneously, insulin (25 mU/m2/min) 
and glucose (240 mg/m2/min) are infused into the 
same antecubital vein over 3 h. From the contralateral 
arm, blood samples for glucose and insulin 
determinations are taken every 30 min for 2.5 h and 
then at 10 min intervals from 150 - 180 min of the IST. 
The constant infusions of insulin and glucose 
determine steady-state plasma insulin (SSPI) and 
glucose (SSPG) concentrations. The steady-state 
period is assumed to be from 150 - 180 min after 

initiation of the IST. SSPI concentrations are generally 
(but not always) similar among subjects. Therefore, 
the SSPG concentration will be higher in insulin 
resistant subjects and lower in insulin sensitive 
subjects. That is, SSPG values are inversely related to 
insulin sensitivity. The IST provides a direct measure 
(SSPG) of the ability of exogenous insulin to mediate 
disposal of an intravenous glucose load under steady-
state conditions where endogenous insulin secretion 
is suppressed. 

 

ADVANTAGES AND LIMITATIONS 
 

The SSPG is a highly reproducible direct measure of 
metabolic actions of insulin that is less labor-intensive 
and less technically demanding than the glucose 
clamp. Indeed, since there are no variable infusions 
with the IST, steady-state conditions are more easily 
achieved with the IST than with the glucose clamp. 
Estimates of insulin sensitivity determined by SSPG 
correlate well with reference standard glucose clamp 
estimates in normal subjects (r = 0.93) and in patients 
with type 2 diabetes mellitus (r = 0.91). (22, 23). 
Indeed, SSPG has positive predictive power for 
cardiovascular disease events and onset of type 2 
diabetes (24, 25). In research settings where 
assessing insulin sensitivity/resistance is of primary 
interest and feasibility is not an issue, it is appropriate 
to use the IST. Moreover, the IST can be used for 
larger populations that may pose difficulties for 
application of the glucose clamp (26). Many of the 
limitations of the IST are similar to those described 
above for the glucose clamp (with the exception that 
the IST is less technically demanding). Thus, it is 
impractical to apply the IST in large epidemiological 
studies or in the clinical care setting. SSPG under 
ideal conditions determines primarily skeletal muscle 
insulin sensitivity and is not designed to reflect hepatic 
insulin sensitivity. 
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INDIRECT MEASURES OF INSULIN SENSITIVITY 
 

Minimal Model Analysis of Frequently Sampled 
Intravenous Glucose Tolerance Test (FSIVGTT) 
 

PROCEDURE 
 

The minimal model, developed by Bergman, Cobelli, 
and colleagues in 1979, provides an indirect measure 
of metabolic insulin sensitivity/resistance based on 
glucose and insulin data obtained during an FSIVGTT 
(27). After an overnight fast, an intravenous bolus of 
glucose (0.3 g/kg body weight) is infused over 2 min 
starting at time 0. Currently, a modified FSIVGTT is 
used where exogenous insulin (4 mU/kg/min) is also 
infused over 5 min beginning 20 min after the 
intravenous glucose bolus (28, 29,30). Some studies 
use tolbutamide instead of insulin in the modified 
FSIVGTT to stimulate endogenous insulin secretion 
(15, 29, 31, 32, 27). Blood samples are taken for 
plasma glucose and insulin measurements at -10, -1, 
1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 22, 23, 24, 
25, 27, 30, 40, 50, 60, 70, 80, 90, 100, 120, 160, and 
180 min. These data are then subjected to minimal 
model analysis using the computer program MINMOD 
to generate an index of insulin sensitivity (SI). 

The minimal model is defined by two coupled 
differential equations with four model parameters (Fig. 
3). The first equation describes plasma glucose 
dynamics in a single compartment. The second 
equation describes insulin dynamics in a “remote 
compartment”. The structure of the minimal model 
allows MINMOD to uniquely identify model parameters 
that determine a best fit to glucose disappearance 
during the modified FSIVGTT. SI is calculated from 
two of these model parameters and is defined as 
fractional glucose disappearance per insulin 
concentration unit. In addition to SI, other minimal 
model parameters may be used to estimate a “glucose 
effectiveness” index (SG). SG is defined as the ability 
of glucose per se to promote its own disposal and 
inhibit HGP in the absence of an incremental insulin 
effect (i.e., when insulin is at basal or constant 
concentrations). 

 
Recently the minimal model has been used to assess 
free fatty acid (FFA) insulin sensitivity. Using a one 
compartment nonlinear model of FFA kinetics during 
FSIVGTT, showed that the FFA insulin sensitivity 
parameter correlated well with minimal model indices 
(33). Furthermore, this model also showed that 
glucose modulates disposal of FFAs. 

 

http://www.endotext.org/


 
 

 
www.EndoText.org 8 

 
Figure 3. Schematic equations, and parameters for the minimal model of glucose metabolism. 
Differential equations describing glucose dynamics (G(t)) in a monocompartmental “glucose space” 
and insulin dynamics in a “remote compartment” (X(t)) are shown at the top. Glucose leaves or enters 
its space at a rate proportional to the difference between plasma glucose level, G(t) and the basal 
fasting level, Gb. In addition, glucose also disappears from its compartment at a rate proportional to 
insulin levels in the “remote” compartment (X(t)). In this model, t = time; G(t) = plasma glucose at time 
t; I(t) = plasma insulin concentration at time t; X(t) = insulin concentration in “remote” compartment at 
time t; Gb = basal plasma concentration; Ib = basal plasma insulin concentration; G(0) = G0 (assuming 
instantaneous mixing of the IV glucose load); p1, p2, p3, and G0 = unknown parameters in the model 
that are uniquely identifiable from FSIVGTT; glucose effectiveness, SG = p1; and insulin sensitivity, SI 
= p3/p2. 
 

ADVANTAGES AND LIMITATIONS 
 

Minimal model analysis of the modified FSIVGTT is 
easier than the glucose clamp method because it is 
slightly less labor intensive, steady-state conditions 
are not required, and there are no intravenous 
infusions that require constant adjustment. Unlike the 
glucose clamp or IST, information about insulin 
sensitivity, glucose effectiveness, and β-cell function 
can be derived from a single dynamic test. The 
minimal model generates excellent predictions of 
glucose disappearance during the FSIVGTT. SI is a 
strong predictor of the development of diabetes in a 
prospective study of children of diabetic parents (34). 

Moreover, the insulin-modified FSIVGT may be used 
in relatively large- scale population studies (35). 
Therefore, in research settings where assessing 
insulin sensitivity along with glucose effectiveness and 
β-cell function is of interest, minimal model analysis of 
the insulin-modified FSIVGTT may be appropriate. 
The minimal model approach is simpler than direct 
methods for determining insulin sensitivity. 
Nevertheless, it still involves intravenous infusions 
with multiple blood sampling over a 3 h period that is 
nearly as labor intensive as the glucose clamp or IST. 
In addition, many limitations of minimal model analysis 
stem from the fact that the model oversimplifies the 
physiology of glucose homeostasis and is discussed 
in detail elsewhere (5). 
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Oral Glucose Tolerance Test (OGTT) 
 

The oral glucose tolerance test (OGTT) is a simple test 
widely used in clinical practice to diagnose glucose 
intolerance and type 2 diabetes (36). After overnight 
fast, blood samples for determinations of glucose and 
insulin concentrations are taken at 0, 30, 60, and 120 
min following a standard 75g oral glucose load. Oral 
glucose tolerance reflects the efficiency of the body to 
dispose of glucose after an oral glucose load or meal. 
The OGTT mimics the glucose and insulin dynamics 
of physiological conditions more closely than 
conditions of the glucose clamp, IST, or FSIVGTT. 
However, it is important to recognize that glucose 
tolerance and insulin sensitivity are not equivalent 
concepts. In addition to metabolic actions of insulin, 
insulin secretion, incretin effects, and other factors 
contribute importantly to glucose tolerance. Thus, the 
OGTT and meal tolerance tests provide useful 
information about glucose tolerance but not insulin 
sensitivity/resistance per se. 

 

Intravenous and Oral Tracer Studies 
 

The use of tracers for estimation of insulin sensitivity 
was first introduced in 1986 to overcome the 
shortcomings of FSIVGTT (37) The minimal model 
method does not allow segregation of glucose 
production from liver from exogenously administered 
glucose during calculations of insulin sensitivity and 
thus induces error in the insulin sensitivity 
calculations. Labeled intravenous glucose can be 
differentiated from endogenously produced glucose 
and thus use of labeled glucose during IVGTT 
provides more precise and accurate measurements 
(38,39) Similarly, labeled glucose has been used in 
oral glucose tolerance test and insulin sensitivity has 
been calculated by minimal model technique similar to 
FSIVGTT(40). There is a strong correlation of insulin 
sensitivity calculated from labeled oral minimal model 
with insulin sensitivity calculated from gold standard 
euglycemic hyperinsulinemic clamp, r=0.7, p<0.001 

(41). There are dual tracer and triple tracer methods 
as well to estimate the hepatic/endogenous glucose 
production and discussion of these methods is beyond 
the scope of this review (42). Basal hepatic insulin 
resistance index can then be estimated as the product 
of HGP rate and the fasting plasma insulin 
concentration. Use of tracer definitely allows for 
improvement over the FSIVGTT. Use of labeled oral 
glucose allows for more precise measurements of 
insulin sensitivity and glucose disposal from a simple 
OGTT and this can be a useful tool in large studies. 
The triple tracer method is cumbersome and cannot 
be employed in large studies. 

 

SIMPLE SURROGATE INDEXES FOR INSULIN 
SENSITIVITY/RESISTANCE 
 

Surrogates Derived from Fasting Steady-state 
Conditions 
 

PROCEDURE 
 

After an overnight fast, a single blood sample is taken 
for determination of blood glucose and plasma insulin. 
In healthy humans, the fasting condition represents a 
basal steady-state where glucose is homeostatically 
maintained in the normal range such that insulin levels 
are not significantly changing and HGP is constant. 
That is, basal insulin secretion by pancreatic β cells 
determines a relatively constant level of insulinemia 
that will be lower or higher in accordance with insulin 
sensitivity/resistance such that HGP matches whole 
body glucose disposal under fasting conditions. 
Surrogate indexes based on fasting glucose and 
insulin concentrations reflect primarily hepatic insulin 
sensitivity/resistance. However, under most 
conditions, hepatic and skeletal muscle insulin 
sensitivity/resistance are proportional to each other. In 
the diabetic state with fasting hyperglycemia, fasting 
insulin levels are inappropriately low and insufficient to 
maintain euglycemia. Therefore, definitions of the 
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more useful surrogate indexes take these 
considerations into account. Due to lack of a 
standardized insulin assay, it is not possible to use 
surrogate indexes to define universal cutoff points for 
insulin resistance. 

 

ADVANTAGES AND LIMITATIONS 
 

Simple surrogate indexes of insulin 
sensitivity/resistance are inexpensive quantitative 
tools that can be easily applied in almost every setting 
including epidemiological studies, large clinical trials, 
clinical research investigations, and clinical practice. If 
a direct measure of insulin sensitivity is not required, 
not feasible to obtain, or if insulin sensitivity is of 
secondary interest, it may be appropriate to use a 
surrogate index. The relative merits and limitations of 
individual surrogate indexes are discussed below. 

 

The Homeostasis Model Assessment (HOMA) 
 

HOMA, developed in 1985, is a model of interactions 
between glucose and insulin dynamics that is then 
used to predict fasting steady-state glucose and 
insulin concentrations for a wide range of possible 
combinations of insulin resistance and β-cell function 
(43). The model assumes a feedback loop between 
the liver and β-cell (43, 44, 45); glucose 
concentrations are regulated by insulin- dependent 
HGP while insulin levels depend on the pancreatic β-
cell response to glucose concentrations. Thus, 
deficient β-cell function reflects a diminished response 
to glucose-stimulated insulin secretion. Likewise, 
insulin resistance is reflected by diminished 
suppressive effect of insulin on HGP. HOMA model 
describes this glucose-insulin homeostasis by a set of 
empirically derived non-linear equations. The model 
predicts fasting steady- state levels of plasma glucose 
and insulin for any given combination of pancreatic β-
cell function and insulin sensitivity. Computer 
simulations have been used to generate a grid from 

which mathematical transformations of fasting glucose 
and insulin β-cell function (HOMA %B) from steady-
state conditions. An important caveat for HOMA is that 
it imputes dynamic β-cell function (i.e., glucose-
stimulated insulin secretion) from fasting steady- state 
data. In the absence of dynamic data, it is difficult, if 
not impossible, to determine the true dynamic function 
of β-cell insulin secretion. 

 

In practical terms, most studies using HOMA employ 
an approximation described by a simple equation to 
determine a surrogate index of insulin resistance. This 
is defined by the product of the fasting glucose and 
fasting insulin divided by a constant. Thus, HOMA-IR 
= fasting insulin (μU/ml) × fasting glucose (mmol/l) / 
22.5. The constant is a normalizing factor, the product 
of fasting plasma insulin of 5 µU/mL and plasma 
glucose of 4.5 mmol/L obtained from an “ideal” and 
“normal” individual. Therefore, for an individual with 
normal insulin sensitivity, HOMA-IR = 1. It is important 
to note that over wide ranges of insulin 
sensitivity/resistance Log (HOMA-IR), (which 
normalizes the skewed distribution of fasting insulin 
values) determines a much stronger linear correlation 
with glucose clamp estimates of insulin sensitivity (12). 
HOMA or Log  (HOMA) is extensively used in 
large epidemiological studies, prospective clinical 
trials, and clinical research studies (45, 46, 47). In 
research settings where assessing insulin 
sensitivity/resistance is of secondary interest or 
feasibility issues preclude the use of direct measures 
by glucose clamp, it may be appropriate to use Log 
(HOMA-IR). However, as discussed below, other 
surrogate indexes have certain advantages over 
HOMA or Log (HOMA) in some circumstances. 

 

Quantitative Insulin Sensitivity Check Index 
(QUICKI) 
 

QUICKI is an empirically-derived mathematical 
transformation of fasting blood glucose and plasma 
insulin concentrations that provides a reliable, 
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reproducible, and accurate index of insulin sensitivity 
with excellent positive predictive power (12, 48,13, 49, 
50). Since fasting insulin levels have a non-normal 
skewed distribution, log transformation improves its 
linear correlation with SIclamp. However, as with 
1/(fasting insulin) and the G/I ratio, this correlation is 
not maintained in diabetic subjects with fasting 
hyperglycemia and impaired β-cell function that is 
insufficient to maintain euglycemia. To accommodate 
these clinically important circumstances where fasting 
glucose is inappropriately high and insulin is 
inappropriately low, addition of log (fasting glucose) to 
log (fasting insulin) provides a reasonable correction 
such that the linear correlation with SIClamp is 
maintained in both diabetic and non-diabetic subjects. 
The reciprocal of this sum results in further 
transformation of the data generating an insulin 
sensitivity index that has a positive correlation with 
SIclamp. Thus, QUICKI = 1/Log (Fasting Insulin, 
µU/ml) + Log (Fasting Glucose, mg/dl). Over a wide 
range of insulin sensitivity/resistance, QUICKI has a 
substantially better linear correlation with SIclamp (r ≈ 
0.8 – 0.9) than SI derived from the minimal model or 
HOMA-IR (12, 48, 49). Log (HOMA) is roughly 
comparable to QUICKI in this regard. Multiple 
independent studies find excellent linear correlations 
between QUICKI and glucose clamp estimates (either 
GIR or SIClamp) in healthy subjects, obesity, 
diabetes, hypertension, and many other insulin- 
resistant states (49, 51, 52, 53, 54, 55, 56). QUICKI is 
among the most thoroughly evaluated and validated 
surrogate index for insulin sensitivity. As a simple, 
useful, inexpensive, and minimally invasive surrogate 
for glucose clamp-derived measures of insulin 
sensitivity, QUICKI is appropriate and effective for use 
in large epidemiological or clinical research studies, 
to follow changes after therapeutic interventions, and 
for use in studies where evaluation of insulin sensitivity 
is not of primary interest. 

 

 

Adipose Tissue Insulin Resistance Index (Adipo-
IR) 
 

Adipo-IR is a measure similar to HOMA-IR in that it is 
obtained from a fasting level of FFA and insulin 
(product of FFA and insulin levels). Recent studies 
have shown that Adipo-IR correlates well with the gold 
standard measure of adipose tissue insulin sensitivity 
derived from one-step hyperinsulinemic-euglycemic 
clamp technique using a palmitate tracer (57). Age 
and physical fitness were however shown to affect the 
predictive values. Thus, Adipo-IR may be suitable for 
larger population studies, however the multistep 
pancreatic clamp technique is probably needed for 
mechanistic studies of adipose tissue insulin action. 

 

Surrogates Derived from Dynamic Tests 
 

PROCEDURE 
 

Surrogate indexes of insulin sensitivity that use 
information derived from dynamic tests include OGTT, 
meal tolerance tests, and IVGTT. Procedures for 
these tests have been described in a previous section. 
Specific indexes including Matsuda index (58), 
Stumvoll index (59), Avignon index (60), oral glucose 
insulin sensitivity index (OGSI) (61), Gutt index (62), 
and Belfiore index (63) use particular sampling 
protocols during the OGTT or the meal. In addition, 
minimal model approaches have been used to model 
plasma glucose and insulin dynamics during an OGTT 
or a meal to determine insulin sensitivity/resistance 
(64). Glucose disposal of an oral glucose load or a 
meal is mediated by a complex dynamic process that 
includes gut absorption, glucose effectiveness, 
neurohormonal actions, incretin actions, insulin 
secretion, and metabolic actions of insulin that 
primarily determine the balance between peripheral 
glucose utilization and HGP. Surrogate indexes that 
depend on dynamic testing take into account both 
fasting steady-state and dynamic post-glucose load 
plasma glucose and insulin levels. After an oral 
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glucose challenge, the HGP is maximally suppressed 
for approximately 60 min and remains suppressed at 
a constant level for the subsequent 60–120 min time 
period. Therefore, glucose uptake by peripheral 
tissues (e.g., muscle and adipose tissue) primarily 
determines the rate of decrease in plasma glucose 
concentration from its peak value to its nadir during an 
OGTT. Based on this observation, surrogate indices of 
hepatic and muscle insulin sensitivity/ resistance from 
an OGTT has been widely used (65). Recent studies 
comparing the OGTT- derived, tissue-specific 
surrogate indices hepatic insulin resistance index 
(HIRI) and muscle insulin sensitivity index (MISI) with 
clamp measurements showed that surrogate indices 
derived from an OGTT are accurate in predicting 
insulin sensitivity but are not tissue-specific (66). 
Studies using oral tracers in OGTT, with measurement 
of insulin sensitivity from OGTT and then comparing 
these to clamp measurements, would be crucial to 
ascertain the validity these measures. Indeed, recent 
studies have shown that it is possible to measure 
hepatic insulin sensitivity in healthy volunteers and in 
prediabetes with the use of single tracer (67). 

 

ADVANTAGES AND LIMITATIONS 
 

Many surrogate measures derived from dynamic data 
correlate reasonably well with glucose clamp 
estimates of insulin sensitivity (58, 61,62). Estimates 
of insulin sensitivity derived from OGTT predict the 
development of type 2 diabetes in epidemiologic 
studies ( 50, 68, 65). The advantage of surrogates 
based on dynamic testing is that information about 
insulin secretion can be obtained at the same time as 
information about insulin action. However, if one is 
only interested in estimating insulin 
sensitivity/resistance, fasting surrogates may be 
preferable to dynamic surrogates because they are 
simpler to obtain. The oral route of glucose delivery is 
more physiological than intravenous glucose infusion. 
However, poor reproducibility of the OGTT and meal 
tolerance test due to variable glucose absorption, 
splanchnic glucose uptake, and additional incretin 

effects need to be considered. Thus, distinguishing 
direct metabolic actions of insulin following oral 
ingestion of glucose or a mixed meal is more 
problematic than after FSIVGTT. In addition, as with 
many other measures of insulin sensitivity, surrogates 
derived from dynamic testing generally incorporate 
both peripheral and hepatic insulin sensitivity. 
Although OGTT involves considerably less work than 
FSIVGTT, dynamic testing in general requires more 
effort and cost than fasting blood sampling. 

 

ETHNIC DIFFERENCES 
 

Hispanics, African Americans, and South Asians are 
highly prone to develop diabetes. A meta-analysis 
showed that non-diabetic Africans have lower insulin 
sensitivity and higher insulin response after an 
intravenous glucose load compared to Caucasians 
and East Asians ( 69). In a study that compared 
euglycemic hyperinsulinemic clamp derived glucose 
disposal rates (GDR) with HOMA-IR, QUICKI, and 
OGTT-derived indices, fasting insulin levels and 
HOMA-IR did not correlate with GDR whereas 
Matsuda index derived from OGTT significantly 
correlated with GDR in African American men (70). 
Similarly, in another study in Afro-Caribbean adults, 
HOMA-IR did not correlate with insulin sensitivity 
calculated from FSIVGTT and M-value calculated from 
hyperinsulinemic euglycemic clamp (71). Likewise, IR 
predictive ability of QUICKI and HOMA-IR was limited 
in Asian-Indian men (72). Recent studies highlight that 
minimal model may underestimate insulin sensitivity 
between groups when acute insulin response (AIR) is 
higher in one group (73). African Americans have 
reduced insulin clearance and higher AIR than Whites, 
suggesting that the minimal model may underestimate 
insulin sensitivity in African Americans (73). These 
studies suggest that at least in some ethnic groups, 
QUICKI and HOMA-IR may only be useful as 
secondary outcome measurements in assessing 
insulin sensitivity/resistance and studies inferring 
lower insulin sensitivity in non- diabetic African 
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Americans based on FSIVGTT and minimal modeling 
should be interpreted cautiously. 

 

METABOLOMICS 
 

Metabolomics is an interrogation and quantification of 
small-molecule metabolites in body fluids and tissues. 
It aims at identifying and quantifying small molecules 
in the sample by either using mass spectrometry (MS) 
or nuclear magnetic resonance (NMR) spectroscopy. 
The details of the methodology and its application in 
diabetes research are beyond the scope of this 
chapter. In this chapter, we will focus on new markers 
of insulin resistance that have been discovered using 
this approach. Using a non- targeted approach, Gall et 
al. metabolically profiled fasting plasma samples from 
399 non-diabetic, clinically healthy subjects (74). 
Insulin sensitivity was measured using euglycemic 
hyperinsulinemic clamps. Individuals in the bottom 
tertile of the cohort were designated as insulin- 
resistant. Among the 485 candidate biomarkers 
identified, plasma α-hydroxybutyrate levels were 
inversely related to insulin sensitivity and this 
association was independent of age, sex and BMI. 
Other metabolites such as linoleoyl- 
glycerophosphocholine (L-GPC), glycine, and creatine 
were also highly correlated with insulin sensitivity. 
Using 26 metabolites from this study, the group went 
on to develop a model called Quantose algorithm to 
predict insulin resistance. Fasting insulin, α-

hydroxybutyrate, L- GPC and oleate levels were 
included in this model. Quantose IR as a fasting 
surrogate of insulin sensitivity was superior to other 
simple surrogate measures and was able to predict 
the progression from normal glucose tolerance to 
impaired glucose tolerance (75). Branched chain 
amino acids (BCAAs) were found to significantly 
increase in obese compared to lean subjects and a 
BCAA based index correlated with HOMA (76). The 
elevation of BCAA in subjects with impaired fasting 
glucose and diabetes has been confirmed in 
subsequent studies (77). 

 

Lipoprotein insulin resistance score (LPIR) is a novel 
metabolomic biomarker based on nuclear magnetic 
resonance (NMR) quantification of lipoprotein levels 
and sizes. This index has been shown to predict future 
type 2 diabetes mellitus is some cohorts (78). LPIR is 
derived from the weighted score of six lipoproteins 
(VLDL, LDL, and HDL sizes and concentrations) that 
are more strongly related to IR than each of its 
individual subclasses (79). A risk score of between 0-
100 is estimated, with a score of 100 denoting being 
most insulin resistant. These metabolomic studies are 
promising since they can measure hundreds of 
metabolites in a very small sample. However, the 
pricing, technology, and access, precludes its use 
clinically. Further studies using this approach are 
necessary in larger more heterogeneous cohorts to 
replicate and validate surrogate insulin resistance 
markers derived through metabolomics 
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Table 1. Methods for Assessing Insulin Sensitivity and Resistance in Humans 

Method Measure of Insulin sensitivity 
Direct Measures 

Hyperinsulinemic Euglycemic 
Glucose Clamp 

Average glucose infusion rate (GIR) = glucose disposal rate (M). 
SIClamp = M/(G x ΔI), where M is normalized for G (steady-state 
blood glucose concentration) and ΔI (difference between fasting 
and steady-state plasma insulin concentrations) 

Insulin-suppression Test (IST) Steady-state plasma glucose (SSPG) concentrations during 
constant infusions of insulin and glucose with suppressed 
endogenous insulin secretion 

Indirect Measures 

Minimal Model Analysis of 
Frequently Sampled Intravenous 
Glucose Tolerance Test 
(FSIVGTT) 

Minimal model uniquely identifies model parameters that 
determine a best fit to glucose disappearance during the modified 
FSIVGTT. SI : fractional glucose disappearance per insulin 
concentration unit; SG (glucose effectiveness): ability of glucose 
per se to promote its own disposal and inhibit HGP in the absence 
of an incremental insulin effect (i.e., when insulin is at basal 
levels). 

Simple Surrogate Indexes 

Surrogates Derived from Fasting Steady-state Conditions 

The Homeostasis Model 
Assessment (HOMA) 

HOMA-IR = [(Fasting Insulin (µU/mL)) X (Fasting Glucose 
(mmol/L))]/22.5 

Quantitative Insulin Sensitivity 
Check Index (QUICKI) 

QUICKI = 1/[Log (Fasting Insulin, µU/ml) + Log (Fasting Glucose, 
mg/dl)] 

Surrogates Derived from Dynamic Tests (OGTT) 

Matsuda Index ISI(Matsuda) = 10000/√[(Gfasting (mg/dl) x Ifasting (µU/ml) x 
(Gmean x Imean)] 

Gutt Index - ISI (0, 120) 
(mg.l2.mmol-1.mIU-1.min-1) 

ISI (0, 120) = 75000 + (G0-G120)(mg/l) x 0.19 x BW / 120 x 
Gmean (0, 
120min) (mmol/l) x Log [Imean (0, 120min)](mU/l) 

Gmean, mean plasma glucose concentration during OGTT; Go, plasma glucose concentration during fasting; 
G120, plasma glucose concentration at 120 min; Gmean, mean plasma glucose concentration during OGTT; 
Imean, mean insulin concentration during OGTT; Io, plasma insulin concentration during fasting; I120, plasma 
insulin concentration at 120 min. 
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SUMMARY 
 

In this chapter we have discussed a representative 
variety of methods currently available for estimating 
insulin sensitivity/resistance (but this is by no means 
an exhaustive review) (Table 1). These range from 
complex, time consuming, labor-intensive, invasive 
procedures to simple tests involving a single fasting 
blood sample. It is important to understand the 

physiological concepts informing each method so that 
relative merits and limitations of particular approaches 
are appropriately matched with proposed applications 
and data is interpreted correctly. The glucose clamp 
method is the reference standard for direct 
measurement of insulin sensitivity. Regarding simple 
surrogates, QUICKI and Log (HOMA) are among the 
best and most extensively validated. Dynamic tests 
are useful if information about both insulin secretion 
and insulin action are needed. 
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