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ABSTRACT 

 

SUMMARY 

This discussion stresses the normal occurrence of immune self-reactivity, the genetic 

and environmental forces that may amplify such responses, the role of the antigen-

driven immune attack, secondary disease-enhancing factors, and the important 

contributory role of antigen-independent immune reactivity.  Research on thyroid 

autoimmunity has benefited greatly by knowledge of the specific target antigens and 

easy access to blood cells and involved target tissue.  As research moves apace in 

realm of molecular genetics and investigation of environmental factors that cause 

disease, we may look for rapid progress in understanding and controlling these common 

illnesses. 

 

A BRIEF REVIEW OF IMMUNOLOGIC REACTIONS 

The human immune system is comprised of about 2 X 1012 lymphocytes containing 

approximately equal ratios of T and B cells.  B lymphocytes synthesize immunoglobulins 

that are first expressed on their membranes as clonally distributed antigen-specific 

receptors and then secreted as antibodies following antigenic stimulation.  The ability of 

the immune system to recognize antigens is remarkable.  A human being can produce 

more than 107 antibodies with different specificities.  The concentration of antibodies in 

human serum is 15 mg/ml, which represents about 3 x 1020 immunoglobulin molecules 

per person!   Since each B cell has approximately 105 antibody molecules of identical 

specificity on its surface, the human humoral immune system scans the antigenic 

universe with about 1017 cell bound receptors.  To maximize the chances of 

encountering antigen, lymphocytes recirculate from blood to lymphoid tissues and back 
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to the blood.  The 1010 lymphocytes in human blood have a mean residence time of 

approximately 30 minutes, thus an exchange rate of almost 50 times per day.   

  

T lymphocytes develop from precursor stem cells in fetal liver and bone marrow and 

differentiate into mature cell types during residence in the thymus.  Mature T 

lymphocytes are present in thymus, spleen, lymph nodes, throughout skin and other 

lymphatic organs, and in the bloodstream.  B lymphocytes (immunoglobulin producing 

cells) develop from precursor cells in fetal liver and bone marrow and are found in all 

lymphoid organs and in the bloodstream.  The ontogeny and functions of these cells 

have been identified in a variety of ways, including morphologic and functional criteria, 

and by antibodies identifying surface proteins which correlate to a varying extent with 

specific functions.  Lymphocytes develop through stages leading to pools of cells which 

can be operationally defined, and be recognized by acquisition of specific antigenic 

determinants (1) (Fig. 7-1, Table 7-1).   Human B and T cells normally express class I 

(HLA-A, B, C) major  histocompatibility complex (MHC) antigens on their surface, and B  

cells express class II antigens (HLA-DR, DP, DQ).  Activated T cells also express class 

II antigens on their surface, and are then described as DR+. 

 

TABLE 7-1 

KEY DIFFERENTIATION ANTIGENS WHICH CHARACTERIZE SPECIFIC 

LYMPHOCYTE SUBSETS  
Primary 
Antigen Synonyms Distribution Comment 
CD2 LFA-2 Cells T cells Cytoadhesion molecule; NK 

Cells cognate to LFA-3 
CD3 T3, Leu 4 All peripheral T Cells T Cell reseptor complex cells 
CD4 T4, Leu 3 

(L3T4 in mice) 
Class II restricted T Cells CD4 binkds to MHC clas II 

(55-70% of peripheral T cells) 
CD8 T8, Leu 2 Lyt 2 Class I restricted T Cells CD8 binds to MHC class I (25-

40% of peripheral T cells) 
CD11a LFA-1 chain Leukocytes LFA-1 chain adhesion 

molecule, binds to ICAM-1 
CD14 LPS Receptor Monocytes Marker for monocytes 
CD16 Fc R111 NK cells, 

Granulocytes 
Low affinity Fc receptor 

CD20 B1 B cells Marker for B cells 
CD25 TAC, IL2 Activated T and B cells and 

monocytes 
Complexes with chain; T cell 
growth 

CD28 Tp44 Most T cells T cell receptor for B7-1 
CD29 – 40-45% of CD4+ and CD8+ 1 chain of VLA protein, an 
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cells “integrin” type of adhesion 
molecule 

CD40 – B Cells B cell activation 
CD45RO – 25-40% of peripheral T cell 

subsets Expressed on naive T cells 

CD54 ICAM-1 T and B Cells Cognate to LFA-1 

CD56 NKH1 
NK Cells, some T cells Neural cell adhesion 

molecule; NK marker 
 

 

  

 
Figure 7-1:  Development of T Cell Subsets. In the thymus, undifferentiated precursors give 
rise to CD4+ and CD8+ cells. In the peripheral lymphoid tissues CD4+ cells (CHO) 
differentiate following activation by exposure to cognate antigen into two subsets (TH1 and 
TH2), which are well characterized in the mouse, less so in man. Development of these cells 
is to some extent reciprocally controlled by cytokines, and the cytokines secreted are also 
distinct. CD8+ cells similarly mature after antigenic stimulation into less well defined 
subsets. or = effect on subset proliferation. = cytokines produced. 

 

 

 

Lymphocyte Surface Molecules  

T cells have on their surface T cell antigen receptors (TCR) which recognize an 

antigen/HLA complex, accessory molecules which recognize HLA determinants, and 

adhesion molecules which recognize their counterpart ligands on antigen presenting 

http://www.thyroidmanager.org/wp-content/uploads/2014/02/7-11.png
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cells (APCs).  After activation, T cells also have new receptors for cytokines, the 

hormone products mainly produced by macrophages, T cells and B cells, which control 

other T or B cells (2) (Table 7-2).  The T cell antigen recognition complex consists of 

disulfide-linked TCR heterodimers, usually the TCR-α and TCR-β chains, plus five or 

more associated peptides making up the CD3 complex (3).  A small proportion of T cells 

have TCRγ and TCRδ chain instead of α and β chains.  TCR-α and β peptides and γδ 

peptides are derived from rearranged genes coding for proteins which are unique in 

each cell clone.   The germline TCR genes are very large, containing 40 - 100 different V 

(variable) segments, D (diversity) segments (in genes), many J (junctional) segments, 

and one or two C (constant) segments (Fig. 7-2).   

 

TABLE 7-2 

CYTOKINES 
Cytokine Cell Source Targets Primary Effects On 

Targets 
Type 1 IFN (IFN-
α, Β) 

Mononuclear 
phagocyte, 
fibroblast 

All Antiviral, 
antiproliferative, 
increased class I MHC 
expression 

Tumor necrosis 
factor 

Mononuclear 
phagocyte, T cell 

Neutrophil 
Liver 
Muscle 
Hypothalamus 

Inflammation, 
Acute phase reactants, 
Catabolism, 
Fever 

Interleukin-1 Mononuclear 
phagocyte 

Thymocyte 
Endothelial cell 
Hypothalamus 
Liver Muscle 
fat 

Costimulator 
Inflammation 
Fever 
Acute phase reactants 
Catabolism (cachexia) 

Interleukin-6 Mononuclear 
phagocyte, 
endothelial cell, T 
cell 

Thymocyte 
Mature B cell 
Liver 

Costimulator, Growth, 
Acute phase reactants 

Interleukin-2 T cells T cell 
NK cell 
B cell 

Growth; cytokine 
production, 
Growth, activation, 
Growth, antibody 
synthesis 

Interleukin-4 CD4+ 
T cell, mast cell 

B cell 
Mononuclear 
phagocyte T cell 

Isotype switching, 
Inhibit activation, 
Growth 

Transforming 
growth factor- β 

T cells, 
mononuclear 
phagocyte, other 

T cell 
Mononuclear phagocyte 
Other cell types 

Inhibit activation, 
Inhibit activation 
Growth regulation 

Interferon-γ T cell, NK cell Mononuclear 
phagocyte 

Activation 
Activation 
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Endothelial cell 
All cells 

Activation. 
Increased class I and 
class II MHC 

Cytokine Cell Source  Primary Effects On 
Targets 

Lymphotoxin T cell Neutrophil 
Endothelial cell 
NK cell 

Activation 
Activation 
Activation 

Interleukin- 10 T cell Mononuclear phagocyte 
B cell 

Inhibition 
Activation 

Interleukin-5 T cell Eosinophil 
B cell 

Activation 
Growth and activation 

Interleukin- 12 Macrophages NK cells 
T cells 

Activation 
Activation 

 

Adapted from tables in Cellular and Molecular Immunology, Edition II by AK Abbas, 
AH Lichtman, and JS Pober, WB Saunders Company, Philadelphia 

  

 
Figure 7-2:  Cartoon of the human T cell receptor and its subunits. Part A shows subunit 
composition of the human T cell receptor. The TCR subunits are held together by S-S bonds 
and are closely associated with either the CD4 or CD8 molecule and chains of the CD3 

http://www.thyroidmanager.org/wp-content/uploads/2014/02/7-2.jpg
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complex. The subunits are anchored in the cell membrane. The CD3 complex consists of 
three subunits referred to as gamma, delta, and epsilon. Associated in the TCR complex is 
another pair of 16 kD homodimer (32 kD nonreduced), subunits existing as homodimers of 
zeta or heterodimers of zeta and eta. Part B shows the structure of the Ti subunits. The 
predicted primary structure of the -chain subunit after translation from the cDNA sequence is 
depicted, as are the variable region leader (L), V, D, and J segments, a hydrophobic 
transmembrane segment (TM) and cytoplasmic part (Cyt) in the C region, potential 
intrachain sulfhydryl bonds (S-S), and the single SH group (S) that can form a sulfhydryl 
bondwith the subunit. Part C shows a scheme of the genomic organization of human -and -
chain genes. In the locus, V indicates the V gene pool located 5′, at an unknown distance 
from the D 1 element, the J 1 cluster, and the C 1 constant-region gene. Further downstream, 
a second D 2 element, J 2 cluster, and C 2 constant-region gene are indicated. A similar 
nomenclature is used for the Ti locus, in which only a single constant region is found. ?D 
indicates the uncertainly about the existence of a putative Ti -diversity element. (From 
Reference 1). 

 

 

 

During development of each T cell, segments of the germline gene are rearranged so 

that one TCR gene V segment becomes associated with one D (in the case of TCR-β), 

one J, and one C segment to produce a unique gene sequence.  This random 

combination of different V, D, and J and C segments, and additional variations in DNA 

sequence introduced in the J and D region during recombination, provides the enormous 

diversity of specific TCRs required to recognize the entire universe of T cell antigens. 

This process also means that all individuals have (before clonal deletion) preformed 

TCRs able to recognize thyroid autoantigens as well as thousands of other autoantigens.     

    

Each TCR recognizes one specific antigenic peptide sequence termed an epitope (5), 

which consists of 8 - 9 amino acids for class I restricted T cells, and 13 - 17 amino acids 

for class II restricted T cells.  However, T cells respond to several portions epitopes of 

any one antigen; these may represent overlapping peptide segments of the epitope.  

Thus the response of each individual T (and B) cell is extremely specific, but the 

combined effect of many T (and B) cells acting together is observed in the typical final 

polyclonal response.   

  

T cells recognize antigen presented  by an MHC-molecule; CD4+ T cells (often 

functioning as helper cells) recognize MHC class II molecules plus antigenic epitope, 

and CD8+ T cells  (often functioning as cytotoxic cells) recognize MHC class I molecules 

plus antigenic epitope.  The epitope fits within a cleft in the HLA-DR molecule and the 
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TCR functions to recognize this complex (Fig. 7-3).  The five associated peptides of the 

CD3 complex are believed to be signal-transducers and to initiate intracellular events 

following antigen recognition.  The normal response proceeds via TCR antigen 

recognition, then activation of the T cell through the  combined effect of antigen 

recognition and costimulatory signals (see below) leading to T cell IL-2 secretion and IL-

2 receptor expression, followed by proliferation of the T cell into an  active clone.   

 

 
Figure 7-3:   In this diagram the antigen is depicted in a cleft of the HLA-DR molecule on an 
APC, being recognized by the T cell TCR. “Adhesive” peptide segments may augment close 
contact. A CD4 molecule is associated with the TCR. Presumably the APC surface is 
normally covered with many DR molecules, each studded with an antigen. T cells must 
somehow scan these complexes in order to find the one that best fits their TCR. 

 

  

Lymphocyte development is controlled by cytokines released by macrophages, dendritic 

cells, lymphocytes, and many other cells.  Both T and B cells release a large array of 

cytokines which carry out their effector functions and alter the function of other cells (Fig. 

7-1, Table 7-2).  As lymphocytes mature in the thymus, and become activated on 

exposure to antigen, the types of cytokines to which they respond -- and produce -- 

become altered.  In animals, and to a lesser extent in man, types of lymphocytes can be 

operationally defined by the cytokines produced.  For example, Th1 T cells produce IL-2, 

http://www.thyroidmanager.org/wp-content/uploads/2014/02/7-3.jpg
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IFN-γ and TNF and are predominant in delayed hypersensitivity type reactions, whereas 

Th2 T cells produce IL-4 and IL-5, stimulate B cells, and are involved especially in 

antibody-mediated reactions.  Cytokines produced by Th1 cells enhance the activity of 

this subset but inhibit Th2 cells, and vice versa.  This type of regulation may be critical in 

determining an immune response and in suppressor phenomena.  Additional Th subsets 

are now recognized, including Th17 cells which secrete IL-17 see below), as well as Th9 

and Th22 cells which also have discrete pathological roles. 

 

As well as cytokines and their receptors, T cells express a number of receptors for 

chemokines, integrins and selectins which are involved in the sequential stages of cell 

adhesion which leads to T cell homing to tissues (7).   A word of caution is necessary 

however in terms of translating these findings into the human situation where boundaries 

between the subsets are less clear.  It is also increasingly recognized that the simple 

dichotomy of T cells into two types is over-simple, with cytokines such as IL-12 being 

assigned to the Th1 subset although not being secreted by T cells, and production of this 

cytokine is stimulated by the Th2 cytokines IL-4 and IL-13, which will drive the immune 

response from Th2 towards Th1. The blurring of pattern that is seen in many 

autoimmune diseases challenges the dogma of an easy divide in the type of immune 

response.   

     

Each B cell produces a unique immunoglobulin (Ig) programmed by an Ig gene which 

has also been rearranged from the germline V, D, J, and C segments (as for the TCR) 

(8). The TCR and Ig genes are, not surprisingly, members of one gene superfamily.   

Further diversity is provided by antigen-driven somatic mutations which occur during 

amplification of the progeny of a stimulated B cell, causing the production of a family of 

antibodies with slightly different sequences.  B cells secrete their unique antibodies into 

surrounding fluids, and also express surface Ig which is therefore a B cell receptor for 

antigen (Fig. 7-4).  The recognition process by antibodies involves the shape of the 

epitope - i.e. it is conformational and for B cells normally involves unprocessed antigen.  

Thus B cell and T cell epitopes for the same antigen are usually different segments or 

forms of the molecule.    
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Figure 7-4:  The B cell surface is studded with specific Ig molecules which function as high 
affinity  receptors for specific antigen epitopes which match the shape of the Ig recognition 
idiotype. 

  

 

Antigen Presentation On Mhc Molecules 

  

The genes for the HLA-A, B, C and HLA-DR, DP, DQ molecules are on chromosome 6, 

and comprise some of the genes in a large immune response control complex (Fig. 7-5).  

Each cell surface HLA molecule is made up of 2 peptide chains; an α chain and β2 

microglobulin for class I molecules, and α and β chains for class II. Each individual 

inherits from each parent one HLA-A, B, and C, one DRα and 3 DRβ genes, a pair each 

of DP and DQα and β genes, and other related genes which are not expressed, 

including DX and DO (Fig. 7-5).  The genes are expressed in a co-dominant manner, 

and (in contrast to TCR and Ig molecules) are invariant in individuals. However, the 

genes are all highly polymorphic, that is, many alleles may exist for each gene.  The 

actual evolutionary drive for this diversity is unknown.  While TCR gene rearrangement 

provides the T cell repertoire to respond to individual antigens, HLA diversity guarantees 

that different individuals will have different T cell repertoires, which confers evolutionary 

advantage to the species in terms of responding to new pathogens.  

  

http://www.thyroidmanager.org/wp-content/uploads/2014/02/7-4.jpg
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Figure 7-5:  Partial map of the short arm of human chromosome 6 showing the molecular 
organization of the area containing the MHC loci, with details of the HLA Class I, II, and III 
genes. Map distances in kilobases were determined by pulsed-field gel electrophoresis. Genes 
are not drawn to scale. Expressed genes are designated by filled boxes _ (|_|). (From 
Trowsdale, J. and Campbell, R.D. Physical map of the human HLA region. Immunology 
Today, 9:34, 1988.) 

 

 

The HLA molecules play a central role in T cell clonal selection during fetal development, 

in normal immune responses, and in presentation of self-antigens.  In many instances -- 

including autoimmune thyroid disease (AITD) as detailed below -- inheritance of a 

specific HLA gene correlates with increased susceptibility to disease.  In some cases 

this can be related to a gene coding for a specific amino acid in the HLA molecule which 

is believed to control epitope selection (often called determinant selection) and thus to 

be associated with disease susceptibility.     

  

Antigen can be presented to CD4+ T cells by conventional (or "professional") APCs, 

particularly dendritic cells (9), and also by B cells and activated T cells, and less 

effectively by a variety of other cells (fibroblasts, glial cells, thyrocytes), when these 

normally HLA-DR-negative cells are altered and express HLA class II molecules on their 

surface.  This is because non-classical APCs cannot provide the necessary 

costimulatory signals, including the B7-1 (CD80) and B7-2 (CD86) molecules, which bind 

to CD28 on the T cell and are necessary for activation of certain T cells. If B7 molecules 

bind instead to CD152 (CTLA-4) on the T cell, the immune response is terminated.  The 

individual roles of CD80 and CD86 are not clearly established, although some functions 

appear to be distinct (e.g. CD80 appears to stimulate CD152) and some overlapping 

(e.g. both stimulate CD28), and the tempo of their involvement at different times of the 

immune response is likely to be critical to the type of response produced.  The 

maturation state of the dendritic cell is another determinant of immune homeostasis.  

http://www.thyroidmanager.org/wp-content/uploads/2014/02/7-5.jpg
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Semi-maturation, induced by proinflammatory cytokines like TNF-α, allows the 

development of a tolerogenic stage for these cells.  Full maturation, induced by signaling 

through toll-like receptors, complement receptors or antibody Fc receptors, induces 

proinflammatory cytokine production by the dendritic cell and allows them to generate T 

cell immunity. 

 

T And B Cell Responses 

Antigen presentation to T cells leads to a variety of responses which include proliferative 

or suppressive functions, development of cell cytotoxic responses, control of Ig 

secretion, and many more. In addition, under specific circumstances, antigen 

presentation may cause the T cell to become non-responsive or anergic (10). 

Presentation of antigen and the accompanying second signal are required to activate a 

naive T cell and initiate an immune response; previously activated T cells are much less 

dependent on B7-mediated costimulation.  Antigen recognition and APC-produced 

cytokines (Table 7-2) together cause T cell stimulation.  This activates the T cell to 

express IL-2 receptors and to secrete IL-2 itself.  Increased T-cell secreted IL-2 induces 

the responding T cell, and nearby ("bystander") T cells to proliferate. T-cell secreted IL-

2, IL-6 and other cytokines and IL-4 cause B cells to be stimulated and proliferate and 

cell surface receptors such as CD40 on B cells and its ligand on T cells are also involved 

in B cell activation (11).   

 

B cells themselves secrete distinct profiles of cytokines, in response to the engagement 

on CD40, and these cytokines can upregulate or downgregulate an immune response in 

a manner which depends on whether the B cell is simultaneously stimulated by antigen 

(12).  Intimate T-cell to B-cell contact may account for antigen-specific help for T cell and 

B cell responses, whereas the effect of T cell-secreted cytokines on bystander T or B 

cells may account for stimulation of non-antigen-specific responses by these 

lymphocytes. The beneficial effects of rituximab, a CD20 specific, B depleting 

monoclonal antibody, in autoimmune conditions including Graves’ disease (13) is related 

to its effects on inhibiting this interaction between T and B cells.    

   

Th1 cells function as inflammatory cells, typical of a delayed hypersensitivity type 

reaction, while Th2 cells are more specifically helper cells for B cell immunoglobulin 

synthesis.  A number of factors including TCR affinity and ligand density, and non-T cell-
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derived cytokines such as IL-4 and IL-12, determine whether the outcome of an immune 

response is predominantly by Th1 or Th2 cells.  A third population of T helper cells has 

been defined recently, based on their secretion of the pleiotropic proinflammatory 

cytokine IL-17, and are so called Th17 cells. The differentiation and expansion of these 

cells depends on the coordinate effects of IL-6, transforming growth factor beta (TGFβ) 

and IL-23 (14). These Th17 cells are responsible for defense against certain micro-

organisms such as Klebsiella, Borrelia and fungi. Of relevance to this discussion, they 

also have important roles in tissue inflammation and organ-specific autoimmunity. 

 

Although the concept of suppressor cells fell into disrepute during the late 1980s, there 

has been resurgence in interest with the recognition that CD4+ cells expressing high 

levels of the IL-2 receptor, CD25, act in a way entirely in keeping with the previously 

defined suppressor population.  These CD4+, CD25+ T cells have been termed 

regulatory or Treg cells.  Such cells can prevent autoimmunity when transferred from 

healthy, naïve animals and their depletion results in autoimmune disease.  Such cells 

express Foxp3 which encodes a critical transcription factor for their function: mutation of 

this gene in man results in the lethal immunological disorder IPEX syndrome that 

includes autoimmune hypothyroidism amongst its manifestations (15).  

 

APCs have a central role in controlling Treg cells, with resting APCs (including thymic 

epithelial cells) promoting their development through the induction of the transcription 

factor Foxp3 (16).  Activation of APCs, for instance through their T cell-like receptors, 

has the opposite effect, and at least one component responsible for the suppression of 

Tregs then is the cytokine IL-6; this pathway allows effector T cells to predominate over 

Tregs, thereby shifting the dynamic equilibrium in favor of an immune (or autoimmune) 

response.  Another critical molecule in the Treg cell pathway is the costimulatory signal 

receptor, CD28, which is required for both development and maintenance of Treg 

function.  TGFβ exposure induces Tregs, but when combined with IL-6, Th17 effector 

cells are generated. The absence or presence of IL-6 is thus critical to determining 

whether there is a regulatory milieu or a proinflammatory response mounted by Th17 

cells. Both Th1 and Th17 cells are potent inducers of organ-specific autoimmunity, but 

their relative roles in each type of disease remain to be clarified.  
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It is increasingly clear that Treg are more complex a group of cells than originally clear.  

T regulatory cells can be classified as those which arise within the thymus and express 

Foxp3, and a Th3-like population which probably does not express this molecule and 

which develops in the periphery. More recently described regulatory cells have been 

phenotyped as CD4+CD69+ and CD4+NKG2D+ T cells. The glucocorticoid inducible 

tumor necrosis factor receptor (GITR) is expressed by both populations but CD25bright 

expression is not a requirement for regulatory T cell function.   

 

The reciprocal relationship between Th1 and Th2 cells, exerted through secretion of 

cytokines, serves as another model of suppressor function. This paradigm is 

conceptually useful but is almost certainly too simplistic, not least because there may 

exist within the Th2 compartment different types of T cells, some with pathological 

effector function and others which act as physiological regulators of Th1 responses.  

Endeavors to manipulate the entire Th2 population, to deviate an immune response 

away from Th1 cells, may therefore lead to exacerbation of the immune response, and 

may explain the reciprocal relation between the prevalence of infectious disease and 

autoimmunity (18). 

  

Killer (K) And Natural Killer (Nk) Cells 

In addition to the standard T cell function described above, other cells participate in 

immune responses.  Macrophages may destroy cells having immune complexes on their 

surface through recognition of the Fc portion of bound Ig.  Other cells which do not bear 

the CD3 marker of T cell lineage exist (K and NK cells) and have the ability to 

spontaneously kill other cells (especially those expressing HLA antigens).  NK cells can 

be detected by specific monoclonal antibodies such as anti-CD16, and are recognized 

phenotypically as large granular lymphocytes.  Like T cells, NK cells can have a type 1 

or 2 pattern of cytokine release.  Macrophages, T, K, NK, or other cells also kill cells 

coated with immune complexes in the process of antibody-dependent-cell-cytotoxicity 

(ADCC) (Fig. 7-6).   
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Figure 7-6: Some of the proposed mechanisms which could produce thyroid damage in AITD. 

Emperipolesis is the movement of lymphocytes and macrophages between epithelial cells and occurs in 

many organs such as gut, bronchus, and thyroid. The existence of interepithelial cells with immunoreactive 

potential is obviously relevant to an understanding of how autoantigens at the luminal surface of the thyroid 

cells may be exposed to 

 

Self-Non-Self Discrimination 

The immune system, which evolved to defend us from invading foreign proteins, 

normally tolerates (i.e. does not develop recognizable responses to) self-antigens.  The 

level of this control is variable. For example, self-reactivity to serum albumin is not seen.  

However, antibodies to thyroid antigens exist in up to 20% of adult women, and their 

presence must be considered effectively normal.  The development of tolerance is 

closely associated with the restriction of TCRs to recognizing an antigen only when 

presented by an HLA molecule.  The process, which for T cells occurs in the fetal 

thymus, leads to elimination of some T cells, and retention of others with TCRs having 

desirable features.  Self-antigens are believed to be presented on HLA molecules to T 

cells developing in the thymus.  This implies that antigen must be in the thymus or in the 

circulation for tolerance to develop and indeed we now know that specialized cells in the 

thymus can express a panoply of autoantigens during development.  T cells bearing 

autoreative TCRs are largely inactivated or destroyed. T cells which have the capacity to 

react with foreign antigens presented by self MHC molecules are allowed and retained 

(Fig. 7-7). This system is imperfect however and some T cells which react with MHC 

http://www.thyroidmanager.org/wp-content/uploads/2014/02/7-6.jpg
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molecules plus self-antigen are not deleted, which is the fundamental explanation for 

autoimmunity.  

 

 
Figure 7-7:  Left: Fetal Thymus; T cells strongly activated by DR alone, or strongly reactive 
to self-antigen presented by HLA molecules, are selectively destroyed. T cells, with a weak 
or absent response to DR alone, or to DR+ self-antigen, survive. Center: Normal Adult 
Immune Reaction; T cell TCR and APC-DR interaction is normally a weak or neutral signal. 
The presence of allo-antigen serves to switch the signal to positive. Right: Allo-MLR; 
Allogeneic DR is sufficiently different from autologous DR to act as a positive signal with or 
without antigen present. 

 

 

The best evidence that thymic T cell deletion prevents autoimmunity in man comes from 

autoimmune polyglandular syndrome (APS) type 1, which is the result of an autosomal 

recessive mutation in the AIRE (AutoImmune REgulator) gene.  Such patients have 

multiple autoimmune disorders, principally Addison’s disease and hypoparathyroidism 

but including thyroid autoimmunity.  The AIRE protein is expressed in the thymus by 

medullary epithelial cells and regulates the surprising expression of an array of self 

proteins (normally confined to extrathymic tissues) by these cells during fetal 

development.  When through the AIRE mutation such self-antigens cannot be expressed 

to allow clonal deletion, autoimmunity ensues and this accounts for the early onset 

multiple autoimmunity found in this syndrome (reviewed in 19).  Recently, dominant 

http://www.thyroidmanager.org/wp-content/uploads/2014/02/7-7.jpg
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mutations in AIRE have been identified and such patients have later-onset, milder 

phenotypes (19b). During maturation in the thymus, probably 95% or more of the 

lymphocytes produced are negatively selected, and die through a process described as 

programmed cell death or apoptosis.  This process involves several genes including 

those required for apoptosis, such as Fas.  A similar process is thought to ensue 

whenever a T cell is stimulated by its cognate antigen but does not receive a "second 

signal", and during induction of anergy by other mechanisms.  Defects in Fas lead to 

preservation of autoreactive T cells in some models of animal autoimmune disease. 

 

This trade-off between perfection in clonal deletion and repertoire maintenance allows a 

limited number of autoreactive T cells to survive, and thus sets the stage for autoimmune 

disease. The main mechanism to prevent autoimmunity by these escaped cells and also 

to induce tolerance to autoantigens not present in the fetal thymus or circulation is 

termed peripheral (i.e. non-thymic or central) tolerance, and is mainly effected by the 

Tregs described above. 

 

B cells undergo a similar selection process in fetal bone marrow or liver, except for the 

participation of MHC molecules.   If exposed to antigen during this early stage of 

development, B cells are permanently inactivated.  As for T cells, the selection process 

is not perfect, and leaves some B cells having the ability to make antibodies directed to 

self-antigens in the adult.  However, B cells require T cell help in order to proliferate and 

differentiate into mature Ig secreting cells.  In the absence of self-reactive T helper cells, 

these B cells remain dormant and expanding clones do not develop.    Although such 

clonal ignorance may be an important pathway in preventing B cell autoreactivity, it is 

not the only mechanism, and physiological concentrations of autoantigen may induce 

anergy of B cells, even when their affinity for autoantigen is low. 

  

Tolerance to self-antigen can be overcome ("broken") in animals by injecting the antigen 

in an unusual site on the body, especially in the presence of adjuvant compounds such 

as mycobacterial fragments and oil, or alum, or by slightly altering the antigen structure, 

or by altering the responding immune system (for example, by whole body irradiation, or 

depletion of suppressor T cells).  An additional mechanism for the inflammatory 

component of many autoimmune disorders has recently been proposed based on the 

evolutionary origins of mitochondria from bacteria. Given that the prime function of the 
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immune system is to defend the organism from microbes, it is possible that the immune 

system may mistake mitochondria released from damaged tissue through pattern-

recognition receptors and thereby induce a ‘mistaken’ inflammatory response (20).  

 

THE SYNDROMES OF THYROID AUTOIMMUNITY  

 

The three syndromes classically comprising autoimmune thyroid disease are (1) Graves' 

disease with goiter, hyperthyroidism and, in many patients, associated ophthalmopathy 

(2) Hashimoto's thyroiditis with goiter and euthyroidism or hypothyroidism; and (3) 

primary thyroid failure or myxedema.  Many variations of these syndromes are also 

recognized, including transient thyroid dysfunction occurring independently of pregnancy 

and in 5 - 6% of postpartum women, neonatal hyperthyroidism, and neonatal 

hypothyroidism.  The syndromes are bound together by their similar thyroid pathology, 

similar immune mechanisms, co-occurrence in family groups, and transition from one 

clinical picture to the other within the same individual over time.  The immunological 

mechanisms involved in these three diseases must be closely related, while the 

phenotypes probably differ because of the specific type of immunological response that 

occurs.  For example, if immunity against the TSH receptor leads to production of thyroid 

stimulating antibodies, Graves' disease is produced, whereas if TSH blocking antibodies 

are formed or a cell destructive process occurs, the result is Hashimoto's thyroiditis or 

primary myxedema.   

  

Associated with autoimmune thyroid disease in some patients are other organ specific 

autoimmune syndromes including pernicious anemia, vitiligo, myasthenia gravis, primary 

adrenal autoimmune disease, ovarian insufficiency, rarely pituitary insufficiency, 

alopecia, and sometimes Sjögren's syndrome or rheumatoid arthritis or lupus, as 

manifestations of non-organ specific autoimmunity. There has also been a description of 

pituitary antibodies and growth hormone deficiency in  around a third of patients with 

autoimmune hypothyroidism, implying the existence of a substantial reservoir of pituitary 

autoimmunity in these patients but further work is needed to confirm these findings and 

to understand the basis for the autoimmune response against the pituitary (21). 

  

THE ANTIGENS IN AUTOIMMUNE THYROID DISEASE 
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Thyroglobulin 

The three most important antigens involved in thyroid autoimmunity are clearly defined. 

First to be recognized was thyroglobulin (TG), the 670 kD protein synthesized in thyroid 

cells and in which T3 and T4 are produced.  Four to six B cell epitopes of TG are known 

to be involved in the human autoimmune responses and epitope recognition is similar in 

both Graves’ disease and Hashimoto’s thyroiditis (22).  Animal studies suggest that 

antigenicity of the molecule is related to iodine content, but studies on human antisera 

do not consistently bear this out: these species differences and the role of measuring TG 

antibodies in thyroid disease are reviewed elsewhere (23).  

 

Mouse experiments suggest that, to induce autoimmunity to TG, initial tolerance to 

dominant epitopes must be overcome, and the immune response then spreads to cryptic 

epitopes that are the major inducers of thyroidal T cell infiltration (24).  One particular TG 

T cell epitope, Tg.2098, has been identified which is a strong and specific binder to the 

MHC class II disease susceptibility HLA-DRβ1-Arg74 molecule, and stimulates T cells 

from both mice and humans that develop AITD (25). This could be a major T cell epitope 

which might be involved in pathogenesis through initiating an immune response that 

then spreads to involve other autoantigens. Furthermore, screening a diverse library of 

small molecules has identified one, cepharanthine, which blocked Tg.2098 peptide 

binding and presentation to T cells in mice with experimental autoimmune thyroiditis; 

such an approach has obvious therapeutic potential (25a). 

 

Tsh Receptor 

The second antigen to be identified was the TSH receptor (TSH-R), a 764 aa 

glycoprotein.  Antibodies to TSH-R mimic the function of TSH, and cause disease by 

binding to the TSH-R and stimulating (or inhibiting) thyroid cells, as described later. The 

human TSH-R is a member of a family of cell surface hormone receptors which are 

characterized by an extra-membranous portion, seven transmembrane loops, and an 

intracellular domain which binds the GS subunit of adenyl cyclase (26, 27).  Uniquely 

among G-protein-coupled receptors TSH-R undergoes post-translational cleavage to 

comprise a 53kD extracellular A subunit (53 kDa) and transmembrane and intracellular B 

subunit coupled by disulfide bridges. The A subunit may be shed provoking speculation 

on the role of this in stimulating autoimmunity. Recent evidence indicates that in Graves' 

disease TSHR antibody affinity maturation is driven by A-subunit multimers rather than 
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monomers (27a). Human TSH-R B cell epitopes are conformational and composed of 

several segments of the protein.    

 

The initial description of mouse and hamster monoclonal TSH-R antibodies was 

significant for several reasons (28-30).  Firstly, these antibodies confirmed that a single 

antibody was sufficient to activate the receptor, rather than two or more simultaneously.  

Secondly, they have permitted epitope mapping. One antibody preferentially recognized 

the free A subunit, not the holoreceptor, suggesting that free A subunit, shed from 

thyroid cells, may initiate or amplify the autoimmune response.  Another antibody, in 

contrast to TSH, did not enhance post-translational TSH-R cleavage, which may extend 

the receptor half-life and thus account for the prolonged thyroid stimulation seen 

following antibody binding.  Finally, these antibodies paved the way for the development 

of human monoclonal antibodies which have allowed a greatly improved understanding 

of the mechanisms involved in Graves’ disease. 

  

The first human monoclonal TSH-R stimulating antibody bound to the TSH-R with high 

affinity, either as IgG or as Fab fragment, and the monoclonal had similar features in all 

respects to known TSAb (thyroid stimulating antibodies) (31).  This observation indicated 

that only a single species of antibody is needed to stimulate the receptor. More 

conventional approaches based on different methods of expressing the TSH-R have 

shown that TSAb preferentially recognize the free A subunit rather than the holoreceptor, 

either because of steric hindrance from the plasma membrane or membrane spanning 

region of the receptor or because of TSH-R dimerization (32).  The epitopes for TBAb 

overlap with those for TSAb but are more focused on the C terminus and are able to 

recognize holoreceptor more efficiently.  These observations have provided support from 

the hypothesis that shedding of free TSH-R A subunits may be critical in initiating or 

amplifying the autoimmune response in Graves’ disease.  Further evidence comes from 

immunization of mice with adenoviruses expressing different structural forms of the TSH-

R: goiter and hyperthyroidism occur more frequently when mice are given virus that 

expresses the free A subunit rather than a receptor with minimal cleavage into subunits 

(33). 

  

Patients with autoimmune thyroid disease may have both stimulating and blocking 

antibodies in their sera, the clinical picture being the result of the relative potency of 
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each species. Switching between one type of antibody and another in unusual patients, 

involving changes in concentration, potency and affinity, may be caused by a number of 

factors including levothyroxine treatment, antithyroid drug treatment and pregnancy, and 

can lead to difficulties in clinical care (35). TSH-R neutral antibodies have also been 

identified which do not block TSH binding and are unable to stimulate cAMP production; 

these antibodies are capable of inducing thyroid cell apoptosis in vitro and therefore 

could conceivably play a role in pathogenesis by inducing release of thyroid 

autoantigens (36). 

 

Identification of the critical T cell epitopes has proved elusive although peptides 132-150 

do appear to constitute one key epitope; there is poor correlation between binding 

affinity and T cell immunogenicity in experiments to attempt such localization (37).  In 

animal studies, however, there is clear evidence of epitope spreading when mice are 

immunized with TSH-R peptide epitopes or TSH-R cDNA, indicating that dominant TSH-

R epitopes are, at best, elusive (38). TSH-R mRNA transcripts and protein have been 

identified in retrobulbar ocular tissue, particularly the preadipocyte fibroblast, suggesting 

that TSH-R expression in the orbit could well be involved in the development of 

autoimmunity and ophthalmopathy, and similar TSH-R-expressing fibroblasts have also 

been found in the thyroid gland itself (39). Further support for involvement of the TSH-R 

comes from experiments showing that activation of the TSH-R stimulates early 

differentiation of preadipocytes, but terminal differentiation is not induced (40).  An 

animal model with some features of similarity to human ophthalmopathy has been 

induced in mice by immunization with TSH-R A subunit plasmid given by a specific 

electroporation protocol (41). Oddly there was no thyroid lymphocytic infiltrate to 

accompany these orbital changes, which were very heterogeneous between immunized 

animals. It should also be noted parenthetically that an alternative pathway for fibroblast 

involvement in ophthalmopathy has been proposed which depends on the production of 

insulin-like growth factor antibodies in these patients but it is difficult to reconcile these 

findings with the orbital specificity of the autoimmune process in thyroid eye disease 

(42). Most recently, TSH-R has been identified in immature thymocytes, which can be 

stimulated by TSAb. This could in turn explain why thymic hyperplasia is seen in 

occasional cases of Graves’ disease (42a). 

 

Thyroid Peroxidase 
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The third thyroid antigen was described as "microsomal antigen" was identified as 

thyroid peroxidase (TPO) in 1985 (43) (Fig. 7-8). DeGroot’s laboratory demonstrated that 

human antisera reacting to "microsomal antigen" precipitated human thyroid peroxidase 

(TPO) prepared from Graves' disease thyroid tissue () (Fig. 7-8) and at the same time 

Czarnocka et al. purified human TPO and confirmed identity with the microsomal antigen 

(44).  The cDNA was cloned and sequenced in several laboratories (45-48). The 

interaction of human anti-TPO antisera and monoclonal antibodies also indicate the 

presence of several B cell epitopes which map to two main domains, A and B (reviewed 

in 49).  Further experiments with monoclonal antibodies have defined individual amino 

acid residues that are critical for the two immunodominant regions (50). The epitopes 

recognized by antibodies are stable within a patient and may be genetically determined 

(51). Investigation of TPO epitopes recognized by T cells from patients with AITD has 

produced conflicting results but certain sequences are beginning to emerge which are 

shared between reports on various patients (52, 53). There is also debate as to whether 

patients with autoimmune hypothyroidism differ in their pattern of epitope recognition 

from healthy controls who are TPO antibody positive, and further work is required to 

analyze this in detail, as it might allow better prediction of those antibody positive 

individuals who will progress to overt hypothyroidism (54) 

 

TPO is expressed on the thyroid cell surface as well as in the cytoplasm, and likely 

represents the cell-surface antigen involved in complement-mediated cytotoxicity as well 

as antibody-dependent cell mediated cytotoxicity (55).   Intracytoplasmic binding of 

antibodies to TPO indicates that there is access to this compartment, but the 

consequences in vivo are unclear.   
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Figure 7-8: Precipitation of peroxidase activity by sera from a patient with autoimmune 
thyroid disease and positive “microsomal” antibodies, and from a control subject without 
circulating antibodies. TPO was precipitated by primary incubation with human sera, and 
removal of TPO-Ig complexes was achieved by addition of Protein H-Sepharose CL-4B. 
Residual hTPO activity in the supernatant was assayed in a guaiacol assay. 

 

  

Other Antigens 

Antibodies against the sodium/iodide symporter (NIS) were first shown functionally in 

cultured dog thyroid cells (56).  Up to a third of Graves’ disease sera contain antibodies 

capable of blocking NIS-mediated iodide uptake in cells transfected with the human NIS 

but the relevance of this for thyroid function is unclear (57).  The same antibodies have 

also been detected using an immunoprecipitation assay (58).  Others have found no 

such blocking activity using assays with cell lines displaying much higher 131I uptake, in 

turn suggesting that any NIS blocking activity only occurs at limiting conditions (59).  

This implies that NIS autoantibodies probably have no effect in vivo.   NIS expression on 

TECs is upregulated by TSH and downregulated by cytokines and the latter could impair 

http://www.thyroidmanager.org/wp-content/uploads/2014/02/7-8.jpg
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thyroid function in the setting of AITD when such cytokines are synthesized in the thyroid 

(60). Pendrin, an apical protein responsible for mediating iodide efflux from thyroid cells 

into the follicular lumen, has also been identified as an autoantigen. Autoantibodies were 

initially found in 81% of patients with AITD by immunoblotting (more frequently and at 

higher titer in Hashimoto’s than Graves’ patients) and also in 9% of controls (61), but the 

frequency of these autoantibodies detected using a radioligand binding assay is rather 

low at around 10% of patients and no controls (62).  

 

Antibodies to a variety of other thyroid cell components are also occasionally present in 

AITD, including antibodies that react with thyroxine or triiodothyronine (63). The insulin-

like growth factor receptor has also emerged as a possible autoantigen involved in 

ophthalmopathy, with antibodies being detected in patients with this complication, and 

this receptor co-localizes with the TSH-R on both fibroblasts and thyrocytes (64). 

 

IMMUNE REACTIONS IN AUTOIMMUNE THYROID DISEASE 

 

Humoral Immunity  

The principal autoantibodies identified in AITD and the methods for detecting them are 

listed in Table 7-3.  Antibodies to the TSH receptor are discussed in detail in Chapter 10, 

but, in brief, observation of a factor in serum of patients with Graves' disease causing 

long acting stimulation of thyroid hormone release from an animal's thyroid, in contrast to 

the short acting stimulation produced by TSH, led directly to our knowledge of TSH-R 

antibodies.  We summarize here a huge amount of clinical and laboratory research.  The 

antibodies directed to the TSH-R are currently separated into three types.  Some 

antibodies bind to an important epitope in TSH-R and activate the receptor, producing 

the same effects as TSH, in particular causing generation of cyclic AMP.  These 

antibodies may be referred to as TSI or TSAb -- thyroid stimulating immunoglobulins or 

thyroid stimulating antibodies.  Other antibodies bind to different, or the same epitopes 

and interfere with radiolabelled TSH binding in certain assays -- thus they are known as 

thyrotropin binding inhibitory immunoglobulins or TBII.  Still others bind and prevent the 

action of TSH -- thus blocking antibodies.  These may either interfere directly with TSH 

binding or have less well characterized inhibitory effects.  Numerous other names have 

also been used historically.   
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TABLE 7-3 

ANTIBODIES REACTING WITH THYROID AUTOANTIGENS IN AITD AND 

TECHNIQUES FOR DETECTION 
Antigen Test Used To Identify Antibody 

TG Precipitin 
Hemagglutination assay 
Immunofluorescence on fixed sections of thyroid tissue: colloid 
localization 

localization Solid-phase RIA 
Immunoradiometric assay 
Hemolytic plaque assay 

Colloid component other than TG Immunofluorescence on fixed sections: colloid localization 

Microsomal antigen/ 
TPO 

Complement fixation 
Immunofluorescence on unfixed sections; 
thyroid tissue cell localization 
Cytotoxic effect on cultured thyroid cells 
Hemagglutination assay 
ELISA 
Solid-phase RIA 
TPO activity inhibition 

TSH-R Bioassay in mice 
cAMP production by thyroid cells, TSH- R transfected cells or membranes 
Iodide uptake by thyroid cells 
Thymidine incorporation by thyroid cells 
Inhibition of TSH action on thyroid cells 
Inhibition of TSH binding to cells or membranes 
Immunoprecipitation 

Sodium/iodide symporter Western blotting 
Immunoprecipitation 
Bioassay using cultured thyroid cells or cells transfected with the 
symporter 
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TSI cause non-TSH dependent stimulation of thyroid function, which, if of sufficient 

intensity, is hyperthyroidism. TBII comprise the mixture of TSI and TSH blocking 

antibodies, and therefore function cannot be predicted from the TBII level.  

Predominance of TSI characterizes Graves' disease, and TSH blocking antibodies are 

present in a small proportion of patients with Hashimoto's disease and primary 

myxedema.  Probably a combination is present in most patients with AITD.  Recent work 

indicates that both types of TSH-R antibody are present in Graves’ sera at low 

concentration with high affinity and similar (but nonetheless subtly distinct) binding 

epitopes (65). TSI directly cause thyroid overactivity, their level correlates roughly with 

disease intensity, and a drop in levels correlates loosely with disease remission.  Unlike 

TG and TPO antibodies which are polyclonal and not restricted by immunoglobulin 

subclass (reviewed in 66), there is evidence that some TSH-R are restricted to particular 

heavy and light chain subclasses, which may indicate an oligoclonal origin (67), and 

TSH-R stimulating antibodies are present at much lower concentration than TG and TPO 

antibodies.  

 

Normal subjects can have TSH-R antibodies that bind to but do not activate the TSH-R 

and that generally have low affinity.  These natural autoantibodies may be the 

precursors of the TSI that cause Graves’ disease and it is possible that affinity 

maturation, with class switching of immunoglobulin isotype, is critical in determining the 

clinical consequences of TSH-R antibody production. Conversely, using the most 

sensitive binding assays, there are still a very small number of patients with Graves’ 

disease who are apparently negative for these antibodies when their serum is tested; it 

is likely that the explanation lies in either assay sensitivity or exclusively intrathyroidal 

production of these antibodies (68). 

 

Precipitating antibodies to TG were first detected by mixing antibody and antigen in 

equivalent concentrations, or by agar gel diffusion, as in the Ouchterlony plate 

technique.  Subsequently, much more sensitive methods were developed, such as solid 

phase ELISA (69) and RIA (70), although for many years the tanned red cell 

hemagglutination test remained the assay of choice (71). Immunoradiometric assays 

(IRMA) used currently involve binding of serum antibodies to solid phase antigen, and 

secondary quantitation of antibody by binding labelled monoclonal anti-human Ig 
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antibody. These tests are very sensitive but lack specificity as so many healthy 

individuals are positive, albeit with a future risk of developing AITD.   

  

Antibodies directed against TG are rarely present in children without evidence of thyroid 

disease.  The prevalence in healthy persons increases with age, and low levels are 

frequently present in normal adults (72). The greatest frequency occurs in women aged 

40-60 years.  The frequency of antibodies in well persons correlates with the incidence 

of focal lymphocytic infiltration found on microscopic examination of thyroid tissue form 

healthy individuals (73). Over 90% of patients with Hashimoto's thyroiditis and primary 

myxedema have these antibodies.  Low to moderate titers are found in half of patients 

with Graves' disease.  TG antibodies are either absent or low in patients with subacute 

(De Quervain's) thyroiditis, who may present clinically like patients with Hashimoto's 

thyroiditis.  In general human TG and its autoantibody bind complement weakly due to 

the widely scattered epitopes which are unable to allow antibody cross-linking. 

 

The second important antigen-antibody system was originally recognized by antibodies 

which, by immunofluorescence, were observed to bind to non-denatured thyroid 

cytoplasm, to fix complement in the presence of human thyroid membranes 

(microsomes), or to bind to microsome-coated red cells (the MCHA assay).  We now 

know this antigen is TPO (see previous Section 3) (Fig. 7-8).  Almost all patients with 

Hashimoto's thyroiditis have TPO antibodies.  They also occur in the normal population 

in the absence of clinically significant thyroid disease: in a recent survey of a population 

followed for 20 years, 26% of adult women and 9% of adult men had TPO and/or TG 

antibodies (74).  However, the presence of such antibodies was shown to be associated 

with an increased risk of future hypothyroidism, especially if the TSH was also raised 

(subclinical hypothyroidism).  Few sera from AITD contain TG antibodies in the absence 

of TPO antibodies, but the converse is not always true, so it has been proposed that 

screening for AITD could be undertaken initially with assays for TPO antibodies (75).  

This is particularly the case if the hemagglutination assay is used for TG antibodies; 

sensitive RIAs may detect a very high frequency of TG antibodies in individuals with 

autoimmune thyroid disease, even more than TPO antibodies (76). Using modern types 

of assay, TG antibodies occurring in isolation from TPO antibodies are more commonly 

found, and thus measurement of both antibodies might have clinical utility in certain 

situations, for instance in diagnosing possible causes for impaired fertility in women (77). 



 27 

Antibodies detected by these techniques are believed to be similar to antibodies first 

described in the 1950s that fix complement in the presence of extracts from a thyrotoxic 

gland (78) and that have cytotoxic effects on thyroid cells (79). Sera from patients with 

Hashimoto's thyroiditis usually have high cytotoxic activity (80).  Complement-mediated 

sublethal injury probably occurs in vivo since complement containing complexes have 

been identified in thyroid tissue of patients with Graves’ disease and Hashimoto’s 

thyroiditis (81).  Thyroid cell expression of membrane proteins, especially CD59, helps 

prevent complement-mediated lysis (82), and this protein is upregulated by IL-1 and IFN-

γ. 

 

The cytotoxicity of circulating antibodies has also been explored using systems to detect 

antibody-dependent cell-mediated cytotoxicity (ADCC) in which nonimmunized 

lymphocytes (NK cells) or macrophages act as effector cells and kill antigen-coated 

target cells, following incubation of the targets with antibody (83, 84).  This reaction does 

not require complement, instead depending on the interaction of antibody on the target 

cell with Fc receptors on the effector cells.  The exact role of ADCC in the pathogenesis 

of autoimmune thyroid disease is unclear, as it has been investigated only as an in vitro 

phenomenon.  Antibodies capable of mediating ADCC on target cells include those 

against TG and TPO, but other antigens may also be targets, and sera from patients 

with Hashimoto’s thyroiditis, primary myxedema and Graves’ disease cause ADCC, 

although the frequency is lower in Graves’ disease (85). A further possible role for TPO 

antibodies has been suggested by the finding that these bind to cultured astrocytes and 

it is therefore possible that the controversial entity of Hashimoto’s encephalopathy is the 

result of some autoimmune cross-reaction between thyroid and central nervous system 

(86). 

 

Titers for all types of thyroid autoantibody obviously increase during the process of 

development of AITD.  It is possible that one critical step in the production of TG 

autoimmune responsiveness is the generation of immunoreactive C-terminal fragments 

during hormone synthesis (which results in oxidative stress); these fragments may also 

lead to preferential presentation of TG epitopes by thyroid cells (87). Natural 

autoantibodies against TG may be more important in the initiation of the response than 

previously thought.  These low affinity, mainly IgM antibodies, which are frequent in 

healthy individuals, can complex TG with complement and such opsonized complexes 
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can be taken up by B cells and presented to CD4+ T cells (88).  After first observation, 

antibody levels tend to be stable over months.   

 

Radioactive iodine therapy in Graves' disease leads to a rise in thyroid antibody levels 

during the first few months after treatment (89), and exposure to high levels of IFN-α in 

those with pre-existing autoantibodies also does this (90, 91).  With treatment of Graves' 

disease, or replacement therapy in Hashimoto's thyroiditis or myxedema, there is 

characteristically a gradual reduction in antibody levels over months or years, and some 

patients with total destruction of thyroid tissue eventually lose detectable antibody titers.   

  

There are two major conformational epitopes on the TG molecule that are recognized 

differentially by sera from healthy subjects and those with AITD; linear epitopes are 

recognized by polyclonal antibodies from healthy individuals (92-94).  Similar studies on 

TPO have indicated at least eight major domains for human autoantibodies which are 

probably conformational epitopes.  Using recombinant proteins and synthetic peptides, 

human anti-TPO antibodies are found to recognize apparently linear epitopes in the area 

of amino acids 590-622 and 710-722 (95) but, again, the important B cell epitopes are 

conformational.  

  

Peripheral blood mononuclear cells (PBMC) and thyroid lymphocytes from patients with 

AITD have among them activated cells that spontaneously secrete TG and TPO 

antibodies (96).  B cell production of antibodies to TPO and TG is most easily shown 

using cells incubated with mitogens (97).  Specific antibody secretion in response to 

PBMC stimulation by TG or purified TPO is more difficult to demonstrate (98).  In 

patients with AITD, approximately 50 B cells secreting anti-TG antibodies are found per 

106 PBMC (~2% of total Ig secreting cells) by using plaque-forming assays after 

stimulation of PBMC with pokeweed mitogen.  B cells from AITD patients synthesize 

antibodies in response to insolubilized TG bound to Sepharose (98), which appears to 

function as an especially good antigen.  There are reports of production of anti-TSH-R 

antibodies in vitro, but in general this response has been difficult to observe. 

  

In fully developed AITD, the thyroid is clearly an important source of autoantibody and 

spontaneous autoantibody secretion by B cells is easily demonstrable (99).  This is also 

supported by the histopathological features, including the demonstration of thyroid 



 29 

antigen-specific B cells and the occurrence of secondary immunoglobulin gene 

rearrangement in intrathyroidal lymphoid follicles, together with a congruent pattern of 

adhesion molecule and chemokine expression (100).  However, lymph nodes, bone 

marrow and possibly other organs also contribute to autoantibody production (101) and 

this explains why patients with apparently destroyed thyroid tissue, or those with 

resected thyroids, continue to have circulating thyroid auto-antibodies 

 

Cell-Mediated Immunity In Autoimmune Thyroid Disease 

Techniques for identification of T lymphocyte reactivity to foreign or autologous antigens 

depend on culturing mixed peripheral leukocytes or semi-purified thyroid or blood 

lymphocytes with an antigen to which the cells may have been pre-sensitized.  Upon re-

exposure to antigen, the sensitized cells change to a blast-like immature form, 

synthesize new protein, RNA, and DNA, and directly or through liberated effector 

molecules alter the function of target cells.  Different endpoints characterize the various 

assays, including measurement of [3H]-thymidine uptake, assay of migration inhibition 

factor (MIF), or leukocyte migration inhibition (LMI) (102), assessment of the mobility of 

lymphocytes, and cytokine assay, all after stimulation with antigen in culture. 

  

Numerous reports have shown that T cell immunity can be detected in Graves' disease, 

Hashimoto’s thyroiditis, and primary myxedema, although responsivity of T cells to 

thyroid antigens is much less than to exogenous antigens such as tetanus toxoid or 

tuberculin.  Peripheral blood T cells respond to incubation with TG or TPO in the form of 

a microsomal preparation by thymidine incorporation, the so-called proliferation assay 

(103, 104).  Responses by separated lymphocytes are generally weak; better responses 

are seen by adding IL-2 to thyroid antigen-stimulated cultures of diluted whole blood 

(105).  Thyroid T cells responding to TG are of the CD4+ T helper type (106), or 

occasionally CD8+ cells (107).  T cells also respond to crude thyroid antigen extracts in 

LMI assays (102).  T cell lines and short term T cell clones (CD4+) are stimulated during 

co-culture with TECs to incorporate [3H]-thymidine; DR+ TECs are especially effective 

stimulators (108 - 110).  The identity of the antigen recognized on TECs is unknown but 

may well be TPO and/or TG. 

The specific peptide epitope fragments of TPO recognized by lymphocytes of patients 

with HT were noted previously.  T cell epitopes present within the extracellular domain of 
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the TSH-R are also heterogeneous with peptides bearing sequences of aa  158-176, 

237-252, and 248-263 and 343-362 being especially important (111) but other epitopes 

(aa 57-71, 142-161, 202-221, 247-266) have been identified by others using different 

assay parameters (112).  HLA-DR3 molecules bind TSH-R peptides with high affinity, 

which may explain the genetic association of this HLA specificity with Graves’ disease 

(113). 

  

T cell responses to an antigenic stimulus may use a wide variety of variable (V) TCR 

gene segments, or the response may be restricted to a few V segments.  Restriction of 

autoreactive T cells to use of one or more V gene segments has been found in some 

experimental autoimmune models (4).  Restricted Vα  and Vβ  usage in the whole 

intrathyroidal lymphocyte population has been reported (114, 115) but not confirmed by 

others (116, 117).  However, intrathyroidal CD8+ T cells do display a degree of 

restriction although their autoreactive potential is at present not known (118).  

Presumably at an early stage of disease, the T cell response is clonally restricted, but as 

it advances, spreading of the immune response occurs, involving many more epitopes, 

leading to an unrestricted response as demonstrated in an animal model of AITD (119). 

Evidence has emerged of a combined TG and TPO epitope-specific cellular immunity, 

with CD8+ T cells reacting against these epitopes rising to 9% in the peripheral blood of 

patients with long-standing Hashimoto's thyroiditis (120). 

      

While T cell immunization is conventionally recognized by a stimulatory effect of antigen, 

direct T cell cytotoxicity of thyroid cells has been recognized in a few studies.  For 

example, Davies and co-workers developed a CD8+ T cell clone which was cytotoxic to 

autologous TEC and was appropriately class I restricted (121).  Another potential 

consequence of T lymphocytic adherence to thyroid cells is the stimulation of thyroid cell 

proliferation via ICAM-1/LFA-3 interaction, rather than their destruction, which could lead 

to goiter formation (122). 

 

Immune Complexes 

In addition to the antibody and T cell responses, circulating immune complexes are 

found in patients with autoimmune thyroid disease as would be anticipated], although 

their pathogenic importance appears minimal.  In a certain sense this is most fortuitous.  

Since many individuals have circulating TG antibodies and antigen, if the immune 
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complexes caused serious disease, it would be a catastrophe. Fortunately the immune 

complexes of TG and its antibody do not bind complement and do not cause serious 

illness such as immune-complex nephritis, except in rare instances (123, 124). Immune 

complexes, including complement terminal components, can however be recognized 

around the basement membrane of thyroid follicular cells (81) and may cause sublethal 

effects including release of proinflammatory mediators by TECs (125).   

 

K And Nk Cell Responses 

Many studies have been reported on natural killer (NK) cell activity and antibody 

dependent cell-mediated cytotoxicity (ADCC); their conclusions vary.  Endo et al (126) 

found NK cells were decreased in Graves' disease and Hashimoto's thyroiditis, and 

presented evidence that this was due to saturation of their Fc receptors by immune 

complexes.  Normal NK effector function was found in Hashimoto's thyroiditis PBMC 

(127) in one study, although by phenotyping, decreased NK cells in Graves' disease, 

and increased NK cells in Hashimoto's thyroiditis were reported in another (128).  ADCC 

of thyroid cells, mediated by normal PBMC, was induced by TPO antibody positive sera 

(129) but other, unknown antibody-antigen systems may also contribute (85).  Effector 

cell activity in ADCC was increased in Hashimoto's thyroiditis and in post-partum 

thyroiditis, and thought to be related to thyroid cell destruction (130).  Other data have 

indicted that ADCC may be more important in primary myxedema than Hashimoto’s 

thyroiditis explaining the difference in clinical presentation (131), but this has not been 

confirmed in studies showing equal ADCC activity in sera from both diseases (132).   

 

Cytokines 

Cytokines lie at the heart of the autoimmune response and can have a number of direct 

and indirect effects (Fig. 7-9).  For example, IFN-γ is produced in the thyroid by 

infiltrating lymphocytes and causes HLA class I expression on the surface of TECs to 

increase and initiates class II expression.  It also has a direct inhibitory function on TEC 

iodination and TG synthesis (133, 134). Caveolin-1 and TPO form part of the apical 

thyroxisome, responsible for thyroid hormone synthesis. Recent studies have shown that 

Th1 cytokines down-regulate caveolin-1, leading to intracytoplasmic thyroxine synthesis 

and mislocalization of the thyroxisome. Disruption of the thyroxisome in this manner may 

then lead to damage by reactive oxygen metabolites and apoptosis in Hashimoto’s 

thyroiditis (135). 
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Figure 7-9: Interactions between thyroid follicular cells and the immune system in 
autoimmune thyroid disease. Reproduced from Weetman AP, Ajjan R, Watson PF. 
Bailliere’s Clin Endocrinol Metab 11: 481-497, 1997 with permission. 

 

 

IFN-γ is not essential for the development of AITD in mice but exacerbates disease 

activity (136).  IL-2 can activate lymphocytes to produce IFN-γ, and activate NK cells.  

TNF is produced by infiltrating macrophages and is potentially cytotoxic to TEC.  TEC 

can produce several cytokines, including IL-1, which may activate T cells, IL-6, which 

stimulates T and B cells and IL-8, a chemokine which attracts inflammatory cells 

(reviewed in 134). More recently IL-14 (taxilin) and IL-16 production by TECs has been 

described: the former regulates B cell growth and the latter is a chemoattractant for 

CD4+ cell (136a). Dendritic cells are important sources of IL-1β and IL-6 in the thyroid 

and can inhibit thyroid follicular cell growth (137). As an aside, plasmacytoid dendritic 

cell numbers are decreased in the blood in AITD, together with an alteration in their 

phenotype, but these cells increase in the thyroid gland, also suggesting that this cell 

type may be important in pathogenesis (138)  

 

http://www.thyroidmanager.org/wp-content/uploads/2014/02/7-9.png
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IL-1α causes dissociation of junctional complexes between thyroid cells which could 

expose hidden autoantigens (139).  An ever wider array of factors besides the classical 

cytokines has been implicated in the pathogenesis of AITD, including the finding that 

thyroid cells can release angiopoietin-1 and -2 (140). These ligands serve as a 

chemoattractant for monocytes and the angiopoietin receptor, Tie-2, is increased in 

monocytes form AITD patients, suggesting a role for monocytes in thyroid damage. 

Vascular endothelial growth factor expression is increased in AITD and is important in 

angiogenesis in autoimmune goiters (141).  Cytokines also seem to play a major role in 

the pathogenesis of thyroid-associated ophthalmopathy through their stimulatory actions 

on orbital fibroblasts (142).  Exogenous cytokines given therapeutically can also 

precipitate autoimmune thyroid disease, probably in predisposed individuals.  The best 

described such reaction is α interferon used in hepatitis C and cancer therapy (90). 

Destructive thyroiditis accounts for the majority of thyroid dysfunction after treatment with 

this cytokine, and risks are highest in white women, whereas smoking is protective (91). 

 

6. SUMMARY 

To summarize, augmented pools of activated and resting T and B cells reactive to 

thyroid antigen exist in patients with AITD.   The time course of development of these 

reactive cells, before clinical disease is apparent, has not been established.  The cells 

respond to biochemically normal antigen, and some reactive cells exist in otherwise 

healthy individuals.  Immune complex formation appears to be of limited importance in 

the disease process.  K and NK activity may be reduced in Graves' disease and 

increased in Hashimoto's  thyroiditis and may contribute to the course of the disease: 

proliferative in Graves' disease and destructive in Hashimoto's  thyroiditis.  Cytokines 

have multiple actions in the thyroid in AITD and are likely to determine clinical 

manifestations such as ophthalmopathy.  The role of the TEC in the autoimmune 

response is not simply passive and, as discussed below, the interaction between TECs 

and cells of the classical immune system may be critical in determining the outcome of 

an initially mild thyroiditis.  

 

EXPERIMENTAL THYROIDITIS IN ANIMALS 

Chronic thyroiditis histologically identical to that in Hashimoto's thyroiditis occurs 

spontaneously in Obese strain (OS) chickens (143), beagles (144), mice, and rats. It can 

be induced in dogs (145), mice, rats, hamsters, guinea pigs, rabbits, monkeys (146), and 
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baboons (147) by immunization with autologous  or allogenic thyroid homogenate mixed 

with adjuvants, or by using heterologous TG , or TG that has been arsenylated or 

otherwise chemically modified. The need for modification of TG or adjuvant to break 

tolerance can also be overcome by immunization with cDNA (148).  An important 

thyroiditogenic epitope includes a thyroxine residue (aa 2553) in human TG (149, 150) 

but the role of iodination at this site is unclear and may depend on the type of T cell 

assay system used, as well as other parameters (151). Mice have been the most 

frequently used model and have provided key insights into genetic susceptibility, 

pathogenesis and the development of Treg and autoreactive T cell repertoires (152). 

  

Induced thyroiditis leads to formation of humoral antibodies and T cell- mediated 

immunity. Usually the histologic pattern conforms to that of T cell-mediated immunity 

(153).  The role of TG antibodies is unclear but likely to be minor.  An idiotype-anti-

idiotype network exists for TG antibodies in mice but the induction of those antibodies 

does not lead to thyroiditis (154).  Furthermore, the intensity of the thyroiditis correlates 

better with T cell-mediated immunity than with antibody levels, and can be transferred by 

T cells but not antibodies, and both CD4+ and CD8+ T cells are usually needed for 

transfer (155).  In normal mice, thyroiditis can be produced by immunization with mouse 

TG in adjuvant, and transferred to isogenic animals by sensitized Ly-1+ T cells.  The 

same cells, given before immunization, vaccinate against the development of thyroiditis 

during subsequent immunization (156).   

 

However, a subpopulation of CD4+ T cells has an important regulatory role in tolerance 

to murine TG, keeping in check those TG-reactive T cells which escape thymic deletion 

and peripheral anergy-inducing mechanisms (157).  Amelioration of thyroiditis by oral 

administration of TG (158) operates through enhancing the activity of these regulatory T 

cells although other mechanisms are possible.  More recent studies have emphasized 

the importance of regulatory T cells in suppression of thyroiditis in animals immunized 

with TG.  In particular, semi-mature dendritic cells, which can be induced with 

granulocyte-macrophage colony stimulating factor, can induce the function of TG-

specific CD4+, CD25+ T cells which can suppress thyroiditis through the production of IL-

10 (159, 160).   
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Figure 7-10:  Control of thyroid antigen-specific T cells in experimental autoimmune 
thyroiditis. Development of disease depends on the balance of these factors, and their sites of 
operation are shown as dotted lines. Reproduced from (255) with permission. 

 

Another model has used homologous (murine) TPO in an immunization protocol and this 

method established thyroiditis and TPO antibody production although none of the 

immunized mice developed hypothyroidism (161). HLA-DRB1*0301 (DR3) transgenic 

mice have been created which are susceptible to thyroiditis induced by TG 

immunization, unlike DR2 transgenics, thus confirming that HLA-DRB1 polymorphism 

determines susceptibility to autoimmune thyroiditis, and his model has been extended to 

study of the immune response to TSH-R, with results again showing the importance of 

the DR3 specificity (162).  However, when modeling has attempted to reproduce Graves’ 

disease by immunization of mice with adenovirus expressing the TSH-R, it is non-MHC 

genes which play a major role in controlling the development of hyperthyroidism (163).  

This concurs with the polygenic susceptibility and rather weak effect of HLA-DR3 in 

Graves’ disease. The DR3-transgenic model has also been used to show that dietary 

iodide enhances the development of thyroid disease and depletion of CD4+, CD25+ 

Tregs exacerbates this iodide-induced thyroiditis (193a) 

  

Spontaneous thyroiditis in OS chickens more closely resembles Hashimoto’s thyroiditis 

than the immunization models just discussed, particularly as the birds develop 

http://www.thyroidmanager.org/wp-content/uploads/2014/02/7-10.png
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hypothyroidism as a consequence of the autoimmune process.  Some evidence 

suggests that the thyroid of the newly hatched chick is intrinsically abnormal, since its 

function is partially non-suppressible by thyroid hormone and this constitutes an 

important element of the genetic susceptibility of these birds, together with genes 

controlling T cell responses and possibly glucocorticoid tonus.  The MHC conversely has 

only a limited effect.  Iodine plays a critical role in the induction of thyroid injury in OS 

chickens, most likely through the generation of reactive oxygen metabolites, and this 

injury is an early event, preceding lymphocytic infiltration (165).  Iodination of TG is a 

second path by which iodine influences disease in OS chickens, as autoreactive T cells 

respond to the antigen only if it is iodinated (166). 

  

Lymphocytic thyroiditis occurs spontaneously in the Buffalo and BB/W rat strains and the 

NOD (non-obese diabetic) mouse, especially the  NOD.H-2h4 line (167).  In both 

species, there are associated abnormalities in the animals' immune system.   As in the 

OS chicken, administration of excess iodine augments the incidence of rat thyroiditis and 

iodine depletion reduces it (168).  Iodine also enhances the susceptibility of NOD mice to 

thyroiditis, and further exploration of this model has demonstrated a key role for Th17 

cells which accumulate within the thyroid (169). IL-17-deficient mice have a markedly 

reduced frequency of TG autoantibodies and thyroid lesions. Furthermore, selenium 

supplementation lowers serum TG antibody levels and decreases the prevalence of 

thyroiditis and the degree of infiltration of lymphocytes in iodine-treated NOD mice 

(169a). The susceptibility of NOD mice has also been exploited in a model in which the 

CCR7 gene was knocked out in this strain: such mice do not develop diabetes but do 

develop severe inflammation elsewhere including a severe thyroiditis with TG 

autoantibody formation and hypothyroidism (170). CCR7 is a chemokine receptor which 

is expressed by Tregs; the CC7-deficient mice had lower numbers of these cells. As well 

as this effect, it is possible that CCR7 deficiency impaired negative selection of thyroid 

reactive T cells.  

 

Another intriguing aspect of this model comes from long-term observations in NOD.H-

2h4 mice which have shown that TG antibodies occur initially and much later TPO 

antibodies appear, suggesting that tolerance at the B cell and presumably T cell level is 

broken first for TG and then by spreading (see above) for TPO (171). These results 

suggest a more important role for TG as an autoantigen in AITD than it is currently 
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assigned.  When engineered through CD28 knockout to have a deficiency of Treg cells, 

NOD mice develop more severe thyroiditis than control animals, with thyroid fibrosis and 

hypothyroidism. Transferring healthy Treg cells reduces thyroiditis without increasing the 

total number of Treg cells, suggesting that endogenous Tregs in these mice are 

functionally defective (172). 

 

The iodine-accelerated thyroid autoimmunity which occurs in NOD.H2(h4) mice  is 

associated with TG and TPO but not TSH-R autoantibodies However transgenic animals 

expressing the human TSH-R A-subunit develop pathogenic TSH-R antibodies which 

can be detected in standard bioassays, and this is especially the case in female animals 

(172a).  These antibodies only weakly cross-react with the murine TSH-R and so do not 

cause hyperthyroidism.  

A third kind of model is produced by manipulation of T cells.  The original description of 

thyroiditis in genetically susceptible rats by sublethal irradiation and thymectomy (173) 

has been followed by a number of more refined models in which T cell subsets can be 

perturbed more or less specifically to induce disease.  For instance CD7/CD28 double-

deficient mice have impaired Treg function and such animals develop spontaneous 

thyroiditis after 1 year of age (174).  These experiments clearly demonstrate the 

recurrence of autoreactive T and B cells in normal animals and show that any of a 

number of factors which can perturb the regulation of these could result in autoimmune 

thyroiditis (Fig. 7-10).  The most elegant model resulting from T cell manipulation is the 

generation of transgenic mice expressing a human T cell receptor specific for a TPO 

epitope, which resulted in a spontaneous destructive hypothyroidism and hypothyroidism 

(175).  The CD8 T cells recognizing the epitope in these animals unconventionally were 

MHC class II rather than class I restricted and it is unclear whether this atypical behavior 

is significant to the creation of the model, nor is it yet clear what the mechanism is for 

thyroid cell destruction. 

 

Another intriguing model is one in which necrotic thyroid cells can induce maturation of 

dendritic cells in vitro, and when injected back into autologous mice EAT is induced, with 

a lymphocytic thyroiditis and TG-specific IgG (176). It is not clear whether this protocol 

yields cryptic TG epitopes which can break tolerance. It is possible that such work could 

be reversed therapeutically to allow attenuation of EAT by pulsing tolerogenic dendritic 

cells. 
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Establishing an animal model of Graves’ disease has been surprisingly difficult despite 

the cloning of the TSH-R.  Spontaneous models are not obvious, suggesting that critical 

differences in the TSH-R receptor between man and other mammals (such as 

glycosylation) may be necessary to break tolerance (177). However, immunization of 

AKR/N mice (but not other strains sharing the same MHC haplotype) with murine 

fibroblasts doubly transfected with the human TSH-R and haploidentical MHC class II 

genes results in a syndrome similar to Graves’ disease except that thyroid lymphocytic 

infiltration was not induced (178), whereas thyroiditis is a feature of immunization with 

the TSH-R (179).  This is a promising model although its exact physiological parallel 

remains unclear, particularly as fibroblasts may behave differently to TECs in terms of 

antigen presentation.  This is because the fibroblasts used express the critical 

costimulatory molecule B7-1 and also because the procedure causes generalized in vivo 

immune activation.  This model is therefore not evidence that thyroid follicular cells 

(which do not normally express B7) could initiate thyroid autoimmunity.  

 

More recent models include the use of transgenic mice expressing the A-subunit of the 

TSH-R, which develop lymphocytic infiltration of the thyroid, hypothyroidism and 

autoantibodies against TG and TPO as well as TSH-R following immunization with the 

TSH-R expressed in adenovirus and regulatory T cell depletion (180). Although 

obviously a contrived system, this model does clearly show that spreading of the 

immune response can occur to include the normal array of antibodies found in patients, 

and that this can result in a severe thyroiditis. Some of the difficulties in producing 

reliable animal models of Graves’ disease are seen in the disparity between 

hyperthyroidism in the animal and the presence of TSH-R antibodies detected by 

bioassays using human TSH-R. This may be the result of loci in the immunoglobulin 

heavy chain variable region contributing in a strain-specific manner to the development 

of antibodies specific for the human or the mouse TSH-R (181). This novel finding of a 

role for immunoglobulin heavy chain variable region genes in TSI specificity indicates a 

possible role for them genetic susceptibility to human Graves' disease. 

 

One unexpected finding has been the observation that mice with a TSH-R knockout do 

not differ in their response to immunization with TSH-R when compared to healthy 

animals, whereas the expectation was that such animals would have no tolerance to this 
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autoantigen (as it had been absent throughout development) and therefore a greater 

immune response would be predicted (182). This suggests that thymic (central) 

tolerance is not a critical step in self tolerance to this autoantigen.   The same 

conclusions have been drawn from the finding of similar intrathymic transcript levels of 

thyroid autoantigens (TPO and TSH-R) in mice which are genetically susceptible or 

resistant to the development of EAT (183). However the situation may be more complex 

than originally imagined, as the same group has identified a role of the Aire gene in the 

response to TSH-R and in Aire-deficient mice, intrathymic transcripts of TSH-R and TG 

are reduced while the expression of TPO is nearly abolished (184).  These results are 

compatible with the finding of an increase in AITD in autoimmune polyglandular 

syndrome type 1, but at a much lower frequency than the classical disorders of 

Addison’s disease and hypoparathyroidism.  It is also intriguing that TPO transcripts are 

so much more affected in the Aire-deficient murine thymus, perhaps explaining (via more 

rigorous tolerance) the rather weak response to this autoantigen, compared to TG, in the 

mouse. 

 

Balb/c strain mice appeared to develop orbital changes suggestive of ophthalmopathy 

when given TSH-R primed T cells derived from donor mice immunized with TSH-R 

protein or cDNA but this model has not proved reproducible by the original authors, for 

reasons which are not yet clear, although complex histological artefacts may be part of 

the answer (185). A somewhat more convincing model of ophthalmopathy has been 

described recently in which deep injection of plasmid containing the TSH-R A subunit 

into the leg muscles of BALB/c mice followed by electroporation resulted in a wide 

variety of histological orbital changes and obvious eye signs (41). However the animals 

developed TSH-R blocking rather than stimulating antibodies and thyroiditis was absent. 

Nonetheless these finding support a pathogenic role for the TSH-R in the pathogenesis 

of thyroid eye disease.   

 

The clear general concept to be derived from all of these studies is that a genetically 

controlled balance of helper and suppressor T cell function is needed to prevent 

autoimmunity, and that a variety of perturbations can lead to onset of the disease.   

 

RELATION OF THE IMMUNE RESPONSE TO THE THYROID CELL: STIMULATION 

AND DESTRUCTION 
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For certain we know that the autoantibodies can stimulate the thyroid and cause 

overactivity in Graves' disease, and can in select circumstances inhibit thyroid function 

and cause hypothyroidism in neonates and some adults.  Whether thyroid antibodies are 

primary cytotoxic agents in AITD remains an unsettled issue.  TG antibodies are 

probably not normally cytotoxic, but TPO antibodies can certainly mediate complement-

dependent thyroid cell cytotoxicity and ADCC. However, the frequently reproduced 

natural experiment of transplacental antibody passage from a mother with AITD to her 

fetus, without evidence of thyroid damage, clearly shows that antibodies alone are not 

destructive to the thyroid.   

  

Cell-mediated immunity is thought to be important in thyroid cell destruction, and T cells 

have been shown to be reactive to TECs.  T cell lines or clones have been shown to 

react to TECs (108-110), but the nature of the antigen recognized is unknown.  One 

CD8+ T cell clone in man has been shown to be cytotoxic specifically to autologous 

TECs (121), suggesting that cell-mediated TEC destruction is an important process, and 

similar activity has been reported in CD8+ T cell lines and clones derived from mice with 

experimental autoimmune thyroiditis (186).  A second type of T cell-mediated cytotoxicity 

is that mediated by γδ TCR-bearing T cells and specific recognition of TECs by such 

cells has been reported in Graves’ disease, but the exact autoantigen involved is 

unknown (187).  In animals it is clearly shown that there can be a marked dissociation 

between the extent of histologic thyroiditis and the levels of antibodies, again suggesting 

that T cells rather than antibodies mediate cell destruction.   However, it must be 

admitted that the hard evidence for direct T cell-mediated cytotoxicity in thyroid 

autoimmunity in man is meagre at present. 

  

There are 3 mechanisms by which T cells might mediate TEC destruction and evidence 

for all 3 operating in AITD has accrued.  Firstly, cell lysis might be effected via T cell-

derived perforin, which leads to pore formation in target cell surfaces, and certainly the 

thyroid lymphocytic infiltrate contains perforin-expressing T cells in AITD (188).  

Secondly, T cells expressing Fas ligand, especially the CD8+ subset, can induce 

apoptosis in TECs expressing Fas (189).  Fas is induced by IL-1β on TECs, whereas 

TSH-R stimulation inhibits Fas expression (190) and this may lead to the involvement of 

this pathway in Hashimoto’s thyroiditis but not Graves’ disease, as TSI would act like 

TSH in the latter to diminish Fas expression (and other regulatory molecules).  It has 
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been suggested that T cells may not be necessary, as Hashimoto TEC may express Fas 

ligand, and autocrine/paracrine interaction with Fas may lead to TEC death (191).  The 

mechanisms for this are unclear and as yet there is no consensus on the role this may 

have in AITD.  The picture is complicated by the upregulation of molecules which protect 

against apoptosis such as Bcl-2.  The pattern of expression of this molecule is different 

in Graves’ and Hashimoto’s diseases, suggesting that TECs are protected in the former 

and more sensitive to destruction in the latter (192).  Whether these differences depend 

on cytokines, genetics or other factors is unknown (193).  Finally, T cell-derived 

cytokines can injure the TECs directly, leading to functional impairment (133-135), and 

by triggering other phlogistic pathways such as nitric oxide synthesis (194). 

 

POSSIBLE EXPLANATIONS FOR AUTOIMMUNITY 

Many reasons for the development of autoimmunity have been advanced, and these are 

briefly catalogued below. Cross-reacting epitopes, aberrant T or B cell regulatory 

mechanisms, inheritance of specific immune response-related genes, and aberrant HLA-

DR expression on TECs have all at some time been considered important for 

development and progression of thyroid autoimmunity. 

 

1. Abnormal presentation of antigen could occur due to cell destruction, or viral 

invasion, so that large amounts of antigen or cell fragments are liberated locally 

into the lymphatics. Excessive levels of antigen are produced, thereby 

overwhelming the usual low dose tolerance mechanism.   

 

2. Abnormal antigen could be produced by a malignancy, or damage to the cell by 

viral attack, or other means.  This antigen could be a partially degraded or 

denatured normal antigen, for example.   

 

3.  Cross-reacting bacterial or viral epitopes e.g. Yersinia enterocolitica (195) could 

induce immune responses that happen to cross-react with a self-antigen having 

identical conformation.  An extension of this concept is that the normal anti-

idiotypic control response happens to produce an Ig or T cell that cross-reacts 

with self-antigen.  For example, experimentally produced anti-idiotypic 

monoclonal antibodies directed to TSH antibodies bind to and stimulate the TSH-

R (196). 
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4. Somatic mutation of a TCR gene could lead to a clone of self-reactive cells.  

However, somatic mutation of TCR genes is believed to occur very rarely if at all, 

and such monoclonal or oligoclonal activation has not been documented in 

autoimmune disease.  Somatic mutation of B cell Ig genes is, as described 

above, a normal phenomenon during an antigen-driven proliferative response.  

Such an event could occur by chance during response to any antigen and this 

does not effectively introduce any new variable, since B cells capable of 

producing Igs that can react with self-antigens are already normally present.  

However, TSI seem to be clonally restricted and, until the V gene usage of these 

antibodies is documented, it remains possible that Graves’ disease is due to the 

inheritance of a unique, etiologically critical V gene encoding TSI. 

 

5.  Inheritance of specific HLA, TCR, or other genes that code for proteins having 

especially effective ability to process or present antigen.   

 

6. T cell or B cell feedback control mechanisms could be aberrant due to hereditary 

or environmental factors.   

 

7. Failure of clonal deletion could leave self-reactive T cells present in the adult.  In 

fact this is clearly normal, as described above.   

 

8. Failure of normal maturation of immune system could allow fetal T and B cells 

that are autoreactive and of wide specificity to persist.   

 

9. Polyclonal activation of T or B cells, by some unknown stimulus, could lead to B 

cells producing self-reactive Ig, in the apparent absence of antigenic stimulus.  

This theory is in a sense impossible to disprove but would need to co-exist with 

other abnormalities to explain disease remission, genetic associations, 

associated diseases, etc.  Polyclonal activation is not typical of peripheral 

lymphocytes of patients with AITD (197). 

 

10. TECs could express MHC class II molecules as a primary event and then could 

function as APCs, including antigens on their cell surface.    



 43 

 

11. Environmental factors could distort normal control.  For example, stress or 

steroids may alter immunoregulation, and the potential role of dietary iodine has 

been mentioned above. 

  

Abnormal Exposure To Thyroid Antigens And The Effects Of Pregnancy 

Damage to the thyroid might release normally sequestered antigens, inducing an 

immune response.  Damage to thyroid cells does indeed occur in viral thyroiditis, such 

as in association with mumps or in subacute thyroiditis of unknown cause, but 

autoantibodies appear only transiently at low titer, and  progressive lesions of the thyroid 

do not usually occur (reviewed in 198, 199).  External irradiation to the thyroid, including 

that from nuclear fallout, can also lead to an increase in Graves' disease or thyroid 

antibody production (200, 201), but it is unclear if this is caused by autoantigen release 

or an effect on the lymphocytes which are radio-sensitive.  Even occupational exposure 

to ionizing radiation appears to be a risk factor for the development of autoimmune 

thyroiditis (202). Another possible example where exposure to thyroid antigens released 

by gland injury leads to autoimmunity is the rare case of precipitation of Graves’ disease 

and ophthalmopathy after ethanol injection of thyroid nodules (203). 

   

A powerful argument against the hidden antigen hypothesis is that TG is a normal 

component of circulating plasma (204).  One might turn the first argument around and 

suggest that thyroiditis results from a lack of exposure to TG at some period, an 

exposure that is necessary to depress continuously an otherwise inevitable immune 

response.  This suggestion has no clinical or experimental support, and the available 

evidence indicates that TG is present in the plasma of patients with active immunity.  It 

remains to be seen how sequestered TPO and TSH-R are, but the appearance of T cells 

capable of proliferating in response to these antigens, in apparently healthy individuals, 

also argues against any sequestration (205).  What is clear is that availability of the 

thyroid autoantigen is essential to maintain the autoimmune response: complete removal 

of thyroid antigens following thyroidectomy and remnant ablation with radioiodine leads 

to disappearance of antibodies to TG, TPO and TSH-R (206).  Although this is not 

surprising, it does suggest that extrathyroidal sources TSH-R are insufficient normally to 

maintain an autoimmune response.  
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A variant on this theme is that of microchimerism, the persistence of fetal cells in 

maternal tissues.  Studies have found evidence of microchimerism in thyroid tissue from 

patients with and without AITD (207, 208).  Could such sequestered fetal material make 

the thyroid prone to an alloimmune response, and be responsible for the exacerbation of 

AITD seen in the postpartum period?  If so, this phenomenon would help to explain the 

high frequency of AITD in women.  Twins from opposite sex pairs should have an 

increased risk of thyroid autoimmunity compared to monozygotic twins if microchimerism 

has a role, and indeed such twins have been found to have more frequent thyroid 

autoantibodies (209). However, although parity is associated with an 11% increase in 

the risk of all female-associated autoimmune disorders, there is no increase with multiple 

pregnancies, which rather argues against a microchimerism mechanism (210). During 

and after pregnancy, major changes in Treg function occur and direct effects on the 

cytokines produced by T cells can also be demonstrated (211).  It is these alterations 

that are most probably the ultimate cause of the increase in autoimmunity after 

pregnancy.  

 

It seems likely that sex steroids play a role in determining the autoimmune response.  

For instance, in a recent study of an animal model of Graves’ disease, 5α-

dihydrotestosterone was given to mice a week before immunization with TSH-R, and this 

reduced both the severity of the hyperthyroidism that developed and downregulated the 

Th1 response (211a). Another hypothetical reason for the unequal sex ratio is that 

skewed X chromosome inactivation could contribute through the failure of some 

autoantigens expressed on one X chromosome to be expressed at a critical point in the 

disease pathway. A recent survey of 309 patients with Graves’ disease and 490 with 

Hashimoto’s thyroiditis found skewed inactivation of the X chromosome in Graves’ 

disease (odds ratio 2.2) but not Hashimoto’s thyroiditis; when combined with 4 other 

studies in a meta-analysis, the results remained significant for Graves’ disease and 

reached significance for Hashimoto’s thyroiditis (odds ratio 2.4) (212). 

 

Abnormal Antigens 

An abnormal antigen might also serve to produce an immune reaction.  The protein 

abnormality could be either congenital or acquired by an injury such as a virus infection.  

To date there is no evidence which indicates that TG, TPO, or other proteins of the 

thyroid of a patient with autoimmunity are abnormal.  Minor allelic differences apparently 
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do occur but attempts to associate thyroid disease with polymorphisms of the TPO and 

TSH-R genes have been unsuccessful. 

 

Cross-Reacting Antigens 

The theory that immune reactivity to an environmental antigen could lead to antibodies 

that cross-react with thyroid antigens has been bolstered by studies which show a 

relationship between Graves' disease and antibodies to the common enteropathogen 

Yersinia enterocolitica.  An increased incidence of antibodies to Yersinia is found by 

some, but not all authors, in patients who have Graves' disease, and there are saturable 

binding sites for TSH on Yersinia proteins (213). After infection by Yersinia, human sera 

contain Igs that bind to TEC cytoplasm (195), and IgGs which appear to compete with 

TSH for binding to thyroid membrane TSH receptors (214).  The antigens involved may 

in fact include proteins encoded by plasmids present in the Yersinia, rather than intrinsic 

Yersinia proteins, but that does not alter the general concept (215).  Arguing strongly 

against a role for Yersinia is the fact that there is no unique pattern of serological 

immunoreactivity to Yersinia antigens in patients with AITD (216), and most patients with 

this infection do not develop Graves’ disease. Moreover, there was no association 

between Yersinia infection and autoimmune thyroid disease in a large prospective study 

of individuals developing AITD (217).  

 

In theory an initial response to one antigen might proceed by reacting to the other 

antigen, and thereby spread and augment the autoimmune process.  In the context of T 

cell autoreactivity there is much greater scope for molecular mimicry whereby a 

response to an exogenous epitope leads to a cross-reactive response to an endogenous 

autoantigenic epitope.  Simple sequence homology is insufficient to predict this, as 

shown elegantly by the cross-reactivity of two TPO epitopes showing a similar surface 

but not amino acid sequence (218).  This makes the prediction and study of molecular 

mimicry much more difficult than is generally appreciated (219). For these reasons, it 

may be naïve to believe that the putative orbital antigen responsible for ophthalmopathy 

has to be an identical protein to that expressed in the thyroid. 

 

VIRUS INFECTION 

Virus infection has for years been speculated to be an etiological factor in most 

autoimmune diseases, by causing cell destruction and liberating antigens, by forming 
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altered antigens or causing molecular mimicry, by inducing DR expression, or by 

inducing CD8+ T cell responses to viral antigens expressed on the cell surface.  Thyroid 

autoantibodies are elevated transiently after subacute thyroiditis, which is thought to be 

a virus-associated syndrome, but no clear evidence of virus-induced autoimmune 

thyroiditis in humans has been presented.  In this regard it is of interest that persistent, 

apparently benign virus infection of the thyroid can be induced in mice (220), and that 

infection of neonatal mice with reo virus induces a polyendocrine autoimmunity (Fig. 7-

11).  These agents could work by liberating thyroid antigens.  Virus infection might also 

augment autoimmunity by causing non-specific secretion of IL-2, or by inducing MHC 

class II expression on TEC.  Despite many attempts to implicate retroviruses in AITD, 

results to date remain inconclusive (221). Human T lymphotrophic virus-1 has been 

repeatedly associated with various autoimmune disorders, including Hashimoto’s 

thyroiditis; presumably the virus alters immunoregulatory pathways allowing 

autoimmunity to emerge (222). 
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Figure 7-11:   Autoantibodies to thyroid in sera of reovirus-infected mice detected by 
indirect immunofluorescence. (a) Frozen section of normal mouse thyroid incubated with 
sera obtained from mice 21 days after infection, showing staining of colloid characteristic of 
antithyroglobulin antibody (original magnification, X200). (b) Section of normal mouse 
thyroid (fixed in Bouin’s solution) incubated with sera obtained from mice 21 days after 
infection, showing staining of thyroid acinar cells (original magnification, X 200). 
Reproduced with permission from I. Okayasu and S. Hatokeyama, Clin. Immunol. 
Immunopath., 31:334, 1984. 

 

 

Lymphocyte Mutation And Oligoclonality 

Apart from the evidence that some TSI may have an oligoclonal origin (67, 223), there is 

no evidence to support a clonal B cell abnormality in AITD.  V gene usage by TSI will 

need to be analyzed to determine whether Graves’ disease has a unique pathogenesis 

http://www.thyroidmanager.org/wp-content/uploads/2014/02/7-11.jpg
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determined by germ-line immunoglobulin genes.  Thyroid-reactive T cells are present in 

healthy animals and man, as noted above, and therefore a defect at the clonal T cell 

level is less likely as a primary event in etiology than previously thought.  A few 

autoreactive T cells can be expected to escape tolerance normally, particularly if the 

autoantigen in question is not available to delete T cells in thymus during fetal 

development.  Stochastic events later in life affecting such undeleted T cells could 

readily explain the lack of complete concordance for AITD in genetically identical twins 

(224), and this lack of such concordance argues against an inherited pathogenic TCR as 

a primary event in AITD.   

 

Genetic Predisposition 

A role of heredity in AITD is clearly demonstrated by family studies (225, 226). The role 

of heredity in AITD is clear, since there is an increased frequency of AITD among family 

members, first degree relatives, and twins of patients with the illness (227).  Indeed a 

detailed analysis of concordance in Danish twins with Graves’ disease came up with the 

estimate that 79% of the liability for this disorder was attributable to genetic factors 

(228).  Another strand of evidence is the variation of disease with race, although of 

course this is complicated by environmental influences too. Analyzing military personnel 

in the USA, it has been shown that HT is more frequent in white individuals, and lowest 

in black and Asian/Pacific Islander individuals (229). Despite some shared genetic 

susceptibility factors (see below), in Graves’ disease the opposite is true. It is unknown 

why these ethnic differences occur and this is clearly an area that could be fruitfully 

explored further. 

 

In an investigation of the relatives of a group of propositi with high circulating antibody 

levels and clinical thyroid disease, approximately half of the siblings and parents 

(first-order relatives) were found to have significant titers of thyroid antibodies, many 

being without clinical thyroid disease (230) but the transmission of thyroid autoantibodies 

is a more complex trait than the dominant inheritance originally thought (231, 232). 

 

Together, such observations suggest that these diseases have a common genetic 

defect, although other genes are likely to be disease-specific in their effects, as reviewed 

extensively elsewhere (233).   The most important susceptibility factor so far recognized 

is the inheritance of certain MHC class II genes. Inheritance of HLA-DR3 causes a 2 to 
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6-fold increased risk for the occurrence of Graves' disease or autoimmune thyroiditis in 

Caucasians, and inheritance of HLA-DR4 and DR5 has been found in some studies to 

increase the incidence of goitrous hypothyroidism (234).  In post-partum painless 

thyroiditis an association with HLA-DR5 has been reported (235).  HLA-DQA1*0501, 

which is often linked to DR3, may have an even more pronounced predisposing effect in 

Caucasians with Graves’ disease (236), whereas HLA-DRB1*07 may be protective 

(227).  A large series of 991 Japanese patients with AITD has been studied and the HLA 

susceptibility to Graves’ disease differentiated from that to Hashimoto’s thyroiditis, while 

3 common haplotypes were identified which conferred protection against Graves’ 

disease; one of these acted epistatically with the HLA-DP5 susceptibility molecule and 

another also conferred protection to Hashimoto’s thyroiditis (238). It is noteworthy also 

that the relative risks conferred by HLA alleles is rather modest, borne out by the 

relatively low concordance for Graves’ disease in HLA-identical siblings of patients with 

Graves’ disease (239).  This suggests the operation of other genetic susceptibility loci, 

also emphasized by the weak lod scores for linkage with the HLA region in family studies 

of AITD (240, 241). 

 

The nature of these other loci is unclear and their identification is likely to require an 

extensive analysis involving thousands of families in studies using modern molecular 

techniques. Association studies have been the method of choice until recently, 

investigating various candidate genes, but with mixed success.  Inconclusive results 

have been reported for associations of AITD with TCR polymorphisms, immunoglobulin 

allotype and TSH-R polymorphisms.  The most consistent non-HLA association is 

between polymorphisms in the CTLA-4 gene and both Graves’ disease and Hashimoto’s 

thyroiditis (242, 243).  Despite claims to the contrary, there appears to be no additional 

risk conferred by CTLA-4 (or HLA) polymorphisms in Graves’ patients with clinical 

evidence of ophthalmopathy (244), but these CTLA-4 polymorphisms may partially 

determine outcome after antithyroid drug (245, 246).  Given the most important role of 

the interaction between CTLA-4 on T cells and the B7 family of molecules on APCs, it is 

possible that this association represents a genetic effect on immunoregulation, although, 

as with HLA-DR3, this is not specific for thyroid autoimmunity; the same polymorphism is 

also associated with type I diabetes mellitus and several other autoimmune disorders. 

Fine mapping of the CTLA-4 region has confirmed that it is indeed this gene, rather than 

those in linkage disequilibrium, which is responsible for the associations, and the 
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polymorphisms may exert their effects by causing variation in levels of soluble CTLA-4, 

which in turn may after T cell activation, especially in Treg cells (247).  

 

Polymorphism of the vitamin D receptor has been linked with Graves’ disease, an 

association which has some biological plausibility as vitamin D has immunological 

effects (248).  However a large survey comprising 768 patients with Graves’ disease 

from the UK, compared to 864 controls, found no evidence of an association (249) and 

there is not yet any prospective evidence yet for vitamin D deficiency being associated 

with AITD (250).   Polymorphisms in genes encoding molecules involved the NFkB 

inhibitor pathway modulating B cell function (FCRL3 and MAP3K7IP2) are more likely to 

be involved in susceptibility to Graves’ disease (251, 252).  

 

Another genetic susceptibility locus in Graves’ disease is polymorphism in the lymphoid 

tyrosine phosphatase LYP/PTPN22 gene, which has been associated with functional 

changes in T cell receptor signaling.  A study of 549 patients and 429 controls found that 

a codon 620 tryptophan allele conferred an odds ratio of 1.88 (253), although it should 

be noted that similar effects have been seen in many other autoimmune diseases.  This 

result has recently been confirmed (254) and another likely locus is the IL-2 receptor 

alpha (CD25) gene region, which is also associated with other autoimmune diseases like 

type diabetes (255).  

 

As well as genes controlling the immune response, genes that control the target organ 

susceptibility to autoimmunity are logical candidates for investigation. There is to be 

conclusive proof from both linkage disequilibrium and association studies, that 

polymorphisms in the TSH-R gene confer susceptibility to Graves’ disease but not 

autoimmune hypothyroidism (256, 257).  This is one of the few susceptibility factors that 

segregates with one rather than both types of thyroid autoimmunity, although 

polymorphisms in the PDE10A and MAF genes (which have many actions, including 

immune regulation) may also influence whether patients develop Graves' disease or 

Hashimoto's disease (257a).  Although not thyroid-specific in tissue location, 

selenoproteins (SEP) are central to thyroid hormone deiodination and a significant 

association of HT with SNP in SEPS1 (odds ratio 2.2) has been reported in a series of 

481 Portuguese HT patients (258). 
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A different approach to chasing candidate genes has been genome scanning, although 

huge effort is required to undertake such studies.  Based largely on this approach, other 

loci which may be important have been identified on chromosomes 14q31, 20q11 and 

Xq21 (241, 259),  and the importance of a gene on the X chromosome is supported by 

the increased frequency of AITD in women with Turners syndrome, especially those with 

an isochromosome-X karyotype (260).  However in a genome scan involving 1119 

relative pairs, there was no replication of these findings (261). A more impressive 

genome wide scan of thousands of individuals with Graves’ disease confirmed  

susceptibility loci in the major histocompatibility complex, TSHR, CTLA4 and FCRL3 and 

identified two new loci; the RNASET2-FGFR1OP-CCR6 region at 6q27 and an 

intergenic region at 4p14 (262). Seven new loci for AITD, including MMEL1, LPP, 

BACH2, FGFR1OP and PRICKLE1, have been uncovered by using a custom made 

SNP array across 186 susceptibility loci known for immune-mediated diseases (263). In 

another study of almost 10000 Chinese patients with Graves’ disease, five additional 

novel loci were identified and polymorphism in the TG gene was also confirmed to be 

associated with Graves’ disease (264). Thus the genetic factors involved in AITD are 

increasingly more complex and their interactions with each other and with environmental 

factors in disease pathogenesis will be a major task to uncover.  

 

Further developments in genetic analysis will no doubt bring even greater complexity to 

this area, albeit with the prospect of better defining patient subsets (265). It is now clear 

that to detect common, low-risk variants with reliability, huge sample sizes are essential 

facilitated by the haplotypic data available from the HapMap project, which means that 

genome wide variability can be detected using half a million single nucleotide 

polymorphisms (266).  These studies present considerable logistical challenges, and 

many older studies of genetic associations in AITD have produced conflicting results as 

because of lack of power or population stratification issues. However a good example of 

the utility of such studies is a massive genome-wide association study in which a new 

set of SNPs, which includes polymorphism in MAGI3, has been associated with an 

increased risk of progression from TPO antibody positivity without hypothyroidism to the 

development of hypothyroidism (267). 

 

As an aside, it should be noted that low birth weight, a known risk factor for several 

chronic disorders, has not associated with clinically overt thyroid disease or with the 
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production of thyroid autoantibodies in one study (268) but others have come to an 

opposite conclusion, with prematurity irrespective of birth size being another risk factor 

(269, 270). 

 

Co-Occurrence Of Autoimmune Diseases 

The co-existence of AITD and other diseases possibly of autoimmune cause has often 

been reported, and suggests some intrinsic abnormality in immune regulation.  An 

extensive review of these associations has been published (271) and extensive 

population data bases have clarified the strength of the various associations (272).  A 

striking association is with pernicious anemia.  Perhaps 45% of patients with 

autoimmune thyroiditis have circulating gastric parietal cell antibodies (273), and the 

reverse association is almost as strong (274). Up to 14% of patients with pernicious 

anemia have primary myxedema, and pernicious anemia is increased in prevalence in 

patients with hypothyroidism (275).  

 

Another strong association is with celiac disease, which is found 3 times more commonly 

in patients with AITD. Intriguingly the autoantibodies which are the hallmark of celiac 

disease, directed against transglutaminase, can bind to thyroid cells and thus could be 

implicated directly in thyroid disease pathogenesis (276). The association of Sjögren's 

syndrome and thyroiditis is not uncommon and both systemic lupus erythematosus 

(SLE) and rheumatoid arthritis are also significantly associated with AITD (277, 278).  A 

high frequency of antibodies to nucleus, smooth muscle, and single-stranded DNA (26-

36%) is found in AITD (279). Although multiple sclerosis has stood out as a putative 

autoimmune disease which is not obviously associated with AITD, meta-analysis has 

revealed there is an odds ratio of 1.7 for AITD in these patients (280). 

 

Autoimmune Addison's disease and/or type I diabetes mellitus and AITD occasionally 

co-exist and this forms the autoimmune polyglandular syndrome (APS) type 2 (281).  

This is an autosomal dominant disorder with incomplete penetrance and is often 

associated with other disorders, such as vitiligo, celiac disease, myasthenia gravis, 

premature ovarian failure and chronic active hepatitis (282, 283).  AITD is an infrequent 

feature of the much rarer APS type I (284) and there is no association between 

mutations in the AIRE gene, which causes APS type I, and sporadic AITD (285). 
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Together these data provide convincing proof of an association of other autoimmune 

phenomena with AITD.  Most typically, this immunity is organ specific, but in one subset 

of patients, thyroid autoimmunity develops in association with the non-organic-specific 

collagen diseases.  A syndrome of running together, of course, does not prove a causal 

association.   Nevertheless, the plethora of associations and their familial occurrence 

indicates that a defect in the immune system may be more likely than primary defects in 

each organ.  This in turn suggests a shared immunoregulatory defect, which is at least 

partly genetically determined, as these diseases often share similar genetic 

associations, including HLA, CTLA-4, PTPN22 and CD25 gene polymorphisms. 

Recently, analysis of HLA molecules has shown a pocket amino acid signature, DRβ-

Tyr-26, DRβ-Leu-67, DRβ-Lys-71, and DRβ-Arg-74, that was strongly associated with 

type 1 diabetes and AITD (286). This could confer joint susceptibility to these diseases in 

the same individual by causing significant structural changes in the MHC II peptide 

binding pocket and influencing peptide binding and presentation.   It is also clear 

however that there is a difference in the kind of clustering of other autoimmune disease 

in Hashimoto’s thyroiditis and Graves’ disease, presumably related to differences 

between these two types of thyroid disease in genetic predisposition (287).  

 

 

Immunoregulation:  Phenomena And Mechanisms 

Possible abnormalities in immunoregulation have been addressed in hundreds of 

studies.  The basic hypothesis of this work is that a deficiency of functional T suppressor 

cells, now termed regulatory cells, may allow uncontrolled T and B cell immune 

responses to thyroid (or other) antigens.  As noted above, this concept is a major theme 

in experimentally induced or naturally occurring thyroiditis in animal models.  Most of the 

studies to define immunoregulatory responses in AITD have relied on phenotyping 

(which may relate poorly to effector function in vivo) or in vitro assays done in unique 

conditions; as we have previously noted, T cell antigen expression and function can vary 

depending on source of cells, stage of disease, the use of any stimulating agent in vitro, 

culture conditions, etc.  

  

Sridama and DeGroot found decreased suppressor cells, defined as CD8+ peripheral 

blood T cells in patients with Graves' disease (288, 289).  These results have been 

challenged, and some investigators have reported depression of CD4+ cells in AITD 
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(290).  However, overall, there is now agreement that, in thyrotoxic patients with Graves' 

disease, a decrease in CD8+ T cell number (291, 292) is characteristically present, and 

that a similar abnormality exists in the thyroid.  CD8+ cells return gradually toward 

normal during therapy, and are usually but not always normal at the end of therapy (292) 

(Fig. 7-12).  The phenomenon is present but less evident in Hashimoto's thyroiditis 

patients.  It has been attributed by some workers to increased thyroid hormone levels 

(293), although this issue is clouded, since there are reports disproving the idea that 

hyperthyroidism per se induces suppressor cell abnormalities in humans, and reduced 

suppressor T cells (Ts) are found present long after thyrotoxicosis is cured (294).  Our 

interpretation is that the abnormality is not due specifically to excess T4 in blood, but is a 

manifestation of ongoing active autoimmunity, for reasons which are unclear.  Reduced 

nonspecific "suppressor" T cell function may be in part an inherited abnormality, and is 

probably also a manifestation of the augmented immune reactivity ongoing in AITD 

patients.  It may be largely a secondary phenomenon, but one which augments and 

continues the immunological disease. The mechanism causing such reduced Ts number 

and function is unclear.   
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Figure 7-12: Influence of a 6 month course of carbimazole on peripheral blood T cell subsets 
of 29 patients with hyperthyroid Graves’ disease (Mean SD). OKT4 = CD4+ OKT3 = CD3+ 
OKT8 = CD8+ ** = p < .001 vs. zero time value (From Reference 265) 

 

 

These older findings need to be related to recent developments in understanding Treg 

function. One study has found that despite increased numbers of CD4+ T cells bearing 

the T regulatory cell markers CD25, Foxp3, GITR and CD69, in both thyroid and PBMC 

of patients with AITD, there is a non-specific defect in regulatory function in vitro, which 

in turn must explain somehow why the increased number of regulatory T cells are so 

patently ineffective (295). For example there is an increase in circulating 

CD69+ regulatory lymphocytes in AITD, and numbers are even higher in the thyroid 

http://www.thyroidmanager.org/wp-content/uploads/2014/02/7-12.jpg
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glands of these patients and yet they are functionally deficient in vitro (295a).  The 

existence of a functional rather than numerical deficiency in regulatory T cells has also 

been suggested in a study of AITD patients, in which the defect was found to be 

detectable only when optimal in vitro conditions were achieved (296). Analysis in the 

earliest phases of disease may of course yield different results and unlocking how T 

regulatory cells can be activated seems an obvious but at present unrealizable 

therapeutic strategy. The finding that many thyroid infiltrating lymphocytes, early on in 

the disease process, are in fact recent thymic emigrants does suggest that there is a 

problem with central tolerance that allows autoreactive T cells to accumulate in the gland 

where the strength of local immunoregulation could be critical in determining whether 

disease progresses (297). 

  

Thyrotoxic Graves' disease patients and those with active Hashimoto's thyroiditis have a 

high proportion of DR+ T cells in their peripheral circulation (291, 298), which indicates 

the presence of activated T cells.  It is unlikely that these cells (> 20% of circulating T 

cells) are all responsive related to thyroid antigens, so they must include DR+ T cells 

with TCRs for many other antigens.   There is also a marked increase in circulating 

soluble IL-2 receptors in thyrotoxic Graves' disease, but this appears to be typical of 

thyrotoxicosis per se, and not specifically Graves' disease (299).  Nevertheless, there is 

no evidence for a generalized ongoing immune hyper-responsiveness in thyrotoxic 

patients.  Perhaps these T cells (for many different specificities) are stimulated by IL-2, 

but in the absence of the required second signal provided by antigen exposure, do not 

induce B cell proliferation or cytotoxic responses.   

 

Diminished, non-specific suppressor cell function is also observed in many autoimmune 

diseases including lupus, and multiple sclerosis and the results in AITD are equally non-

specific.  The most likely explanation for many “suppressor” phenomena is the reciprocal 

inhibition of Th1 and Th2 cells by their cytokine products, and powerful evidence shows 

how important this regulatory mechanism is in exacerbating or inhibiting autoimmune 

disease, at least in animal models. However regulatory phenomena utilizing cytokines 

are much more complex, and include both Th17 cells and invariant NKT (iNKT) cells. 

The latter share receptors with T and NK cells, with the α chain of the T cell receptor 

being invariant gene segment-encoded, and are notable for releasing cytokines when 

stimulated by antigen, thus endowing them with regulatory properties which may be 
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either stimulatory or inhibitory. Recently iNKT cell lines have been identified that can be 

stimulated with TG to induce EAT (300). 

 

In keeping with the importance of the Th17 subset in inflammatory autoimmune diseases 

discussed earlier, there is an increased differentiation of circulating Th17 lymphocytes 

and an enhanced synthesis of Th17 cytokines in AITD, mainly in those patients with 

Hashimoto thyroiditis (301). Nonetheless a recent study has found an increase in both 

Th22 and Th17 cells and the levels of plasma IL-22 and IL-17 in patients with Graves’ 

disease; the magnitude of these increases correlated TSH-R antibody levels (302). 

Circulating platelet-derived microvesicles are significantly raised in AITD patients and 

these can inhibit the differentiation of Foxp3+ Treg cells and induce differentiation of 

Th17 cells (302a). Another newly recognized T cell subset involved in the regulation of 

antibody production, comprising follicular helper T cells, is increased in the circulation of 

patients with AITD and correlates with autoantibody levels (303). 

  

Many studies have examined T cell subsets in thyroid tissue of patients with active AITD. 

For example, Margolick et al (304) found increased CD8+ cytotoxic/suppressor cells and 

also increased CD4+ T helper cells, and a normal Th/Ts ratio. Canonica et al (305) 

found increased proportions of cytotoxic/suppressor T cells in thyroids of Hashimoto's 

thyroiditis patients.  Infiltrating cytotoxic/suppressor cells in Hashimoto's thyroiditis were 

found usually to be activated and to express DR antigen, whereas this response was not 

so obvious in Graves' disease (306).  Canonica et al (305) reported an increased 

proportion of activated T helper/inducer cells in both Graves' disease and  Hashimoto's 

thyroiditis, and increased cells thought to represent  cytotoxic T cells in Hashimoto's 

thyroiditis.  Chemokine expression within the thyroid is likely to be an important 

determinant of this infiltration (307). 

  

Increased CD8+CD11B- cells, presumed to be cytotoxic cells, were found in Graves' 

disease thyroids (in comparison to PBMC of Graves' disease or normal subjects), 

whereas "dull" CD8+CD11B+ natural killer cells were diminished (308).  Other studies 

have suggested a reduction in NK cells in Graves' disease and an increase in 

Hashimoto's thyroiditis.  Tezuka et al found decreased NK cells in Graves' disease 

thyroid tissue, no differences in the NK activity of PBMC between Graves' and normal 

patients, and that the NK cells in Graves' disease did not kill autologous thyroid epithelial 
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cells (309). We have already indicated other reports of normal NK and ADCC in 

Hashimoto's PBMC, and of increased ADCC in Hashimoto's thyroiditis.  Most studies 

that have looked at Graves' disease tissues also indicate an increased proportion of B 

cells compared to peripheral blood subsets.   

  

Cell cloning has also been used to examine thyroid and peripheral blood lymphocyte 

subsets.  Bagnasco et al (310) found a predominance of cytolytic clones, releasing IFN-

γ, in Hashimoto's thyroiditis but not in Graves' disease.  Del Prete et al (311) found a 

high proportion of cytolytic cells with the CD8+ phenotype in clones from thyroid tissue, 

and felt these results may relate to autoimmune destruction of TEC but the non-specific 

methods used to derive such cytotoxic T cells raises questions about any 

pathophysiological relevance.   

 

There is no clear predominance of Th1 or Th2 cytokines in the thyroid of patients with 

Graves’ disease or Hashimoto’s thyroiditis (312), although Th1 clones seem to 

predominate in the retrobulbar tissues in ophthalmopathy (313).  It might simplistically be 

thought that Graves’ disease represents a Th2 response, but the fact that some patients 

end up with hypothyroidism itself indicates the likely presence of a Th1 response too.  

This is supported by evidence from an animal model of Graves’ disease: immune 

deviation away from a Th1 response, in γ-IFN knockout mice, did not enhance the 

response to TSH-R cDNA vaccination (314). 

 

One situation in which it is likely that perturbation the cytokine milieu is responsible for 

the emergence of Graves’ disease is during reconstitution of the immune system 

following lymphopenia induced by alemtuzumab treatment for multiple sclerosis, bone 

marrow or stem cell transplantation or after highly active antiretroviral therapy for HIV 

infection (315, 316). In these situations there is an initial increase in the Th1 response 

flowed by a Th2 response at the time when Graves’ disease becomes apparent. Defects 

in T regulatory cells may also contribute. 

  

A general summary of these data is difficult.  The results probably at least indicate there 

are increased B cells, increased DR+ T cells, increased CD4+DR+ T helper cells, 

decreased CD8+DR+ T suppressor/cytotoxic cells, and possibly lower NK cells in 

Graves' disease AITD tissue and in blood than among normal subjects' PBMCs.  The 
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intrathyroidal T cells are a mix of Th1 and Th2.  Such studies have been performed 

primarily on patients with well developed and often treated disease, and do not bear 

directly on early stages of the disease, or on whether the changes represent primary or 

secondary phenomena.  To date there has been no certain indication that a non-specific 

or specific suppressor cell defect exists in patients who are genetically predisposed to 

have AITD, or in most patients who have recovered from the illness, although 

observations on Treg and other recently defined T cell subsets appear to indicate 

defects that are likely to be causal. 

 

Anti-Idiotype Antibodies 

Whereas anti-idiotypic antibodies are thought to play a physiological role in 

immunoregulation, there is little evidence for participation in, or abnormality of, this 

function in AITD.   Immunoglobulins from some patients with Graves' disease bind TSH 

(317).  This suggests that anti-idiotypes to TSH antibodies are present and might 

theoretically function as thyroid stimulating immunoglobulins; or conversely that anti-

idiotypes to thyroid stimulating antibody exist and can bind TSH.  Either possibility 

remains to be confirmed.  Sikorska (318) demonstrated the presence of antibodies in 

sera of AITD patients which inhibit binding of TG to monoclonal TG antibodies, and 

interpreted these as anti-idiotypes.  We have looked for anti-TG anti-idiotypes in patients 

with autoimmune thyroid disease and failed to find them (319).  On the other hand, weak 

anti-idiotypes of the IgM class have been found which bind to TPO antibodies and are 

present in pooled normal immunoglobulins as well as certain patient sera (320).  

Although one could postulate that a failure to produce anti-idiotype antibodies could be a 

feature of AITD, a more likely hypothesis is that anti-idiotypic antibodies are simply rarely 

produced at a detectable level.  Since anti-idiotype antibodies raised in animals will 

suppress in vitro TG antibody production, the theory that lack of anti-idiotype control is 

causal in AITD remains attractive, but data to support it are scant.  

 

De Novo Expression Of Class Ii Antigens On Thyroid Cells 

De novo expression of HLA-DR on thyroid epithelial cells, from patients with Graves' 

disease, was first reported by Hanafusa et al (321) and was proposed as the cause of 

autoimmunity by Bottazzo et al. (322) who suggested that de novo expression of MHC 

class II molecules on these cells, which are normally negative, allows them to function 

as APCs.  Lymphocyte-produced IFN-γ augments the expression of HLA-DR (also DP 
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and DQ) on thyroid epithelial cells, and that TNF-α further increases the induction 

caused by IFN-γ (323, 324). HLA-DR+ TECs definitely can stimulate T cells (325, 326) 

but this is critically dependent on the requirements of the T cell for a costimulatory 

signal, as Graves’ TECs do not express B7-1 or B7-2 (327, 328).  In contrast B7.1 

expression on Hashimoto TEC has been recorded, but how this is differentially 

regulated, compared to Graves’ disease, is unknown (329).   We have shown that TECs 

can present antigen to T cell clones which no longer require costimulation through B7, 

yet not only fail to stimulate B7-dependent T cells but also induce anergy in these cells 

by at least two mechanisms, one of which is Fas-dependent (330, 331).  Perhaps the 

most conclusive proof that class II expression by thyroid cells cannot induce thyroiditis 

comes from the creation of transgenic mice expressing such molecules on TECs – such 

animals have no thyroiditis and have normal thyroid functionm (332).  For reasons which 

remain unclear, thyroid follicular and papillary cancers may express B7.1 and B7.2, and 

B7.2 expression is associated with an unfavourable prognosis (333). 

 

HLA-DR is also expressed on TECs in multinodular goiter and in many benign and 

malignant thyroid tumors, and this does not appear to induce thyroid autoimmunity (334).  

Aberrant DR expression has not been shown to develop before autoimmunity.  Normal 

animal thyroids not expressing class II molecules can become the focus of induced 

thyroiditis, and then express class II molecules (335).  Furthermore, HLA-DR expression 

on Graves' disease thyroid tissue is lost when tissue is transplanted to nude mice (336). 

Thus a consensus position is that class II expression could be important, but is a 

secondary phenomenon in AITD, dependent on the T cell-derived cytokine, γ-IFN, and 

only allowing TECs to become APCs for T cells which have already received B7-

dependent costimulation elsewhere.  This could clearly exacerbate AITD once initiated, 

but teleologically the role of class II expression seems to be as a peripheral tolerance 

mechanism, allowing the induction of anergy in potentially autoreactive but still naive (ie. 

B7-dependent) T cells (Fig. 7-13).  The recent description of hyperinducibility of HLA 

class II expression by TECs from Graves’ disease suggests that such patients may be 

genetically predisposed to display a more vigorous local class II response and this would 

increase the likelihood of disease progression (337).  The genes controlling this 

response are therefore worthwhile candidates for future studies of genetic susceptibility. 
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Figure 7-13: Alternative outcomes of MHC class II expression by thyroid follicular cells. 
Reproduced from Weetman (1997) New Aspects of Thyroid Autoimmunity. Hormone 
Research 48 (Suppl 4), 5154 with permission. 

 

ENVIRONMENTAL FACTORS 

Environmental factors include viral and other infections, discussed above.  Strong 

evidence for an important role for environmental factors is provided by the incomplete 

concordance seen in the monozygotic twins or other siblings of individuals with AITD.  

Also, there are temporal changes in disease incidence that can only be the result of 

environmental influences, such as the rise in Graves’ disease in children in Hong Kong, 

the steady rise in autoimmune thyroid disease in Calabria, Italy, the more than two-fold 

increase in lymphocytic thyroiditis over 31 years in Austria, and the changes in the rates 

http://www.thyroidmanager.org/wp-content/uploads/2014/02/7-13.jpg
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of histologically diagnosed Hashimoto’s thyroiditis over a 124 year period (338, 339, 340, 

341).   

 

Such studies also show that environmental factors may change rapidly, making their 

ascertainment difficult and challenging. Epidemiological studies have also shown that 

there is a higher prevalence of thyroid autoimmunity in children raised in environments 

that have higher prosperity and standards of hygiene (342). This falls in line with the so-

called hygiene hypothesis, that is, the idea that early exposure to infections may skew 

the immune system away from Th2 responses like allergy and also away from 

autoimmunity. IL-2 administration for treatment of cancer leads to the production of 

antithyroid antibodies, and hypothyroidism (and possibly a better tumor response) (343).  

IFN-α administration and other cytokines (91), as well as highly active antiretroviral 

therapy for HIV infection (344), have a similar effect, although interferon-β1b treatment 

has no significant adverse effect on AITD (345).  However long-term follow up studies 

have shown that around a quarter of multiple sclerosis patients treated with this latter 

cytokine may develop autoimmune thyroid disease within the first year of treatment 

(346). It remains unclear how relevant any lessons from these observations are for AITD 

pathogenesis, as of course the doses of cytokines and drugs used therapeutically are 

vast.  However, it has been reported that thyrotoxicosis tends to recur following attacks 

of allergic rhinitis (347).  Possibly this is due to a rise in endogenous cytokines and the 

recent association of raised IgE levels with newly diagnosed Graves’ disease indicates 

that this may be mediated by preferential Th2 activation (348).   

 

Cigarette smoking is associated with Graves' disease, and with ophthalmopathy 

(reviewed in 349) although it seems to be that smoking is associated with a lower risk of 

autoimmune hypothyroidism (350).  The mechanisms behind these complex changes 

uncertain and is doubtless more complex than a local irritative effect.  Environmental 

tobacco smoke induces allergic sensitization in mice, associated with increased 

production of Th2 cytokines, but a reduction in Th1 cytokines, by the respiratory tract 

(351).  It is therefore possible that modulation of cytokines contributes to the worsening 

of ophthalmopathy with smoking.  On the other hand, as noted above, the opposite 

effect prevails in hypothyroidism and smoking exposure was associated with a lower 

prevalence of thyroid autoantibodies in a large population survey of over 15000 US 

citizens (352) and smoking cessation is known to induce a transient rise in AITD (353). 
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To explain this, investigations have been undertaken on anatabine, an alkaloid found in 

tobacco; this compound ameliorates EAT and reduces TG antibody levels in human 

subjects with Hashimoto’s thyroiditis (354).  

 

More general environmental pollutants have not been thoroughly explored for their 

possible effects (although there is some evidence from older experiments that 

methylcholanthracene can induce thyroiditis) but a recent study has demonstrated that 

polychlorinated biphenyls can induce the formation of TPO antibodies and lymphocytic 

thyroiditis in rats (355). A cross-sectional survey in Brazil has fond that Hashimoto’s 

thyroiditis and thyroid autoantibodies are more frequent in individuals living near to a 

petrochemical complex than in controls (356). In addition pesticide use, especially of the 

fungicides benomyl and maneb/mancozeb, has been associated with an increased odds 

of developing thyroid dysfunction although the mechanism of action is unclear (357).  it 

clear that this aspect of the environment warrants further study in human thyroid 

disease. 

 

The role of dietary iodine is clearly established in animal models of AITD and 

circumstantial evidence exists for a similar role in man (358-360). The response is 

complex and recently it has been shown that iodide may exacerbate thyroiditis in NOD 

mice but not affect the production of TSH-R antibodies in the same strain (361).  Such 

findings are intriguing as they raise the possibility that the thyroiditis which accompanies 

Graves’ disease may not be due to the immune response to the TSH-R. Iodine may 

affect several aspects of the autoimmune response, as detailed in the section on 

experimental thyroiditis above. In addition, iodide stimulates thyroid follicular cells to 

produce the chemokines CCL2, CXCL8, and CXCL14 (362). These observations 

suggest that iodide at high concentrations could induce AITD through chemokine 

upregulation thus attracting lymphocytes into thyroid gland.  

 

Dietary selenium has also been proposed as a contributor. A recent large 

epidemiological survey of two counties of Shaanxi Province, China, one with adequate 

and the other with low selenium intake, showed that higher serum selenium was 

associated with lower odds ratio of autoimmune thyroiditis (0.47) and hypothyroidism 

(0.75) (362a). However a recent Cochrane Systematic Review of trials of selenium 

supplementation has shown no clear beneficial clinical effect in HT, although TPO 
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autoantibody levels do fall over a 3 month period of supplementation (363). Vitamin D 

may be important in autoimmunity and many other disorders, as it is now recognized that 

individuals living in northerly latitudes may have suboptimal levels based on a fresh 

understanding of what normal levels of this vitamin should be. A significant inverse 

correlation has been observed between 25(OH)D levels and TPO antibody levels in 

Indian subjects, although the overall impact of this effect in terms of causality was low 

(364), and another prospective study has found no evidence for a role of vitamin D 

(250).  A more recent large scale survey has found that for every 5 nmol/L increase in 

serum 25(OH)D there was an associated 1.5 to 1.6-fold reduction in the risk for 

developing Graves’ disease, Hashimoto’s thyroiditis or postpartum thyroiditis, but vitamin 

D was not strong associated with the level of thyroid autoantibodies (364a). These new 

results are also supported by a meta-analysis of all studies prior to this, indicating that 

low vitamin D levels, as well as frank deficiency, are indeed risk factors for AITD (364b). 

 

A variety of lifestyle factors that are difficult to investigate may also be involved. It is 

otherwise difficult to account for the increase in AITD seen in same-sex marriages (365). 

Stress is likely to be important in the etiology of Graves’ disease, although studies to 

date have had to rely on retrospective measures of this (reviewed in 366).  Moreover 

stress does not appear to be asociated with the development of TPO antibodies in 

euthyroid women (369).  Presumably stress acts on the immune system via pertubations 

in the neuroendocrine network, including alterations in glucocorticoids, but the complex 

interaction between the nervous, endocrine and immune systems includes the actions of 

neurotransmitters, CRF, leptin and melanocyte stimulating hormone as well and so 

unravelling the pathways whereby stress may alter the course of autoimmunity is difficult 

in the extreme (370).  Indirect support for such a mechanism, mediated through 

norepinephrine, comes from experiments showing dramatic enhancement of delayed-

type hypersensitivity by acute stress, the result of sympathetic nervous system activation 

on the migration of dendritic cells and subsequent enhanced T cell stimulation (371). 

Moderate consumption of alcohol appears to have a protective effect with regard to 

AIITD (371, 372). Given the diversity of these environmental factors, presumably 

operating on different genetic backgrounds, it will be difficult (if not impossible with 

current tools) to establish the relative importance of each in AITD. 
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NORMAL AUTOIMMUNITY 

"Normal" people express antithyroid immunity, as previously described, and this must be 

important in understanding the overall mechanism of AITD. Antibodies to TG and TPO 

are present in both Graves’ disease and Hashimoto’s thyroiditis up to 7 years prior to 

diagnosis, increasing over time in the former and consistently elevated in the alter (374). 

Many people with low levels of antibodies but without clinical disease can be shown to 

have lymphocyte infiltrates in the thyroid at autopsy.  B cells from normal individuals can 

be induced to secrete anti-TG antibody in vitro.  These observations clearly show that 

incomplete deletion of clonal self-reactive T cells is indeed the normal (and indeed 

perhaps necessary) circumstance, and provide strong support for the idea that 

disordered control of this low level immunity may be important in the etiology of AITD.   

 

EFFECT OF ANTITHYROID DRUGS ON THE IMMUNE RESPONSE 

Antithyroid drugs are used in Graves' disease to decrease production of thyroid 

hormone, and also lead to diminution in TSI and other antibody levels.  Clinical studies 

show that antithyroid drug administration also leads to a diminution in antibody 

production in thyroxine replaced Hashimoto's thyroiditis patients (375), proving that their 

effect is not simply due to control of hyperthyroidism in Graves' disease. Somewhat 

surprisingly (376), administration of KClO4 to patients with Graves' disease leads to 

diminished serum antibodies, suggesting that the effect of treatment is not specific for 

thionamide drugs, but could be mimicked by this compound.  Antithyroid drugs inhibit 

macrophage function, interfering with oxygen metabolite production (377). 

 

Following antithyroid drug treatment of active Graves' disease, there is a prompt 

short-term increase of DR+CD8+ T cells in the bloodstream as described above.   

Antithyroid drugs inhibit the production of cytokines, reactive oxygen metabolites and 

prostaglandin E2 by TECs and the reduction in these inflammatory mediators may 

explain the site-specificity of the immunomodulation produced by antithyroid drugs (125).  

Another pathway for an immunomodulatory action of these drugs is via the upregulation 

of Fas ligand expression, which may then attenuate the autoimmune response of Fas-

expressing T cells (378).  Only approximately 50% of patients enter remission after 

treatment with antithyroid drugs, a fact which must be accommodated in any hypothesis 

concerning an immunomodulatory action of these agents.  Those patients with Graves’ 

disease who have the highest IgE and IL-13 levels in the circulation are the most likely to 
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relapse (379).  In turn, this suggests that antithyroid drugs only effect remission in 

individuals who do not have a strong Th2 response; those with the strongest such 

responses seem unlikely to be affected by the relatively weak action of such drugs. 

 

AITD AS A CONSEQUENCE OF A MULTIFACTORAL PROCESS   (TABLE 4)   (FIG. 

7-14) 

TABLE 4 

DEVELOPMENT OF AUTOIMMUNE THYROID DISEASE 
Stage 1 –Basal State 
Normal exposure to antigen such as TG and normal low levels of antibody response 
Inherited susceptibility via HLA-DR, DQ, or other genes 
Stage 2a –Initial Thyroid Damage and Low Level Immune Response 
Viral or other damage with release of normal or altered TG, TPO, or TSH-R 
Increased antibody levels in genetically susceptible host with high efficiency HLA-DR, DQ, 
TCR molecules 
Infection induced elevation of IL-2 or IFN-γIL-2 stimulation of antigen specific or nonspecific 
ThIFN-γ stimulation of DR expression and NK activation 
Glucocorticoid-induced alterations in lymphocyte function during stress 
Stage 2b –Spontaneous Regression of Immune Response 
Diminished antigen exposure 
Anti-idiotype feedback 
Antigen specific Ts induction 
Stage 3 –Antigen Driven Thyroid Cell Damage (or Stimulation) 
Complement dependent antibody mediated cytotoxicity 
Fc receptor+ cell ADCC by T, NK, or macrophage cells 
NK cell attack 
Direct CD4+ or CD8+ T cell cytotoxicity 
Antibody-mediated thyroid cell stimulation 
Stage 4 –Secondary Disease Augmenting Factors 
Thyroid cell DR, DQ expression –APC function 
Other molecules (cytokines, CD40, adhesion molecules) expressed by thyroid cell 
Immune complex binding and removal of Ts 
Stage 5 –Antigen Independent Disease Progression 
Recruitment of nonspecific Th or autoreactive Th 
Autoreactive Th bind DR+ TEC or B cells 
IL-2 activation of bystander Th 
Stage 6 –Clonal Expansion with Development of Associated Diseases 
Antigen release and new Th and B recruitment 
Cross reactivity with orbital antigen 
IL-2, IFN-γ augmentation of normal immune response to intrinsic factor, acetylcholine receptor, 
DNA, melanocytes, hair follicles, etc. 
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Figure 7-14: Theoretical Sequence of Development of AITD. 

 
 

Thus one is led to the uncomfortable position that AITD is probably not caused by a 

single factor, but rather due to very many factors which interact.  In terms of genetic and 

environmental factors, as well as factors that may be termed existential (such as age, 

being female and parity), these may all have to coincide in a favorable way for AITD to 

occur, in keeping with the Swiss-cheese model for accidents (Fig 7-15). We have divided 

the roles of these potential disease activity factors into a series of stages, emphasizing 

the predisposing events, antigen driven responses, and then the secondary and 

nonspecific amplification which ensues.   

http://www.thyroidmanager.org/wp-content/uploads/2014/02/7-14.png
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Figure 7-15: A Swiss cheese model for the causation of autoimmune thyroid disease, 
showing the effect of cumulative environmental, genetic and existential weaknesses lining up 
to allow AITD to occur, like the holes in the slices of cheese. In reality each of the slices 
depicted is composed of many individual components. The Swiss cheese model for accident 
causation, for instance an airplane crashing, incorporates active failures (e.g. pilot error) and 
latent failures (e.g. maintenance deficiency). Some factors contributing to the initiation of 
AITD are latent (e.g. ageing, growing up in a hygienic environment) and others are active 
(e.g. possession of an HLA allele which permits presentation of a thyroid autoantigen). 
Reproduced with permission from Weetman AP, Europ Thy J 2013 in press. 

 

 

 Stage 1  -- In the basal state, Stage 1, immune reactivity to autologous antigen 

occurs as a normal process.  This probably exists at a physiologically insignificant level, 

since not all T or B cells reacting with TSH-R, TPO or TG are clonally deleted, and Ag is 

normally present in the circulation.  If assays become sensitive enough, we probably will 

find some level of antibodies to TSH-R, TPO and TG present in most or even all healthy 

persons, increasing in prevalence and  concentration with age, and especially in women, 

since being female somehow augments antithyroid immunity many-fold. Patients who 

have inherited certain susceptibility genes will be especially prone to develop AITD 

http://www.thyroidmanager.org/wp-content/uploads/2014/02/Slide1.png
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because their T and B cell repertoire includes cells recognizing self-antigen, or their 

immunocytes are especially good at collecting, presenting, and responding to antigen.  

 Stage 2  --  Possibly viral infection, or other causes of cell damage, or 

cross-reacting antibodies present after Yersinia (or other) infection, leads to release of 

increased amounts of (possibly modified) thyroid antigens which, in genetically prone 

individuals, leads to an increased but still a low level immune response. Nonspecific 

production of TNF-α and IFN-γ, in response to any infection or immune response, may 

augment MHC class expression on TECs, allow these cells to function as APCs, and 

increase production of the already established, normally occurring low levels of 

antibodies.  The process may be affected by stress, although the mechanism remains 

quite uncertain. The process may go on over years, and wax and wane, as it has been 

shown that thyroiditis can be clinically apparent and then disappear.  Factors involved in 

temporary or permanent suppression of the autoimmune response may include 

diminished thyroidal release of antigen, peripheral tolerance induction by DR-positive 

TECs which cannot provide a costimulatory signal, B cell anti-idiotype feedback, or the 

induction of T cells with a regulatory function, including those engendered by the mutual 

regulation of Th1 and Th2 subsets.  In some individuals, thyroid cells may be less able to 

express DR, or may secrete TGF-β and suppress immune responses.  Glucocorticoid 

administration and other immunosuppressives can also temporarily prevent the 

expression of nascent autoimmunity.            

 Stage 3 -- If suppressive factors do not control the developing immune response, 

the disease progresses to a new intensity, now driven by specific antigens, inducing cell 

hyperfunction (TSI), or hypofunction  (TSH blocking or NIS antibodies), or cell 

destruction.  Direct T cell cytolysis and apoptosis, ADCC, and K or NK cell attack play an 

important role at this stage, and now the disease becomes clinically evident.   

 Stage 4 -- As the disease develops, a variety of secondary factors come into 

play, and augments antithyroid immunoreactivity. Any stimulus which causes increased 

DR expression on thyroid cells, such as T cell release of IFN-γ, combined with increased 

TSH stimulation, may allow TECs to function as APCs.   Although perhaps poor in this 

function, they are large in number and localized in one area.  The TECs may also 

participate in the autoimmune process by several other pathways, including the 

expression of adhesion molecules, Fas, Fas ligand, CD40 and complement regulatory 

proteins, and the production of a number of inflammatory mediators such as cytokines, 

reactive oxygen metabolites, nitric oxide and prostaglandins.  These events are, like 
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class II expression, dependent on cytokines and other signals generated by the 

intrathyroidal lymphocytic infiltrate. Some patients may inherit diminished T regulatory 

cell function.  The ongoing immune reaction itself, may lead to nonspecific suppressor 

dysfunction, further augmenting immunoreactivity.   

 Stage 5 -- T cell derived cytokines may non-specifically induce bystander antigen 

specific T and B cells to be activated and produce antibody.  Autoreactive cells will now 

accumulate in thyroid tissue because of the many strongly DR+ positive lymphocytes 

and TECs, and augment the developing response by lymphokine secretion or cytolysis, 

in a manner independent of thyroid antigens.  At this stage in the disease, non-specific 

autoreactive immune processes may dominate a disease process which no longer 

depends upon antigen for its continuation.   

 Stage 6 -- As the concentration of activated T and B cells builds in thyroid tissue, 

and autoreactive and antigen nonspecific T cells become progressively involved, cell 

destruction may lead to release of new antigens.  Cross-reacting epitopes, and 

nonspecific stimulation of T cells in genetically prone individuals, may cause the addition 

of new immunologic syndromes (exophthalmos, pretibial myxedema, atrophic gastritis) 

typical of older patients with more long standing and florid disease.   

 

THYROIDITIS, MYXEDEMA, AND GRAVES' DISEASE AS AUTOIMMUNE DISEASES 
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 HASHIMOTO’S THYROIDITIS (FIG. 7-16)  

 
Figure 7-16: Balance of Immune Reactions Favoring Graves’ or Hashimoto’s Disease. 

How well do the changes of Hashimoto's thyroiditis fulfill the criteria of an immunologic 

reaction?  Neither the presence of autoantibodies in the serum of patients with 

Hashimoto's thyroiditis nor the demonstration in vitro of cytotoxicity of the serum 

constitutes definitive evidence that autoimmunity is the cause of the disease.  Rarely, if 

ever, is there a well-defined initial immunizing event, and accordingly a shortened latent 

period after a secondary stimulus has not been observed.   Further, experimental 

passive transfer of the immune state in normal recipients has not yet been attempted 

and has failed when human sera have been transfused into monkeys and other animals.  

This experiment is conducted by nature during pregnancy, since maternal antibodies 

cross the placenta.  Transplacental passage of thyroid stimulating antibodies can 

produce neonatal thyrotoxicosis, and TSH blocking antibodies can produce transient 

neonatal hypothyroidism.  Passage of TG antibody or TPO antibody has no detectable 

cytotoxic effect.    

 

Assays for T cell reactivity in man, supplemented by data from animal models, provide 

compelling evidence of the autoimmune basis for Hashimoto’s thyroiditis, but this does 

http://www.thyroidmanager.org/wp-content/uploads/2014/02/7-16.jpg
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not exclude an amplifying role for TG and TPO antibodies via ADCC, and, for TPO 

antibodies, via complement fixation.  It may well be that T cell-mediated damage is 

required initially for all of these antibody-mediated events to take place, as this could be 

necessary for such access. Another striking feature of Hashimoto’s thyroiditis is the 

development of Hürthle cells, with granular eosinophilic cytoplasm. This appears to be 

the result of a chronic inflammatory milieu, resulting in overexpression of 

immunoproteasomes (3680 

  

The evidence is now overwhelming that an immune reaction mediated by T lymphocytes 

is involved in the development of experimental thyroiditis in animals and several 

mechanisms may operate singly or together in man to injure TECs.  Lymphocytes 

presensitized to antigens of the thyroid are present in the circulation of most if not all 

patients and are believed to localize to the thyroid itself.   Since T cell mediated immunity 

is frequently lethal to cells, it is logical to assume that the T cell mediated immune 

response in thyroiditis could cause first a goiter, with lymphocyte infiltration and 

compensatory thyroid cell hyperplasia, and then gradual cell death and gland atrophy.  

The circulating antibodies may also be a functional part of this reaction.  We can accept 

the idea that T cell-mediated immunity is the major pathogenic factor in thyroiditis.   

 

Idiopathic Myxedema 

Even before the present era of immunologic study, the basic unity of Hashimoto's 

thyroiditis and myxedema was realized.  To quote from Crile, writing in 1954 (381):  

"Struma lymphomatosa is responsible not only for large lymphadenoid goiters, but also 

for fibrosis and atrophy of the thyroid.  The clinical spectrum of struma lymphomatosa 

extends from spontaneous myxedema with no palpable thyroid tissue to a rapidly 

growing goiter associated  with no clinical evidence of thyroid failure." 

 

Hubble (382) also drew attention to the occurrence of syndromes intermediate between 

those of myxedema and Hashimoto’s thyroiditis, in which a small, firm thyroid gland can 

be felt on careful palpation.  The histologic studies of Bastenie (383) and Douglass and 

Jacobson (384) revealed a close similarity in appearance of the thyroid remnant in 

myxedema and the Hashimoto gland.  The immunologic studies of Owen and Smart 

(385), and the experience in most thyroid laboratories, indicate a similar incidence and 

titer of antibodies in myxedema and Hashimoto's thyroiditis.  The familial association of 
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myxedema and thyroiditis was described earlier and so far no clear genetic susceptibility 

difference has been reported in the two diseases.  Attempts to ascribe atrophy of the 

thyroid gland in myxedema to particular antibodies, such as those inhibiting growth or 

TSH (386), or which mediate ADCC have not been confirmed by other studies (reviewed 

in 234). 

 

Thus, idiopathic myxedema is the end result of Hashimoto's thyroiditis, in which the 

phase of thyroid enlargement was minimal or was overlooked.  We may assume that in 

idiopathic myxedema the cell-destructive T cell-mediated immune response is an 

important pathogenic factor in the illness, and that cytotoxic antibodies and TSH blocking 

antibodies contribute to the development of hypothyroidism, but perhaps in only a 

proportion.   

 

Graves' Disease 

Graves' disease is associated with a similar type of thyroid autoimmunity, since most 

hyperthyroid patients have circulating TG and TPO antibodies.  High antibody levels are 

found in a small group of hyperthyroid patients and histologic examination of their glands 

show changes of both cell stimulation and focal thyroiditis (387). Some patients with 

clinical Graves' disease have tissue changes in the thyroid that are typical of thyroiditis 

(388).   This type of patient with Graves' disease most often becomes hypothyroid after 

operation (389), or after 131I therapy (390). It is also well known that some patients 

fluctuate from hyper- to hypothyroidism over a period of months and others behave in 

the converse fashion, and of course the familial association of Graves’ disease with 

autoimmune hypothyroidism is well established.   

 

The humoral response in Graves' disease leads to production of TG and microsomal 

TPO antibodies, but most importantly, as described in Chapter 10, B cells produce TSI, 

TBII and, in some, TSH blocking antibodies (35).  TSI stimulate thyroid release of 

hormone primarily via cyclic AMP, although other pathways may also be activated by 

TSI in a proportion of patients. TSI are true cell stimulators and can even induce 

experimental goiter.  However, the clinical picture in Graves’ disease will be a balance 

between the stimulation produced by TSI and the opposing effects of any TSH blocking 

antibodies which may be present.   
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Evidence also supports a role for T cell mediated immunity to thyroid antigens in Graves' 

disease, and against orbital antigens in patients with associated ophthalmopathy.  We 

speculate that Graves' disease may be a condition representing a semistable balance 

between stimulatory, blocking, and cell-lethal immune responses.  Thus, TSI could 

cause thyroid hyperplasia and produce hyperthyroidism. Other antibodies might block 

the action of TSI either directly or, as in the case of NIS antibodies, indirectly, and 

prevent this hyperplastic response in some patients.  Cytotoxic T cells will also gradually 

destroy cells and produce hypothyroidism either spontaneously or after therapy.  It must 

be admitted that the etiology of ophthalmopathy still remains rather obscure, although 

the key role of cytokines in pathogenesis, causing fibroblast activation, seems firmly 

established. 

 

RELATION TO OTHER DISEASES 

 

Thyroid Cancer  

Thyroid antibodies are present in increased prevalence (up to 32%) in patients with 

carcinoma of the thyroid, and usually are at low titer.  Histologic evidence of thyroiditis is 

found in up to 26% of tumors.  Histologic changes range from diffuse thyroiditis to focal 

collections of lymphocytes around the tumor or reactive lymphoid hyperplasia.  Possibly 

release of antigens leads to increased thyroid autoimmunity.  Some evidence suggests 

that patients who have thyroid antibodies have a better prognosis than antibody negative 

patients. Lymphoma and lymphosarcoma of the thyroid are associated with Hashimoto's 

thyroiditis (391), and there is compelling evidence that thyroiditis precedes development 

of the tumor.  An increased frequency of carcinoma, especially of the papillary type, has 

been suggested in Hashimoto's thyroiditis but this relationship remains to be fully 

established (392). 

 

ADOLESCENT GOITER  Enlargement of the thyroid during the second decade,  

accompanied by normal results of function tests, usually is  labeled adolescent goiter.  If 

the examination includes needle biopsy, an appreciable incidence of Hashimoto's 

thyroiditis is found (393) - up to 65%.   Eighty percent of these children with thyroiditis 

have a positive thyroid antibody test result.  The parents of many of them have either 

overt thyroid disease or circulating thyroid antibodies.  Hyperplasia, in response to an 

increased demand for thyroid hormone, and colloid involution are at the root of some of 
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these goiters, but Hashimoto's thyroiditis is the most frequent explanation of adolescent 

goiter in iodine sufficient areas. 

 

Transient Thyrotoxicosis, Painless Thyroiditis, Postpartum Thyroiditis, And 

Related Syndromes  

These illnesses, all similar, involve an acute exacerbation of thyroid autoimmunity 

occurring independent of, or following pregnancy in women, and in men.  They are 

characterized by sequential inflammation-induced T4 and TG release, transient 

hypothyroidism, usually return to euthyroidism, and are discussed in Chapters 8 and 14.  

They are considered subtypes of Hashimoto's thyroiditis, and in the postpartum period, 

appear to result from release of the immunoregulatory effects of normal pregnancy 

(211).     

 

Focal Thyroiditis  

 Focal lymphocytic infiltrations are frequently seen in  Graves' disease, nodular goiter, 

nontoxic or colloid goiter, and  thyroid carcinoma.  The significance of these changes is 

not precisely known, but they correlate with positive antibody titers and may represent 

variations that do not differ qualitatively from thyroiditis.   

 

Riedel’s Thyroiditis And Ig4 Disease  

This rare thyroid disorder is associated with both Hashimoto’s thyroiditis and Graves’ 

disease and in addition many patients have evidence of fibrosis elsewhere, such as the 

retroperitoneum, lung, biliary tract and orbit. In one large series, 12 of 15 patients had 

positive TPO antibodies (389) It is now recognized that some of these patients with 

multifocal fibrosclerosis have IgG4-related sclerosing disease in which lymphocytes and 

IgG4-positive plasma cells infiltrate the affected tissues, especially the lacrimal gland, 

biliary tree and pancreas but the exact relationship of this entity to Riedels’ thyroiditis is 

unclear at present. There is a predominance of IgA rather than IgG4 in Riedel’s 

thyroiditis, but the effects of steroids may obscure the few analyses that have been 

undertaken (395, 396).  However it does appear that Hashimoto’s thyroiditis can be 

divided into two discrete entities based on whether IgG4 plasma cells predominate in the 

thyroid infiltrate: in those individuals with IgG4 predominance, there is a greater male 

frequency, more rapid progression to hypothyroidism and more intense gland fibrosis 

(397). These studies have been predominantly undertaken in Japanese subjects. In a 
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recent survey from Europe, only 12.5% of Hashimoto thyroid glands showed this feature: 

there was an association with younger age and male sex, and fibrosis was identified in 

96 % of the IgG4-related cases but also in 18 % of the non-IgG4-related cases (397a).  

The authors note that unlike other forms of IgG4-related disease, the fibrosis is not 

accompanied by intense eosinophilia or obliterative phlebitis. IgG4 subclass thyroid 

autoantibodies display heritability in individuals with high levels of both TPO and TG 

antibodies; it is possible that more sophisticated analysis of autoantibody subtypes could 

lead to new methods to predict the natural history of disease (398). 

 

Other Problems  

An association between the occurrence of maternal antithyroid antibodies and recurrent 

abortion has been reported (399) and although this association has been disputed, a 

recent study showed clear evidence that the presence of TPO antibodies was 

associated with a 3-4-fold increased risk of miscarriage in women having in vitro 

fertilization (400).  There is also an association between breast cancer and thyroid 

autoimmunity (401, 402) and between depression in middle-aged women and the 

presence of TPO antibodies (403).  The nature of these associations is unclear; does 

thyroid autoimmunity predispose to such adverse events, or is the presence of thyroid 

autoimmunity simply a marker of a non-specific disturbance in the immune system due 

to whatever has caused miscarriage, cancer or depression? Having thyroid 

autoimmunity is not all bad news. Community-dwelling older women who have TG and 

TPO antibodies are less likely to be frail than those who are antibody-negative (404).  

Again the reason for this unexpected finding is unclear but it certainly warrants follow-up. 
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