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ABSTRACT 

 

Pregnancy and lactation require women to provide calcium to the fetus and neonate in amounts that 

may exceed their normal daily intake. Specific adaptations are invoked within each time period to meet 

the fetal, neonatal, and maternal calcium requirements. During pregnancy, intestinal calcium absorption 

more than doubles, and this appears to be the main adaptation to meet the fetal demand for mineral. 

During lactation, intestinal calcium absorption is normal. Instead, the maternal skeleton is resorbed 

through the processes of osteoclast-mediated bone resorption and osteocytic osteolysis, in order to 

provide most of the calcium content of breast milk. In women this lactational loss of bone mass and 

strength is not suppressed by higher dietary intakes of calcium. After weaning, the skeleton appears to 

be restored to its prior bone density and strength, together with concomitant increases in bone volumes 

and cross-sectional diameters that may offset any effect of failure to completely restore the trabecular 

microarchitecture. These maternal adaptations during pregnancy and lactation also influence the 

presentation, diagnosis, and management of disorders of calcium and bone metabolism such as 

primary hyperparathyroidism, hypoparathyroidism, and vitamin D deficiency. Pregnancy and lactation 

can also cause pseudohyperparathyroidism, a form of hypercalcemia that is mediated by parathyroid 

hormone-related protein, produced in the breasts or placenta during pregnancy, and by the breasts 

alone during lactation. Although some women may experience fragility fractures as a consequence of 

pregnancy or lactation, for most women parity and lactation do not affect the long-term risks of low 

bone density, osteoporosis, or fracture. 

 

INTRODUCTION 

 

During gestation the average fetus requires about 30 g of calcium, 20 g of phosphorus, and 0.8 g of 

magnesium to mineralize its skeleton and maintain normal physiological processes. The suckling 

neonate obtains more than this amount of calcium in breast milk during six months of exclusive 

lactation. The adaptations through which women meet these calcium demands differ between 

pregnancy and lactation (Figure 1). Although providing extra calcium to the offspring could conceivably 

jeopardize the ability of the mother to maintain calcium homeostasis and skeletal mineralization, as this 

review will make clear, pregnancy and lactation normally do not cause any adverse long-term 

consequences to the maternal skeleton. The reader is referred to several comprehensive reviews for 

more details and extensive reference lists for the material covered in this chapter (1-7). 
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Figure 1. Schematic illustration contrasting calcium homeostasis in human pregnancy and 

lactation, as compared to normal. The thickness of arrows indicates a relative increase or 

decrease with respect to the normal and non-pregnant state. Although not illustrated, the serum 

(total) calcium is decreased during pregnancy, while the ionized calcium remains normal during 

both pregnancy and lactation. Adapted from ref. (8), © 1997, The Endocrine Society. 

 

MINERAL PHYSIOLOGY DURING PREGNANCY 

 

Calcium provided from the maternal decidua aids in fertilization of the egg and implantation of the 

blastocyst; from that point onward the rate of transfer from mother to offspring increases substantially. 

About 80% of the calcium and phosphate present in the fetal skeleton at the end of gestation crossed 

the placenta during the third trimester and is mostly derived from the maternal diet during pregnancy. 

Intestinal calcium and phosphate absorption doubles during pregnancy, driven by 1,25-

dihydroxyvitamin D (calcitriol) and other factors, and this appears to be the main adaptation through 

which women meet the mineral demands of pregnancy. 

 

Mineral Ions  

 

There are several characteristic changes in maternal serum chemistries and calciotropic hormones 

during pregnancy (Figure 2), which can easily be mistaken as indicating the presence of a disorder of 

calcium and bone metabolism, especially since it is not common for clinicians to measure calcium, 



phosphate, and calciotropic hormones during pregnancy (1). The serum albumin and hemoglobin fall 

during pregnancy due to hemodilution; the albumin remains low until parturition. In turn that fall in 

albumin causes the total serum calcium to decline to values that can be well below the normal range. 

The total calcium includes albumin-bound, bicarbonate-and-citrate-complexed, and ionized or free 

fractions of calcium. The ionized calcium, the physiologically important fraction, remains constant 

during pregnancy, which confirms that the fall in total calcium is but an artifact that can usually be 

ignored. However, that artifactual decline in total calcium means that the serum calcium cannot be 

relied upon to detect hypercalcemia or hypocalcemia. The ionized calcium should be measured or the 

albumin-corrected total calcium should be calculated to resolve any uncertainty about what the true 

serum calcium level is in a pregnant woman. Serum phosphate and magnesium concentrations remain 

normal during pregnancy. 

 



 



Figure 2. Schematic illustration of the longitudinal changes in calcium, phosphate, and 

calciotropic hormone levels that occur during pregnancy and lactation. Normal adult ranges are 

indicated by the shaded areas.  PTH does not decline in women with low calcium or high 

phytate intakes, and may even rise above normal. Calcidiol (25OHD) values are not depicted; 

most longitudinal studies indicate that the levels are unchanged by lactation, but may vary due 

to seasonal variation in sunlight exposure and changes in vitamin D intake. PTHrP and prolactin 

surge with each suckling episode, and this is represented by upward spikes. FGF23 values 

cannot be plotted due to lack of data. Very limited data suggest that calcitriol and PTH may 

increase during post-weaning, and the lines are dashed to reflect the uncertainty. Adapted with 

permission from (1). 

 

Parathyroid Hormone 

 

Parathyroid hormone (PTH) was first measured with assays that reported high circulating levels during 

pregnancy. The finding of a low total serum calcium and an apparently elevated PTH led to the concept 

of “physiological secondary hyperparathyroidism in pregnancy.” This erroneous concept persists in 

some textbooks even today. Those early-generation PTH assays measured many biologically inactive 

fragments of PTH. When measured with 2-site “intact” assays or the more recent “bio-intact” PTH 

assays, PTH falls during pregnancy to the low-normal range (i.e. 0-30% of the mean non-pregnant 

value) during the first trimester, and may increase back to the mid-normal range by term. Most of these 

recent studies of PTH during pregnancy have examined women from North America and Europe who 

also consumed calcium-replete diets. In contrast, in women from Asia and Gambia who have very low 

dietary calcium intakes (and often high intakes of phytate that blocks dietary calcium absorption), the 

PTH level does not suppress during pregnancy and in some cases it has been found to increase above 

normal (1). 

 

Vitamin D Metabolites 

 

25-hydroxyvitamin D or calcifediol (25OHD) readily crosses the rodent hemochorial placenta (9) and 

appears to cross hemochorial human placentas just as easily because cord blood 25OHD levels 

generally range from 75% to near 100% of the maternal value (1,5). A common concern is that the 

placenta and fetus might deplete maternal 25OHD stores, but this does not appear to be the case. 

Even in severely vitamin D deficient women there was no significant change in maternal 25OHD levels 

during pregnancy (1,4,10,11). 

 

Total calcitriol levels increase two to five-fold early in pregnancy and stay elevated until parturition, 

whereas measured free calcitriol levels were reported to be increased only in the third trimester (12). 

However, when the 20-40% increase in vitamin D binding protein and the decline in serum albumin 

during pregnancy are considered, that calculated free calcitriol should be increased in all three 

trimesters (11,13-16).There are several unusual aspects about this situation. PTH is normally the main 

stimulator of the renal 1alpha-hydroxylase; consequently, elevated calcitriol values are usually driven 

by high PTH concentrations. An exception to this is the ectopic expression of an autonomously 

functioning 1alpha-hydroxylase by such conditions as sarcoidosis and other granulomatous diseases. 

Another exception is pregnancy because the rise in calcitriol occurs when PTH levels are typically 

falling or quite low. Moreover, this increase in calcitriol occurs despite the ability of high levels of 

fibroblast growth factor-23 (FGF23) to suppress the synthesis and increase the catabolism of calcitriol, 

as shown in animal models of X-linked hypophosphatemic rickets (17-19). Evidence from additional 



animal models suggest that it is not PTH but other factors, such as PTH-related protein (PTHrP), 

estradiol, prolactin and placental lactogen, which drive the 1alpha-hydroxylase to synthesize calcitriol 

(1).  

 

The placenta expresses 1alpha-hydroxylase and it is often assumed that autonomous placental 

production of calcitriol explains why the maternal calcitriol level doubles; other sources such as 

maternal decidua and the fetus itself could conceivably contribute to the maternal value. However, it 

appears that any contributions of placenta and other extra-renal sources to the maternal calcitriol level 

are trivial. Animal studies indicate that the maternal renal 1alpha-hydroxylase is markedly upregulated 

during pregnancy (20,21) and that placental expression of 1alpha-hydroxylase is many-fold less than in 

the maternal kidneys (17). Clinical studies have revealed that anephric women on dialysis have very 

low circulating calcitriol levels before and during pregnancy (1,22), confirming that maternal kidneys 

must be the main source of the normal 2 to 5-fold increase in calcitriol during normal pregnancy. 

Rodent studies, including pregnancies in mice that lack the 1alpha-hydroxylase, have confirmed that 

there is a small contribution of fetal or placental calcitriol to the maternal circulation (1,23,24). However, 

it is not enough to account for the marked increase in maternal calcitriol that normally occurs during 

pregnancy. 

 

Calcitonin 

 

Serum calcitonin levels are increased during pregnancy and may derive from maternal thyroid, breast, 

decidua, and placenta. The importance of these extrathyroidal sites of calcitonin synthesis has been 

shown by serum calcitonin levels rising from undetectable to normal values in totally thyroidectomized 

women who become pregnant (25). Whether calcitonin plays an important role in the physiological 

responses to the calcium demands of pregnancy is unknown. It has been proposed to protect the 

maternal skeleton against excessive resorption during times of increased calcium demand; however, 

there are no clinical studies that have addressed this question. Study of pregnant women who lack the 

gene for calcitonin or the calcitonin receptor would be informative, but no such women have been 

identified. On the other hand, mice that lack the gene for calcitonin have normal calcium and bone 

metabolism during pregnancy (26,27). 

 

Parathyroid Hormone-related Protein 

 

PTHrP concentrations steadily increase in the maternal circulation, reaching the highest levels in the 

third trimester (1,11). The assays most commonly used in these studies detected PTHrP peptides 

encompassing amino acids 1-86, but PTHrP is a prohormone. It is cleaved into multiple N-terminal, 

mid-molecule, and C-terminal peptides, which differ in their biological activities and specificities. None 

of these peptides have been systematically measured during pregnancy. The commonly available 

PTHrP1-86 assays do not measure PTHrP1-34, which is likely the most abundant of the active, PTH-like, 

N-terminal forms of this protein. Moreover, in many clinical studies and case reports it is evident that 

inappropriate blood samples were used for assaying PTHrP. Special collection and handling are 

required because PTHrP is rapidly cleaved and degraded in serum. Blood samples should be collected 

in tubes containing EDTA and aprotinin (a protease inhibitor), kept chilled, and then centrifuged, 

separated, and frozen within 15 minutes of sample collection. Even with these rigorous standards, 

PTHrP has been found to begin degrading by 15 minutes after sample collection (28). Many studies did 

not use this method of sample collection and preparation, but used sera that had been allowed to clot at 

room temperature for up to 60 minutes. This likely explains why such studies found undetectable serum 



concentrations of PTHrP, as compared to those that studied the plasma concentration of PTHrP during 

pregnancy. Individual case reports are also fraught with this problem, since standard blood collection 

protocols for hospital laboratories do not use the special handling described above. 

 

PTHrP is produced by many tissues in the fetus and mother; consequently, it is uncertain which 

source(s) account for the rise in PTHrP in the maternal circulation. However, the placenta and breasts 

are likely the major sources of PTHrP. Whether circulating PTHrP has a role in maternal physiology 

during pregnancy is unclear, but its rise may stimulate the renal 1alpha-hydroxylase and contribute to 

the increase in calcitriol and, indirectly, the suppression of PTH. However, PTHrP appears less potent 

than PTH in stimulating the 1alpha-hydroxylase (29,30), which is why its contribution to the rise in 

calcitriol during pregnancy is uncertain. On the other hand, several case reports have clearly implicated 

breast- and placental-derived PTHrP as a cause of maternal hypercalcemia with elevated PTHrP and 

undetectable PTH, a condition called pseudohyperparathyroidism of pregnancy (see below). Since 

breasts and placenta were sources of excess PTHrP in these cases, those two tissues seem likely to 

be dominant sources of PTHrP during normal pregnancy. Moreover, since excess PTHrP impacted 

maternal calcium homeostasis to cause hypercalcemia in these cases, it is possible that the more 

modest elevations in circulating PTHrP seen during normal pregnancy also affect maternal calcium 

homeostasis.  

 

A carboxyl-terminal form of PTHrP (so-called “osteostatin”) has been shown to inhibit osteoclastic bone 

resorption in vitro, and thus the notion arises that PTHrP may play a role in protecting the maternal 

skeleton from excessive resorption during pregnancy (31). Animal studies have shown that PTHrP has 

other roles during gestation such as regulating placental calcium transport in the fetus (1,32). 

Maternally produced PTHrP is not likely to regulate placental calcium transport since the protein should 

not be able to cross the placenta (1,5); instead, it is PTHrP produced within the fetus and placenta that 

is responsible for regulating placental calcium transport. 

 

Fibroblast Growth Factor-23 (FGF23) 

 

Intact FGF23 doubles its concentration in the mother’s circulation during rodent pregnancies (17-19), 

but whether such levels change during human pregnancy has not been reported. Within 24 hours after 

delivery, mean values in postpartum women were similar to non-pregnant women (33).  

 

 

Other Hormones 

 

This section has focused on changes in static concentrations of minerals and the known calciotropic 

hormones; there are no studies testing hormonal reserves or response to challenges such as 

hypocalcemia or hypophosphatemia. Pregnancy also induces significant changes in other hormones 

known to affect calcium and bone metabolism, including sex steroids, prolactin, placental lactogen, 

oxytocin, leptin, and IGF-1. Each of these – and possibly other hormones not normally associated with 

mineral and bone metabolism – may have direct or indirect effects on mineral homeostasis during 

pregnancy. However, this aspect of the physiology of pregnancy has been largely unexplored to date. 

 

Prolactin and placental lactogen both increase during pregnancy and activate prolactin receptors. 

Osteoblasts express prolactin receptors, and prolactin receptor deficient mice show decreased bone 

formation (34). Suppressing the prolactin level with bromocriptine blunted a pregnancy-related gain in 



bone mineral content in rats (35). These data are consistent with the notion that prolactin or placental 

lactogen regulate skeletal metabolism during pregnancy. Furthermore, prolactin can indirectly affect 

skeletal metabolism by stimulating PTHrP synthesis and release from the breasts (36-38).  

 

Circulating oxytocin levels also rise during pregnancy (39), and the oxytocin receptor is expressed by 

osteoclasts and osteoblasts (40). Male and female mice lacking oxytocin or its receptor have an 

osteoporotic phenotype with low bone formation (41). Oxytocin has been shown to stimulate osteoblast 

differentiation and function, stimulate osteoclast formation, but inhibit osteoclast function and skeletal 

resorption (41,42). Taken together, these data predict that oxytocin may regulate bone metabolism 

during pregnancy, but this has not been directly studied in vivo. 

 

Intestinal Calcium and Phosphate Absorption 

 

Intestinal absorption of calcium doubles as early as 12 weeks of human pregnancy, as shown by 

clinical studies that used stable isotopes of calcium, and by other calcium balance studies (1). This 

increase in calcium absorption appears to be the major maternal adaptation to meet the fetal need for 

calcium. It has been generally believed that the doubling or tripling of calcitriol levels explains the 

increased intestinal calcium absorption and concurrent increases in the intestinal expression of 

calbindin9k-D (S100G), TRPV6, Ca2+-ATPase (PMCA1), and other genes and proteins involved in 

calcium transport. However, intestinal calcium absorption doubles in the first trimester, well before the 

rise in free calcitriol levels during the third trimester. Animal studies have indicated that placental 

lactogen, prolactin, and other factors may stimulate intestinal calcium absorption (1) and that calcitriol 

or the vitamin D receptor are not required for intestinal calcium absorption to increase during pregnancy 

(1,23,43-45).   

 

The peak fetal demand for calcium does not occur until the third trimester, and so it is unclear why 

intestinal calcium absorption should be upregulated in the first trimester. It may allow the maternal 

skeleton to store calcium in advance of the peak demands for calcium that occur later in pregnancy and 

lactation; some studies in rodents have shown this to be the case with the bone mineral content rising 

significantly before term (17,26,45). Women have also been found to be in a positive calcium balance 

by mid-pregnancy (46), likely due to the effect of increased intestinal calcium absorption on skeletal 

mineralization. 

 

Intestinal phosphate absorption also undergoes a doubling during rodent and other mammalian 

pregnancies (1), and presumably human pregnancy as well. However, no clinical studies have studied 

this. 

 

Renal Handling of Calcium 

 

The doubling of intestinal calcium absorption in the first trimester means that the extra calcium must be 

passed to the fetus, deposited in the maternal skeleton, or excreted in the urine. Renal calcium 

excretion is increased as early as the 12th week of gestation and 24-hour urine values (corrected for 

creatinine excretion) often exceed the normal range. Conversely, fasting urine calcium values are 

normal or low, confirming that this hypercalciuria is a consequence of the enhanced intestinal calcium 

absorption (1). This is absorptive hypercalciuria and will not be detected by spot or fasting urine 

samples that have been corrected for creatinine concentration. Absorptive hypercalciuria contributes to 

the increased risk of kidney stones during pregnancy.  



 

This absorptive hypercalciuria also renders nomograms of fractional calcium excretion invalid for the 

diagnosis of familial hypocalciuric hypercalcemia during pregnancy (47,48). 

 

Pharmacological doses of calcitonin promote renal calcium excretion, but whether the physiologically 

elevated levels of calcitonin during pregnancy promote renal calcium excretion is unknown. 

 

Hypocalciuria during pregnancy has been associated with pre-eclampsia, pregnancy-induced 

hypertension, and low (equal to non-pregnant values) serum calcitriol (49-52). These changes appear 

largely secondary to disturbed renal function and reduced creatinine clearance, rather than being 

causes of the hypertension. However, calcium supplementation reduces the risk of pre-eclampsia in 

women within the lowest quintile of calcium intake, and so there is a pathophysiological link between 

calcium metabolism and pregnancy-induced hypertension (1). 

 

Skeletal Calcium Metabolism and Bone Density/Bone Marker Changes 

 

As mentioned earlier, some studies in rodents indicate that bone mineral content increases during 

pregnancy, and other studies have shown that histomorphometric parameters of bone turnover are 

increased at this time. Systematic studies of bone histomorphometry from pregnant women have not 

been done. However, one study of 15 women who electively terminated a pregnancy at 8-10 weeks 

found bone biopsy evidence of increased bone resorption, including increased resorption surface and 

increased numbers of resorption cavities (53). These findings were not present in biopsies obtained 

from 13 women at term, or in the non-pregnant controls. This study bears repeating but it does suggest 

that early pregnancy induces skeletal resorption. 

 

Bone turnover markers – by-products of bone formation and resorption that can be measured in the 

serum or urine – have been systematically studied during pregnancy in multiple studies (1). In the non-

pregnant adult with osteoporosis these bone markers are fraught with significant intra- and inter-

individual variability which limit their utility on an individual basis. There are additional problems with the 

use of bone markers during pregnancy, including lack of pre-pregnancy baseline values; hemodilution; 

increased GFR; altered creatinine excretion; placental, uterine and fetal contributions; degradation and 

clearance by the placenta; and lack of diurnally timed or fasted specimens. Bone resorption has been 

assessed using urinary (deoxypyridinoline, pyridinoline, and hydroxyproline) and serum (C-telopeptide) 

markers, and the consistent finding is that bone resorption appears increased from early or mid-

pregnancy (1). Conversely, bone formation has been assessed by serum markers (osteocalcin, 

procollagen I carboxypeptides and bone specific alkaline phosphatase) that were generally not 

corrected for hemodilution or increased GFR. These bone formation markers are decreased in early or 

mid-pregnancy from pre-pregnancy or non-pregnant values and rise to normal or above before term (1). 

The lack of correction for hemodilution and increased GFR means that the apparent decline in bone 

formation markers may actually occur despite no change or even an increase in bone formation. It 

should be noted that total alkaline phosphatase rises early in pregnancy due to the placental fraction 

and is not a useful marker of bone formation during pregnancy. 

 

Overall, the scant bone biopsy data and the results of bone turnover markers suggest that bone 

resorption is increased from as early as the 10th week of pregnancy, whereas bone formation may be 

suppressed (if the bone formation marker results are correct) or normal (if the bone formation markers 

are artifactually suppressed due to the aforementioned confounding factors) (1). Notably there is little 



maternal-fetal calcium transfer occurring in the first trimester, nor is there a marked increase in turnover 

markers during the third trimester when maternal-fetal calcium transfer is at a peak. These findings may 

simply underscore that resorption of the maternal skeleton is a minor contributor to calcium 

homeostasis during pregnancy, whereas the upregulation of intestinal calcium absorption is the main 

mechanism through which the fetal demand for calcium is met. 

 

Another way of assessing whether the maternal skeleton contributes to calcium regulation during 

pregnancy is to measure bone mineral content or density. A few sequential areal bone density (aBMD) 

studies have been done using older techniques (single and/or dual-photon absorptiometry, i.e., SPA 

and DPA), and none with newer techniques (DXA or qCT) due to concerns about fetal radiation 

exposure. Studies of aBMD are known to be confounded by changes in body composition, weight and 

skeletal volumes, and all three of these factors change during normal pregnancy. The longitudinal 

studies used SPA or DPA and found no significant change in cortical or trabecular aBMD during 

pregnancy (1). Most recent studies examined 16 or fewer subjects with DXA prior to planned pregnancy 

(range 1-18 months prior, but not always stated) and after delivery (range 1-6 weeks postpartum) 

[studies reviewed in detail in (54)]. One study found no change in lumbar spine aBMD measurements 

obtained pre-conception and within 1-2 weeks post-delivery, whereas the other studies reported 4-5% 

decreases in lumbar aBMD with the postpartum measurement taken between 1-6 weeks post-delivery. 

A large study from Denmark obtained DXA measurements of hip, spine, and radius at baseline (up to 8 

months before pregnancy) and again within 15 days of delivery in 73 women (55). DXA of the radius 

was also obtained once each trimester. BMD decreased between pre-pregnancy and post-pregnancy 

by 1.8% at the lumbar spine, 3.2% at the total hip, 2.4% at the whole body, 4% at the ultradistal 

forearm, and 1% at the total forearm, whereas it increased by 0.5% at the proximal 1/3 forearm (55). All 

women went on to breastfeed, which means that the final BMD values were confounded by lactation-

induced bone loss (see lactation section). These changes in BMD were statistically significant when 

compared to 57 non-pregnant controls who also had serial measurements done, but the magnitudes of 

change were small, and would not be considered statistically significant for an individual woman. 

 

Ultrasound measurements of the os calcis and fingers have been examined in other longitudinal 

studies, which reported a progressive decrease in indices that correlate with volumetric BMD (1,54). 

Whether observed changes in the os calcis accurately indicate a true or clinically meaningful decrease 

in volumetric BMD, or imply that losses of BMD are occurring in the spine or hip during pregnancy, is 

not known. The reliability or relevance of data obtained from ultrasound is questionable since this 

technique failed to detect any change in volumetric BMD at the os calcis during lactation (56), even 

though substantial bone loss occurs at the spine and hip during lactation (see lactation section). 

 

Overall, the existing studies have insufficient power to allow a firm conclusion as to the extent of bone 

loss that might occur during pregnancy, but it seems likely (especially when data from the Danish study 

are considered) that modest bone loss occurs, which would be difficult to discern on an individual basis. 

In the long term, pregnancy does not impair skeletal strength or lead to reduced bone density. Several 

dozen epidemiological studies of osteoporotic and osteopenic women have failed to find a significant 

association of parity with bone density or fracture risk (1,57), and many have shown a protective effect 

of parity (58-75). 

 



DISORDERS OF CALCIUM AND BONE METABOLISM DURING PREGNANCY 

 

Osteoporosis in Pregnancy 

 

The occasional woman will present with a fragility fracture during the third trimester or puerperium, and 

low bone mineral density may be confirmed by DXA (76). In such cases it is not possible to exclude the 

possibility that low bone density or skeletal fragility preceded pregnancy. In favor of a genetic 

predisposition is the report that among 35 women who presented with pregnancy associated 

osteoporosis, there was a higher than expected prevalence of fragility fractures in their mothers (77). It 

is conceivable that pregnancy may induce significant skeletal losses in some women and, thereby, 

predispose to fracture. The normal pregnancy-induced changes in mineral metabolism may cause 

excessive resorption of the skeleton in selected cases, and other factors such as low dietary calcium 

intake and vitamin D insufficiency may contribute to skeletal losses (76). A high rate of bone turnover is 

an independent risk factor for fragility fractures outside of pregnancy, and so the apparently increased 

bone resorption observed during pregnancy may increase fracture risk. In favor of pregnancy inducing 

fragility through excess skeletal losses is an observational study of 13 women with pregnancy-

associated osteoporosis who were followed for up to eight years. Since the bone mineral density at the 

spine and hip increased significantly during follow-up in these women, the investigators concluded that 

a large part of the bone loss must have been related to the pregnancy itself (78). Taken together, 

fragility fractures in pregnancy or the puerperium may result from the combination of abnormal skeletal 

microarchitecture prior to pregnancy and increased bone resorption during pregnancy. 

 

Osteoporosis in pregnancy usually presents in a first pregnancy and there is no apparent increased risk 

with higher parity (76,78-80). About 60% of patients present with lower thoracic or lumbar pain that may 

be quite debilitating due to vertebral collapse (78-80). Most cases show normal serum chemistries and 

calciotropic hormone levels, but in a few, secondary causes of bone loss could be identified, including 

anorexia nervosa, hyperparathyroidism, osteogenesis imperfecta, inactivating mutations in LRP5, 

premature ovarian failure, and corticosteroid or heparin therapy (76,77,79-83). Bone biopsies have 

confirmed osteoporosis and the absence of osteomalacia, while bone density Z-scores are often lower 

than expected (78-80). The pain resolves spontaneously over several weeks in most cases while the 

bone density has been reported to improve in most women following pregnancy. Fractures tend not to 

recur in subsequent pregnancies. Thus, although myriad medical treatments (bisphosphonates, 

estrogen, testosterone, calcitonin, teriparatide, denosumab) and surgical interventions (kyphoplasty, 

vertebroplasty, spinal fusion) have been used in individual cases of pregnancy-associated osteoporosis 

(76), the tendency for this condition to spontaneously improve may make pharmacological treatment 

unjustified except for the severest cases. At the least, it may be prudent to wait 12-18 months to 

determine the extent to which the BMD recovers on its own after a pregnancy-associated vertebral 

fracture (76). 

 

A distinct condition is focal, transient osteoporosis of the hip (76). This is rare, self-limited, and probably 

not a manifestation of altered calciotropic hormone levels or mineral balance during pregnancy. 

Instead, it may be a consequence of local factors. A variety of theories have been offered to explain this 

condition, including femoral venous stasis due to pressure from the pregnant uterus, Sudeck’s atrophy 

or reflex sympathetic dystrophy (causalgia), ischemia, trauma, viral infections, marrow hypertrophy, 

immobilization, and fetal pressure on the obturator nerve. These patients present with unilateral or 

bilateral hip pain, limp and/or hip fracture in the third trimester or puerperium (76,84-86). Radiographs 

and DXA indicate radiolucency and reduced bone density of the symptomatic femoral head and neck, 



while MRI demonstrates increased water content of the femoral head and the marrow cavity; a joint 

effusion may also be present. The differential diagnosis of this condition includes inflammatory joint 

disorders, avascular necrosis of the hip, bone marrow edema, and reflex sympathetic dystrophy. It is a 

self-limiting condition with both symptoms and radiological appearance resolving within two to six 

months post-partum; conservative measures including bed rest are usually all that is required during 

the symptomatic phase (76). Of course, fractures of an involved femur require urgent arthroplasty or hip 

replacement. The condition recurs in about 40% of cases (not necessarily during pregnancy), unlike 

osteoporosis involving the spine, and this has prompted prophylactic hip arthroplasty to be done in a 

few cases where the opposite hip appears to be affected. 

 

Primary Hyperparathyroidism 

 

This is probably a rare condition but there are no firm data available on its prevalence. Two case series 

indicated that parathyroidectomies were done during pregnancy in about 1% of all cases (87,88). The 

diagnosis will be obscured by the normal pregnancy-induced changes that lower the total serum 

calcium and suppress PTH; however, finding the ionized or albumin-corrected calcium to be increased, 

and PTH to be detectable, should indicate primary hyperparathyroidism in most cases.  

 

Primary hyperparathyroidism during pregnancy has been reported to cause a variety of symptoms that 

are not specific to hypercalcemia, and cannot be distinguished from those occurring in normal 

pregnancy (nausea, vomiting, renal colic, malaise, muscle aches and pains, etc.). Conversely the 

literature associates primary hyperparathyroidism with an alarming rate of adverse outcomes in the 

fetus and neonate, including a 10-30% rate for each of spontaneous abortion, stillbirth, and perinatal 

death, and 30-50% incidence of neonatal tetany (88-92). These high rates were reported in older 

literature; more recent case series suggest that the rates of stillbirth and neonatal death are each about 

2%, while neonatal tetany occurred in 15% (89). The adverse postnatal outcomes are thought to result 

from suppression of the fetal and neonatal parathyroid glands; this suppression may be prolonged after 

birth for 3-5 months (89) and in some cases it has been permanent (89,91,93).  

 

To prevent these adverse outcomes, surgical correction of primary hyperparathyroidism during the 

second trimester has been almost universally recommended. Several case series have found elective 

surgery to be well tolerated, and to dramatically reduce the rate of adverse events when compared to 

the earlier cases reported in the literature. In a series of 109 mothers with hyperparathyroidism during 

pregnancy who were treated medically (N=70) or surgically (N=39), there was a 53% incidence of 

neonatal complications and 16% incidence of neonatal deaths among medically treated mothers, as 

opposed to a 12.5% neonatal complications and 2.5% neonatal deaths in mothers who underwent 

parathyroidectomy (88). Choosing the second trimester allows organogenesis to be complete in the 

fetus and to avoid the poorer surgical outcomes and risk of preterm birth associated with surgery during 

the third-trimester (89,92,94,95).  

 

Many women in the earliest published cases had a more severe form of primary hyperparathyroidism 

that is not often seen today (symptomatic, with nephrocalcinosis and renal insufficiency). While mild, 

asymptomatic primary hyperparathyroidism during pregnancy has been followed conservatively with 

successful outcomes, complications continue to occur, so that, in the absence of definitive data, 

surgery during the second trimester remains the most common recommendation (96). Milder cases 

diagnosed during the third trimester may be observed until delivery, although rapid and severe 

postpartum worsening of the hypercalcemia can occur (95,97-100). This postpartum “parathyroid crisis” 



occurs because the placental calcium outflow has been lost, while surging PTHrP production in the 

breasts means an additional factor stimulating bone resorption. 

 

There are no definitive medical management guidelines for hyperparathyroidism during pregnancy 

apart from ensuring adequate hydration and correction of electrolyte abnormalities (96). Pharmacologic 

agents to treat hypercalcemia have not been adequately studied in pregnancy.  Calcitonin does not 

cross the placenta and has been used safely (96). Oral phosphate has also been used but is limited by 

diarrhea, hypokalemia, and risk of soft tissue calcifications. Bisphosphonates are relatively contra-

indicated because of their potential adverse effects on fetal endochondral bone development, although 

a review of 78 cases of bisphosphonate use in pregnancy found no obvious problems in most cases 

(101). Denosumab crosses the placenta and has been shown to cause an osteopetrotic-like phenotype 

in fetal cynomolgus monkeys and rats (102,103), and so it should be avoided in human pregnancy. 

High-dose magnesium has been proposed as a therapeutic alternative which should decreases serum 

PTH and calcium levels by activating the calcium sensing-receptor, but it has not been adequately 

studied for this purpose (104,105). The calcium receptor agonist cinacalcet, which is used to suppress 

PTH and calcium in nonpregnant subjects with primary or secondary hyperparathyroidism and 

parathyroid carcinoma, has also been tried in pregnancy (106-109). However, since the calcium 

receptor is expressed in the placenta and regulates fetal-placental calcium transfer (110), the possibility 

of adverse effects of cinacalcet on the fetus and neonate remain a concern.  

 

In any case that was followed medically, parathyroidectomy is recommended to be done postpartum, 

with monitoring in place to detect a postpartum hypercalcemic crisis. 

 

Familial Hypocalciuric Hypercalcemia 

 

Inactivating mutations in the calcium-sensing receptor cause this autosomal dominant condition which 

presents with hypercalcemia and hypocalciuria (111).  As noted above, fractional excretion of calcium is 

not reduced during pregnancy in this condition, because it is overridden by the physiological increase in 

intestinal calcium absorption that in turn causes hypercalciuria (47,48). Pregnancy in women with 

familial hypocalciuric hypocalcemia may be uneventful for the mother, but the maternal hypercalcemia 

has caused fetal and neonatal parathyroid suppression with subsequent tetany in both normal and 

hemizygous children (5,112,113). A hemizygous neonate will later develop benign hypercalcemia, but if 

the baby has two inactivating mutations of the calcium receptor (most commonly from both parents 

being hemizygous for FHH), then the neonate may suffer a life-threatening hypercalcemic crisis (5). 

 

Hypoparathyroidism 

 

Hypoparathyroidism during pregnancy usually presents as a pre-existing condition that the clinician is 

challenged to manage. The natural history of hypoparathyroidism during pregnancy is confusing due to 

conflicting case reports in the literature [reviewed in (1,3)].  Early in pregnancy, some hypoparathyroid 

women have fewer hypocalcemic symptoms and require less supplemental calcium. This is consistent 

with a limited role for PTH in the pregnant woman, and suggests that an increase in calcitriol and/or 

increased intestinal calcium absorption occurs in the absence of PTH. However, other case reports 

clearly indicate that some pregnant hypoparathyroid women required increased calcitriol replacement in 

order to avoid worsening hypocalcemia. Adding to the confusion is that in some case reports, it appears 

that the normal, artifactual decrease in total serum calcium during pregnancy was the parameter that 

led to treatment with increased calcium and calcitriol supplementation; fewer cases reported that dose 



increments in calcitriol and calcium were made because of maternal symptoms of hypocalcemia or 

tetany, or objective evidence of true hypocalcemia (ionized or albumin-corrected calcium). It is not 

possible to know in advance who will improve and who will worsen during pregnancy; the task is to 

maintain the albumin-corrected serum calcium or ionized calcium in the normal range for the duration of 

pregnancy. Maternal hypocalcemia due to hypoparathyroidism must be avoided because it has been 

associated with intrauterine fetal hyperparathyroidism and fetal death. Conversely, overtreatment must 

be avoided because maternal hypercalcemia is associated with the fetal and neonatal complications 

described above under Primary Hyperparathyroidism. Calcitriol and 1α-calcidiol are recommended due 

to their shorter half-lives, lower risk of toxicity, and the clinical experience with these agents. 

 

Late in pregnancy, hypercalcemia may occur in hypoparathyroid women unless the calcitriol dosage 

and supplemental calcium are substantially reduced or discontinued. This effect appears to be 

mediated by the increasing levels of PTHrP in the maternal circulation in late pregnancy. Conversely, 

one case report of hypoparathyroidism in pregnancy found that there was a transient interval of 

increased requirement for calcitriol immediately after delivery and before lactation was fully underway 

(114). This may be the result of loss of placental sources of PTHrP followed by a surge in production of 

PTHrP by the lactating breast (see lactation section, below).  

 

Pseudohypoparathyroidism 

 

Pseudohypoparathyroidism is a genetic disorder causing resistance to PTH and manifest by 

hypocalcemia, hypophosphatemia, and high PTH levels. In two case reports of 

pseudohypoparathyroidism during pregnancy, the serum calcium normalized, PTH reduced by half, and 

calcitriol increased 2- to 3-fold (115). The mechanism by which these changes occur despite 

pseudohypoparathyroidism remains unclear. If maternal hypocalcemia persists during pregnancy, 

pseudohypoparathyroidism can lead to the same adverse fetal outcomes that have been associated 

with maternal hypoparathyroidism, including parathyroid hyperplasia, skeletal demineralization, and 

fractures (116,117). The maternal calcium concentration must be maintained in the normal range to 

avoid these fetal outcomes. 

 

Pseudohyperparathyroidism 

 

As mentioned above, pseudohyperparathyroidism is hypercalcemia that is caused by physiological 

release of PTHrP driving increased skeletal resorption, akin to how PTHrP also causes hypercalcemia 

of malignancy. In one such case the breasts were the source of PTHrP because the hypercalcemia and 

elevated PTHrP did not abate until a bilateral reduction mammoplasty was carried out (118,119). It has 

occurred in women who simply have large breasts (120,121). In another case the hypercalcemia, 

elevated PTHrP, and suppressed PTH reversed within a few hours of an urgent C-section, thereby 

confirming the placenta as the source (122). In all cases of pseudohyperparathyroidism, it should be 

anticipated that the cord blood calcium will also be increased, and that the baby is at risk for fetal and 

neonatal hypoparathyroidism with hypocalcemic tetany.  

 

Vitamin D Deficiency and Insufficiency 

 

There are no comprehensive studies of the effects of vitamin D deficiency or insufficiency on human 

pregnancy, but the available data from small clinical trials of vitamin D supplementation, observational 

studies, and case reports suggest that, consistent with animal studies, vitamin D insufficiency and 



deficiency is not associated with any worsening of maternal calcium homeostasis (this topic is reviewed 

in detail in (1,4,7). Maternal hypocalcemia is milder with vitamin D deficiency due to the effects of 

secondary hyperparathyroidism to increase skeletal resorption and renal calcium reabsorption. 

Consequently, hypocalcemia due to vitamin D deficiency has not been clearly associated with the same 

adverse fetal outcomes that maternal hypoparathyroidism causes (reviewed in detail in (5,123)). The 

fetal effects of vitamin D deficiency, inability to form calcitriol, and absence of the vitamin D receptor 

have been examined across several animal species and all have indicated that the fetus will have a 

normal serum calcium and fully mineralized skeleton at term (reviewed in detail in (5,123)). Neonatal 

hypocalcemia and rickets can occur in infants born of mothers with severe vitamin D deficiency, but it is 

usually in the weeks to months after birth that this presents, after intestinal calcium absorption becomes 

dependent on calcitriol. 

 

There has been much interest in studies that have inconsistently associated third-trimester 

measurements of 25OHD, or estimated vitamin D intakes during pregnancy or the first year after birth, 

with possible extraskeletal benefits in the mother (reduced bacterial vaginosis, pre-eclampsia, pre-term 

delivery) or in the offspring (lower incidence of type 1 diabetes, greater skeletal mineralization, etc.). 

These associational studies won’t be discussed in detail (some are cited in: (1,5,124)) because they are 

confounded by factors which contribute to lower 25OHD levels (maternal overweight/obesity, lower 

socioeconomic status, poor nutrition, lack of exercise, etc.). It is necessary to test these associations in 

randomized clinical trials that compare higher versus lower intakes of vitamin D during pregnancy. At 

present the results of the associational studies are insufficient to warrant prescribing higher intakes of 

vitamin D during pregnancy to prevent these postulated outcomes. 

 

Among many clinical trials of vitamin D supplementation that have been carried out (1), only a few have 

included over a 100 study participants who were vitamin D deficient at entry, while other recent studies 

that gained press attention did not include many vitamin D deficient subjects at all. Among the trials 

with over 100 participants (14,125-132), the two largest were from Bangladesh and UK with over 1,000 

participants (131,132). Baseline maternal 25OHD levels were lowest (20-29 nmol/L) in trials from 

Bangladesh, UK, Iran, and UAE, and in the 40-60 nmol/L range in the remainder. Interventions 

consisted of placebo/no treatment versus low dose (400 IU/day) or high dose (1,000-5,000 IU/day) 

vitamin D supplementation, initiated before mid-pregnancy, and maintained until delivery.  For most 

trials the primary outcomes were simply maternal and neonatal-cord blood 25OHD and calcium. The 

most recent and largest study was from Bangladesh, and the primary outcome was pre-specified as 

infant length-for-age z-scores at 1 year of age (132). Offspring anthropometric parameters and/or bone 

mineral content were pre-specified only in a few of the remaining studies (128,130,131). 

 

In all studies vitamin D supplementation increased maternal serum and cord blood 25OHD, but there 

was no overall effect on cord blood calcium. The largest achieved difference in a single study was 16 

nmol/L (6.4 ng/mL) in the untreated and 168 nmol/L (67 ng/mL) in vitamin D-supplemented mothers at 

term; however, there was no obstetrical or fetal benefit (125). The incidence of neonatal hypocalcemia 

was reduced in offspring of vitamin-D treated mothers, reflecting the role of vitamin D/calcitriol to 

stimulate postnatal intestinal calcium absorption (125). In the large Bangladesh study, there were no 

significant differences in infant anthropometrics or any other fetal, neonatal or maternal outcomes 

(132). In one US-based study there was no benefit on mode of delivery, gestational age at delivery, and 

preterm birth (14), while in another there was no benefit on mode of delivery, C-section rates, adverse 

events, hypertension, infection, gestational diabetes, still birth, gestational age at delivery, or 

combinations of these outcomes (127). The UK MAVIDOS trial reported no obstetrical benefit, and no 



benefit to any of the primary (neonatal bone area, BMC, and BMD within the first 10-14 days after birth) 

or secondary outcomes (anthropometric and body composition parameters within 48 hours of birth). 

However, it received much publicity for a demonstrated increase in BMC and BMD in winter-born 

neonates of vitamin D-supplemented vs. placebo-treated mothers (131). Because the neonatal skeleton 

accretes 100 mg/day of mineral content after birth, this result may reflect improved intestinal mineral 

delivery over 14 days after birth, rather than a prenatal effect on skeletal mineralization (1,133,134). 

Curiously, autumn-born neonates of vitamin D-supplemented vs. placebo-treated mothers showed an 

adverse trend of similar magnitude on BMC and BMD, which suggests possible harm from vitamin D 

supplementation, or chance findings due to small numbers within the sub-groups (134). These sub-

group analyses of treatment by season interaction were not specified outcomes in the trial registries 

(ISRCTN 82927713 and EUDRACT 2007-001716-23). In the UK study that achieved the greatest 

difference in 25OHD levels between untreated and vitamin D-treated mothers and babies, there was a 

trend for more small for gestational age babies born to mothers who did not receive antenatal vitamin D 

supplementation (28% vs. 15%, p<0.1), but the study was not powered for this outcome (125). In 

studies from the UAE, and Iran there was also no benefit on obstetrical outcomes (variably, mode of 

delivery, C-section rates, adverse events, stillbirths, gestational age at delivery) or neonatal 

anthropometric measurements and bone mass measurements (126,128,130).  

 

The lack of any beneficial effect on maternal, immediate fetal/neonatal and neonatal outcomes 

(anthropometrics and cord blood calcium), even in studies that included mothers with some of the 

lowest 25OHD levels (125,128,130,132), suggests that vitamin D supplementation during pregnancy 

confers no benefit to the neonate.  The most recent study was well-powered to demonstrate a 

beneficial effect on infant length and other fetal/neonatal outcomes, but did not yield any significant 

results, despite low vitamin D levels in the mothers at study entry (132). 

 

Systematic reviews have used these and the results of smaller trials to examine the effect of vitamin D 

supplementation during pregnancy on maternal, fetal, and neonatal extra-skeletal outcomes (135-140). 

Vitamin D supplementation had no significant effect on pre-eclampsia in four (136,138-140) and a 

positive effect in two reviews (135,137), while combined vitamin D and calcium supplementation 

reduced the incidence of pre-eclampsia in three systematic reviews (135-137). No consistent effect was 

seen on other outcomes such as preterm birth, low birth weight, small for gestational age, infections, C-

section rate, and newborn anthropometrics.  

 

Overall, available data are insufficient from the individual clinical trials or these systematic reviews to 

conclude that vitamin D supplementation during pregnancy confers any proven obstetrical benefits.  

 

Genetic Vitamin D Resistance Syndromes 

 

Case reports and series have provided insight into the effect of pregnancy on genetic disorders of 

vitamin physiology. Pregnancies have generally been unremarkable in women with vitamin D-

dependent rickets type 1 (VDDR-I) which is due to absence of Cyp27b1, and in women with VDDR-II 

that is due to absence of functional VDRs (141-143). In one such uneventful VDR-II pregnancy, the pre-

pregnancy intake of supplemental calcium (800 mg) and high-dose calcitriol were maintained until her 

clinicians increased the dose of calcitriol later in pregnancy “because of the knowledge that the 

circulating 1,25-(OH)2D concentration normally rises during pregnancy,” and not because of any 

change in albumin-adjusted serum calcium (142). Consequently, it’s unclear that any change was 

needed. However, it is reasonable to increase the dose of calcitriol to mirror the increase that happens 



during normal pregnancy. In women with VDDR-I, the dose of calcitriol was unchanged in one-third of 

pregnancies but increased 1.5 to 2-fold in others (141). 

 

24-Hydroxylase Deficiency 

 

Loss of the catabolic effects of 24-hydroxylase causes high calcitriol and mild hypercalcemia in non-

pregnant adults, which may be asymptomatic (144). But during pregnancy, the physiological 2 to 5-fold 

increase in calcitriol is unopposed by catabolism, which causes an exaggerated increase in calcitriol, 

followed by symptomatic hypercalcemia. Hypercalcemia can be quite marked, with suppressed or 

undetectable PTH, and calcitriol concentrations that exceed what is expected for pregnancy (145-147). 

Pregnant patients may also present with nephrolithiasis or acute pancreatitis (147,148). 

 

Treatment of the hypercalcemia is difficult because the agents that could be used are not approved for 

pregnancy. Increased intestinal calcium absorption is the direct cause, and so use of increased 

hydration and a modestly restricted calcium diet, combined with phosphate supplementation to bind 

dietary calcium, are relatively safe management approaches. If PTH increases above normal, then 

dietary calcium restriction should be lessened to prevent maternal bone resorption and fetal secondary 

hyperparathyroidism. Other pharmacologic therapy should be reserved for the most severe cases and 

used with caution. This includes oral glucocorticoids, loop diuretics, calcitonin, and bisphosphonates; 

denosumab should not be used because of teratogenic effects observed in cynomolgus monkeys and 

mice (102,103). Cinacalcet will not be useful because PTH will already be suppressed due to the 

combined effects of pregnancy and hypercalcemia. 

 

Low or High Calcium Intake 

 

Through the doubling of intestinal calcium absorption during pregnancy, women have the ability to 

adapt to wide ranges of calcium intakes and still meet the fetal demand for calcium. It is conceivable 

that extremely low maternal calcium intakes could impair maternal calcium homeostasis and fetal 

mineral accretion, but there are scant clinical data examining this possibility (149). Among women with 

low dietary calcium intake, there are differing results as to whether or not calcium supplementation 

during pregnancy improved maternal or neonatal bone density (150). There is short term evidence that 

bone turnover markers were reduced when 1.2 gm of supplemental calcium was given for 20 days to 

31 Mexican woman at 25-30 weeks of gestation; their mean dietary calcium intake was 1 gm (151). In a 

double-blind study conducted in 256 pregnant women, 2 gm of calcium supplementation improved bone 

mineral content only in the infants of supplemented mothers who were in the lowest quintile of calcium 

intake (152). Among cases of fragility fractures presenting during pregnancy, some women had very 

low calcium intakes (<300 mg per day), and in such cases substantial maternal skeletal resorption must 

be invoked in order to meet the fetal calcium requirement and maintain the maternal serum calcium 

concentration (76). 

 

Overall the physiological changes in calcium and bone metabolism that usually occur during pregnancy 

and lactation are likely to be sufficient for fetal bone growth and breast-milk production in women with 

reasonably sufficient calcium intake (153). However, the use of calcium supplementation for pregnant 

women with low calcium intake can be defended by the links between low calcium intake and both 

preeclampsia and hypertension in the offspring (149). Clinical trials and meta-analyses have also 

demonstrated that supplemental calcium will reduce the risk of preeclampsia in women with low dietary 

calcium intakes, but not in those with adequate intake (154-157). 



 

High calcium intake, similar to primary hyperparathyroidism, can cause increased intestinal calcium 

absorption, maternal hypercalcemia, increased transplacental flow of calcium, and suppression of the 

fetal parathyroids. Cases of neonatal hypoparathyroidism have been reported wherein women 

consumed 3 to 6 grams of elemental calcium daily as antacids or anti-nauseates (1). 

 

Hypercalcemia of Malignancy 

 

Hypercalcemia of malignancy is usually a terminal condition. When it has been diagnosed during 

pregnancy, in some cases the baby has been spared from chemotherapy, whereas in other cases the 

pregnancy was terminated (or ignored) so that chemotherapy could be administered in an attempt to 

prolong the woman’s life. Half of published case reports haven’t even mentioned the baby’s outcome. A 

baby born of a mother with humoral hypercalcemia of malignancy may have a high concentration of 

calcium in cord blood, and is at high risk for fetal and neonatal hypoparathyroidism with hypocalcemic 

tetany. 

 

FGF-23 Disorders 

 

X-linked hypophosphatemic rickets (XLH) is caused by inactivating mutations in the PHEX gene, which 

lead to high circulating levels of FGF23. In turn this causes hypophosphatemia with rickets or 

osteomalacia. Pregnancies were normal in a mouse model of XLH. In particular, despite very high 

circulating levels of FGF23, which normally downregulate calcitriol synthesis and increase its 

catabolism, maternal serum calcitriol increased to the high levels normally seen during pregnancy 

(19,158). This rise in calcitriol should contribute to increased intestinal calcium and phosphate 

absorption. Several case reports documented persistent hypophosphatemia during pregnancy in 

women with XLH, but no adverse outcomes (159,160). Nevertheless, it is generally recommended to 

supplement with calcitriol and phosphate to keep the serum phosphate near normal during pregnancy. 

 

Hyperphosphatemic disorders due to loss of FGF23 action have not been studied during human 

pregnancy, and animal data are also lacking because these conditions are lethal before sexual 

maturity. Renal insufficiency or failure causes hyperphosphatemia, and both animal and human data 

indicate that such renal disorders increase the risks of gestational hypertension, pre-eclampsia, 

eclampsia, and maternal mortality. However, the extent to which the hyperphosphatemia contributes to 

these risks is unknown. 

 

MINERAL PHYSIOLOGY DURING LACTATION AND POST-WEANING 

 

As lactation begins the mother is faced with another demand for calcium in order to make milk. The 

average daily loss of calcium into breast milk is 210 mg, although daily losses as great as 1000 mg 

calcium have been reported is some women nursing twins (1). Although women meet the calcium 

demands of pregnancy by upregulating intestinal calcium absorption and serum concentrations of 

calcitriol, a different adaptation occurs during lactation. A temporary resorption and demineralization of 

the maternal skeleton appears to be the main mechanism by which breastfeeding women meet these 

calcium requirements. This adaptation does not appear to require PTH or calcitriol, but is regulated by 

the combined effects of increased circulating concentrations of PTHrP and low estradiol levels. 

 



Mineral Ions 

 

The albumin-corrected serum calcium and ionized calcium are both normal during lactation, but 

longitudinal studies have shown that both are increased slightly over the non-pregnant values. Serum 

phosphate levels are also higher and may exceed the normal range. Since reabsorption of phosphate 

by the kidneys appears to be increased, the increased serum phosphate levels may, therefore, reflect 

the combined effects of increased flux of phosphate into the blood from diet and from skeletal 

resorption, in the setting of decreased renal phosphate excretion. 

 

Parathyroid Hormone 

 

PTH, as measured by 2-site “intact” or newer “bio-intact” assays, may be undetectable or in the lower 

quarter of the normal range during the first several months of lactation in women from North America 

and Europe who consume adequate calcium. PTH rises to normal by the time of weaning, and in two 

case series was found to rise above normal post-weaning. In contrast, and similar to findings during 

pregnancy, PTH did not suppress in several studies of women from Asia and Gambia who consumed 

diets that were low in calcium or high in phytate. The low PTH concentrations are an indication that 

PTH isn’t required for mineral homeostasis during lactation, and this is confirmed by hypoparathyroid 

and aparathyroid women in whom mineral and skeletal homeostasis normalize while they continue to 

breastfeed (see Hypoparathyroidism, below). The same is true of mice that lack the gene for 

parathyroid hormone. They are hypocalcemic and hyperphosphatemic when non-pregnant, but 

maintain normal serum calcium and phosphate concentrations while lactating and for a time during 

post-weaning (17). 

 

Vitamin D Metabolites 

 

A common concern has been that the suckling neonate will deplete maternal 25OHD stores, but this is 

not the case. 25OHD should not decline because it does not enter breast milk; conversely, although 

vitamin D can enter milk, it is present at very low concentrations because appreciable amounts exist in 

the maternal circulation for only a short postprandial interval. In observational studies and in the 

placebo arms of several clinical trials, there was either no change or at most a nonsignificant decline in 

maternal 25OHD levels during lactation, even in severely vitamin D deficient women (4). Calcitriol 

levels were twice normal during pregnancy but both free and bound calcitriol levels fall to normal within 

days of parturition and remain there in breastfeeding women (a single study found that women 

breastfeeding twins had higher calcitriol concentrations than women nursing singletons) (161). Animal 

studies show that severely vitamin D deficient rodents and mice lacking the vitamin D receptor are able 

to lactate and provide normal milk (4,45), thereby indicating that vitamin D and calcitriol are not required 

for lactation to proceed normally (at least in rodents). However, a more recent study found that mice 

lacking calcitriol produced milk with a lower calcium content (23). 

 

Calcitonin 

 

Calcitonin levels fall to normal during the first six weeks postpartum in women. Mice lacking the gene 

that encodes calcitonin lose twice the normal amount of bone mineral content during lactation, which 

indicates that physiological levels of calcitonin may protect the maternal skeleton from excessive 

resorption during this time period (26). Whether calcitonin plays a similar role in human physiology is 

unknown. Totally thyroidectomized women are not calcitonin deficient during lactation due to 



substantial production of calcitonin by the breasts, which in turn leads to systemic calcitonin 

concentrations that are the same as in women with intact thyroids (25). Consequently, study of totally 

thyroidectomized women is not the equivalent of studying a calcitonin-null state when they are 

breastfeeding. 

 

PTHrP 

 

Plasma PTHrP concentrations are significantly higher in lactating women than in non-pregnant controls. 

The source of PTHrP appears to be the breast, which secretes PTHrP into breast milk at 

concentrations that are 1,000 to 10,000 times the level found in the blood of patients with 

hypercalcemia of malignancy or in normal human controls. The circulating PTHrP concentration also 

increases after suckling (162,163). Additional evidence that the breasts are the source of PTHrP 

include that ablation of the PTHrP gene selectively from mammary tissue resulted in reduced circulating 

levels of PTHrP in lactating mice (164). PTHrP also has an intimate association with breast tissue: in 

animals it has been shown to regulate mammary development and blood flow, and the calcium and 

water content of milk in rodents, whereas in humans it is commonly expressed by breast cancers.  

 

Furthermore, as described in more detail below, during lactation PTHrP reaches the maternal 

circulation from the lactating breast to cause resorption of calcium from the maternal skeleton, renal 

tubular reabsorption of calcium, and (indirectly) suppression of PTH. In support of this hypothesis, 

deletion of the PTHrP gene from mammary tissue at the onset of lactation resulted in more modest 

losses of bone mineral content during lactation in mice (164). In humans, PTHrP correlates with the 

amount of bone mineral density lost, negatively with serum PTH, and positively with the ionized calcium 

of lactating women (162,165,166). Lastly, clinical observations in hypoparathyroid and aparathyroid 

women demonstrate the physiological importance of PTHrP to regulate calcium and skeletal 

homeostasis during lactation (see Hypoparathyroidism, below). 

 

Prolactin  

 

Prolactin is persistently elevated during early lactation and spikes further upward with suckling. Later 

during lactation basal prolactin levels are normal but continue to spike with suckling. Prolactin is 

important for initiating and maintaining milk production (167), but it also alters bone metabolism by 

stimulating PTHrP production in lactating mammary tissue, inhibiting GnRH and ovarian function, and 

possibly (as noted earlier) through direct actions in osteoblasts that express the prolactin receptor. 

 

Oxytocin 

 

Oxytocin induces milk ejection by contracting myoepithelial cells within mammary tissue. If milk is not 

ejected, the pressure of milk stasis causes apoptosis of mammary cells, and lactation ceases. Oxytocin 

spikes in the maternal circulation within 10 minutes after the start of suckling (168). As noted earlier, the 

oxytocin receptor is expressed in osteoblasts and osteoclasts. But whether oxytocin plays a role in 

bone metabolism during lactation has proven difficult to determine because oxytocin null mice cannot 

lactate due to the lack of milk ejection (169). 

 

Estradiol 

 



In lactating women, estradiol levels fall and this stimulates RANKL and inhibits osteoprotegerin 

production by osteoblasts, thereby stimulating osteoclast proliferation, function, and bone resorption. 

Studies in mice have shown that increasing the serum estradiol concentration to 7 times the virgin level 

blunts the magnitude of bone loss during lactation (170), which confirms that estradiol deficiency plays 

a role in the skeletal resorption that occurs during lactation. 

 

FGF23 

 

FGF23 levels during lactation have not been reported. It is possible that FGF23 increases to 

compensate for the increased serum phosphate and low PTH that occur during lactation, but it’s also 

possible that FGF23 is low and contributing to the high serum phosphate. 

 

Other Hormones 

 

Serotonin appears to be involved in regulating PTHrP and its effect to resorb the maternal skeleton 

(171,172). Lactation induces changes in myriad other hormones, such as luteinizing and follicle 

stimulating hormone, progesterone, testosterone, inhibins, and activins. Whether these play roles in 

regulating skeletal metabolism during lactation has not been investigated. 

 

Intestinal Absorption of Calcium and Phosphate 

 

Although intestinal calcium absorption was upregulated during pregnancy, it quickly decreases post-

partum to the non-pregnant rate. This also corresponds to the fall in calcitriol levels to normal. This 

differs from rodents which maintain increased intestinal calcium absorption during lactation; their large 

litters sizes mandate the need to provide some of the calcium for milk production through this route. 

 

Intestinal phosphate absorption has not been measured during human lactation, whereas in rodents it 

remains increased. 

 

Renal Handling of Calcium and Phosphate 

 

Renal excretion of calcium is typically reduced to about 50 mg per 24 hours or lower, and the 

glomerular filtration rate is also decreased. These findings suggest that the tubular reabsorption of 

calcium must be increased to conserve calcium, perhaps through the actions of PTHrP. 

 

Renal tubular phosphate reabsorption is increased during lactation. Despite this, urine phosphate 

excretion may be increased, likely due to the large efflux of phosphate from resorbed bone, which 

exceeds what is needed for milk production. 

 

Skeletal Calcium Metabolism and Bone Density/Bone Marker Changes 

 

Histomorphometric data from lactating animals have consistently shown increased bone turnover, and 

losses of 35% or more of bone mineral are achieved during 2-3 weeks of normal lactation in rodents 

[reviewed in (1)]. There are no histomorphometric data from lactating women; instead, biochemical 

markers of bone formation and resorption have been assessed in numerous cross-sectional and 

prospective studies. Confounding factors discussed earlier for pregnancy need to be considered when 

assessing bone turnover markers in lactating women; in particular, opposing changes from pregnancy 



include that the glomerular filtration rate is reduced and the intravascular volume is now contracted. 

Serum and urinary (24-hr collection) markers of bone resorption are elevated 2-3 fold during lactation 

and are higher than the levels attained in the third trimester. Serum markers of bone formation (not 

adjusted for hemoconcentration or reduced GFR) are generally high during lactation, and increased 

over the levels attained during the third trimester. The most marked increase is in the bone resorption 

markers, suggesting that bone turnover becomes negatively uncoupled, with bone resorption markedly 

exceeding bone formation, and thereby causing net bone loss. Total alkaline phosphatase falls 

immediately postpartum due to loss of the placental fraction, but may still remain above normal due to 

elevation of the bone-specific fraction. Overall, these bone marker results are compatible with 

significant increased bone resorption occurring during lactation. 

 

Serial measurements of aBMD during lactation (by SPA, DPA or DXA) have shown that bone mineral 

content falls 3 to 10.0% in women after two to six months of lactation at trabecular sites (lumbar spine, 

hip, femur and distal radius), with smaller losses at cortical sites and whole body (1,57). These aBMD 

changes are in accord with studies in rats, mice, and primates in which the skeletal resorption has been 

shown to occur largely at trabecular surfaces and to a lesser degree in cortical bone, and as much as 

25-30% of bone mass or aBMD is lost during three weeks of lactation in normal rodents. The loss in 

women occurs at a peak rate of 1-3% per month, far exceeding the 1-3% per year that can occur in 

postmenopausal women who are considered to be losing bone rapidly. This bone resorption is an 

obligate consequence of lactation and cannot be prevented by increasing the calcium intake in women. 

Several randomized trials and other studies have shown that calcium supplementation does not 

significantly reduce the amount of bone lost during lactation (173-176). Not surprisingly, the lactational 

decrease in bone mineral density correlates with the amount of calcium lost in the breast milk (177). 

 

The skeletal losses are due in part to the low estradiol levels during lactation which stimulate osteoclast 

number and activity. However, low estradiol is not the sole cause of the accelerated bone resorption or 

other changes in calcium homeostasis that occur during lactation. It is worth noting what happens to 

reproductive-age women who have marked estrogen deficiency induced by GnRH agonist therapy in 

order to treat endometriosis, fibroids, or severe acne. Six months of GnRH-induced estrogen deficiency 

caused 1-4% losses in trabecular (but not cortical) aBMD, increased urinary calcium excretion, and 

suppression of calcitriol and PTH (Figure 3) [reviewed in (1,8)]. In contrast, during lactation women are 

not as estrogen deficient but lose more aBMD (at both trabecular and cortical sites), have normal (as 

opposed to low) calcitriol levels, and have reduced (as opposed to increased) urinary calcium excretion 

(Figure 3). The difference between isolated GnRH-induced estrogen deficiency and lactation appears to 

be explained by PTHrP. It stimulates osteoclast-mediated bone resorption and stimulates renal calcium 

reabsorption; by so doing, it complements the effects of low estradiol during lactation. Stimulated in part 

by suckling and high prolactin levels, PTHrP and estrogen deficiency combine to cause marked skeletal 

resorption during lactation (Figure 4). 

 



 
Figure 3. Comparison of the effects of acute estrogen deficiency vs. lactation on calcium and 

bone metabolism. Acute estrogen deficiency (e.g. GnRH analog therapy) increases skeletal 

resorption and raises the blood calcium; in turn, PTH is suppressed and renal calcium losses 

are increased.  During lactation, the combined effects of PTHrP (secreted by the breast) and 

estrogen deficiency increase skeletal resorption, reduce renal calcium losses, and raise the 

blood calcium, but calcium is directed into breast milk. Reprinted from ref. (8), © 1997, The 

Endocrine Society. 

 



 
Figure 4. Brain-Breast-Bone Circuit. The breast is a central regulator of skeletal demineralization 

during lactation. Suckling and prolactin both inhibit the hypothalamic gonadotropin-releasing 

hormone (GnRH) pulse center, which in turn suppresses the gonadotropins (luteinizing 

hormone [LH] and follicle-stimulating hormone [FSH]), leading to low levels of the ovarian sex 

steroids (estradiol and progesterone). PTHrP production and release from the breast is 

controlled by several factors, including suckling, prolactin, and the calcium receptor. PTHrP 

enters the bloodstream and combines with systemically low estradiol levels to markedly 

upregulate bone resorption. Increased bone resorption releases calcium and phosphate into the 

blood stream, which then reaches the breast ducts and is actively pumped into the breast milk. 



PTHrP also passes into milk at high concentrations, but whether swallowed PTHrP plays a role 

in regulating calcium physiology of the neonate is unknown. Calcitonin (CT) may inhibit skeletal 

responsiveness to PTHrP and low estradiol. Not depicted are that direct effects of oxytocin and 

prolactin on bone cells are also possible. Adapted from ref. (26) © 2006, The Endocrine Society.

 

The mechanism through which the skeleton is resorbed has been shown in rodents to involve two 

processes, both osteoclast-mediated bone resorption (1) and osteocytic osteolysis, in which osteocytes 

function like osteoclasts to resorb the bone matrix that surrounds them (178). Both of these processes 

are dependent upon PTHrP. Conditional deletion of the PTHrP gene from mammary tissue reduced the 

amount of bone resorbed during lactation, whereas conditional deletion of the PTH/PTHrP receptor 

from osteocytes appeared to eliminate osteocytic osteolysis (179). Moreover, osteocyte-specific 

deletion of the PTH/PTHrP receptor resulted in a 50% blunting of the amount of BMD lost during 

lactation (179), which may indicate that osteocytic osteolysis and osteoclast-mediated bone resorption 

each contribute about half of the net bone loss achieved during lactation. To date no studies have 

examined whether osteocytic osteolysis occurs in lactating women. 

 

The lactational bone density losses in women are substantially and completely reversed during six to 

twelve months following weaning (1,57,174). This corresponds to a gain in bone density of 0.5 to 2% 

per month in a woman who has weaned her infant. The mechanism for this restoration of bone density 

is unknown, but studies in mice have shown that it is not dependent upon calcitriol, calcitonin, PTH, or 

PTHrP (17,23,26,45,180,181); nor is it fully explained by restoration of estradiol levels to normal (1). 

The remarkable ability of the skeleton to recover is exemplified by mice lacking the gene that encodes 

calcitonin. They lose up to 55% of trabecular mineral content from the spine during lactation but 

completely restore it within 18 days after weaning (26).  

 

Although aBMD appears to be completely restored after weaning in women and all animals that have 

been studied, more detailed examination of microarchitecture by µCT has shown variable 

completeness of recovery of microarchitecture by skeletal site. In rodents, the vertebrae recover 

completely while persistent loss of trabeculae is evident in the long bones (182). Studies in women 

have similarly shown that the trabecular content of the long bones also appears to be incompletely 

restored (1,57,174,183,184). However, in both women (74,184,185) and rodents (26,186,187) the 

cross-sectional diameters and volumes of the long bones may be significantly increased after post-

weaning. Such structural changes potentially compensate for any reduction in strength that loss of 

trabecular microarchitecture might induce, because an increased cross-sectional diameter increases 

the ability of a hollow shaft to resist bending (cross-sectional moment of inertia) and torsional stress 

(polar moment of inertia). This is supported by the finding that the breaking strength of rodent bones 

returns to pre-pregnant values after weaning (1,180), and limited clinical studies that correlated the 

increased bone volumes achieved after reproductive cycles with increased bone strength (74,185). In 

women, the vast majority of several dozen epidemiologic studies of pre- and postmenopausal women 

have found no adverse effect of a history of lactation on peak bone mass, bone density, or hip fracture 

risk (1,7,54,57). In fact, multiple studies have suggested a protective effect of lactation on the future risk 

of low BMD or fragility fractures. Consequently, although lactational bone loss can transiently increase 

risk of fracture (see next section), it is likely unimportant in the long run for most women, in whom the 

skeleton is restored to its prior mineral content and strength. 

 



DISORDERS OF CALCIUM AND BONE METABOLISM DURING LACTATION 

 

Osteoporosis of Lactation 

 

On occasion a woman will suffer one or more fragility fractures during lactation, and osteoporotic bone 

density will be found by DXA (76). As with osteoporosis presenting during pregnancy, this may 

represent a coincidental, unrelated disease; the woman may have had low bone density and abnormal 

skeletal microarchitecture prior to pregnancy. Alternatively, it is likely that some cases represent an 

exacerbation of the normal degree of skeletal demineralization that occurs during lactation, and a 

continuum from the changes in bone density and bone turnover that occurred during pregnancy. It may 

be somewhat artificial, therefore, to separate “osteoporosis of lactation” from “osteoporosis of 

pregnancy.” But since lactation normally causes a significant net loss of bone whereas pregnancy does 

not, it seems more likely for lactation to cause a subset of women to develop low-trauma fractures. For 

example, excessive PTHrP release from the lactating breast into the maternal circulation could 

conceivably cause excessive bone resorption, osteoporosis, and fractures. PTHrP levels were high in 

one case of lactational osteoporosis, and remained elevated for months after weaning (188). 

 

The diagnostic and treatment considerations described above for osteoporosis of pregnancy also apply 

to women who are lactating (76). 

 

Primary Hyperparathyroidism 

 

When surgical correctional of primary hyperparathyroidism is not possible or advisable during 

pregnancy, it is normally carried out in the postpartum interval. A hypercalcemic crisis is possible soon 

after delivery due in part to loss of the placental calcium infusion, which represented a drain on the 

serum calcium. If a woman with untreated primary hyperparathyroidism chooses to breastfeed, the 

serum calcium should be monitored closely for significant worsening due to the effects of secretion of 

PTHrP from the breasts being added to the high concentrations of PTH already in the circulation. The 

potential impact of this is even more evident in women with hypoparathyroidism, as discussed below. 

  

Familial Hypocalciuric Hypercalcemia 

 

The calcium-sensing receptor is expressed in mammary epithelial ducts, and it modulates the 

production of PTHrP and calcium transport into milk during lactation in mice (189,190). Inactivating 

calcium-sensing receptor mutations increased mammary tissue production of PTHrP but decreased the 

calcium content of milk (190). These opposing changes meant that there was a further increase in bone 

resorption during lactation as compared to normal mice, and the serum calcium also became higher 

because of reduced output of calcium into milk. Conversely, a calcimimetic drug (similar to cinacalcet) 

caused increased milk calcium content (190). These data predict that women with FHH will have more 

marked skeletal resorption during lactation, lower milk calcium content, higher serum calcium, and a 

greater loss of BMD during lactation as compared to normal women. However, the effect of 

breastfeeding on mineral and skeletal homeostasis in women with FHH has not yet been described. 

 

Hypoparathyroidism 

 

As noted earlier, in the first day or two after parturition the requirement for supplemental calcium and 

calcitriol may transiently increase in hypoparathyroid women before secretion of PTHrP surges in the 



breast tissue (114). The onset of lactation induces an important change in skeletal metabolism because 

the breasts produce PTHrP at high levels, some of which escapes into the maternal circulation to 

stimulate bone resorption and raise the serum calcium level. In women who lack parathyroid glands, 

the release of PTHrP into the circulation during lactation can temporarily restore calcium and bone 

homeostasis to normal. Levels of calcitriol and calcium supplementation required for treatment of 

hypoparathyroid women fall early and markedly after the onset of lactation, and hypercalcemia can 

occur if the calcitriol dosage and calcium intake are not substantially reduced (191-194). This 

decreased need for calcium and calcitriol occurs at a time when circulating PTHrP levels are high in the 

maternal circulation (191,194,195). As illustrated in one case, this is consistent with PTHrP reaching 

the maternal circulation in amounts sufficient to allow stimulation of calcitriol synthesis, and 

maintenance of normal (or slightly increased) maternal serum calcium (195). 

 

Management of hypoparathyroidism during lactation requires monitoring the albumin-corrected calcium 

or ionized calcium, reducing or stopping the calcitriol and calcium as indicated, and planning to 

reinstitute both supplements in escalating doses as lactation wanes. However, production of PTHrP 

doesn’t necessarily promptly cease around the time of weaning. The author is aware of a woman with 

hypoparathyroidism who required no supplemental calcium or calcitriol at all for about a year after her 

baby had been weaned. She thought that her hypoparathyroidism had been permanently cured by 

breastfeeding, until the abrupt recurrence of symptomatic hypocalcemia, and the need for pre-

pregnancy doses of calcium and calcitriol, signaled the end of PTHrP production by her breasts. In 

another woman, lactation appeared to permanently cure her hypoparathyroidism (196), likely because 

of persistent production of PTHrP by her breasts. 

 

Pseudohypoparathyroidism 

 

The management of pseudohypoparathyroidism during lactation has been less well documented. Since 

these patients are likely resistant to the renal actions of PTHrP, and the placental sources of calcitriol 

are lost at parturition, the calcitriol requirements might well increase and may require further 

adjustments during lactation. Conversely, these patients do not have skeletal resistance to PTH, and so 

it is possible that calcium and calcitriol requirements may decrease secondary to enhanced skeletal 

resorption caused by the combined effects of high PTH levels, PTHrP release from the breast, and 

lactation-induced estrogen deficiency. Thus, women with pseudohypoparathyroidism might lose more 

bone density than normal during lactation, but this has not been studied. 

 

Pseudohyperparathyroidism 

 

Severe, PTHrP-mediated hypercalcemia during lactation was first noted to occur in women with large 

breasts, but it has also developed in women with average-sized breasts in whom milk let-down took 

place but the baby’s illness prevented breastfeeding (120). This represents an exaggeration of normal 

lactational physiology, which benefits hypoparathyroid women, but in some normal women can 

overwhelm the normal regulatory pathways and cause potentially severe hypercalcemia. Cessation of 

lactation should reverse the condition, but a reduction mammoplasty or mastectomy has proved 

necessary for recalcitrant hypercalcemia.  

 

Vitamin D Deficiency and Insufficiency, and Genetic Vitamin D Disorders 

 



The available data from small clinical trials, observational studies and case reports indicate that 

lactation proceeds normally regardless of vitamin D status, and breast milk calcium content is 

unaffected by vitamin D deficiency or supplementation in doses as high as 6,400 IU per day given to 

the mother, and achieved maternal 25OHD blood levels of 168 nmol/L (topic reviewed in detail in 

(1,4,5,7,123)). This is likely because maternal calcium homeostasis is dominated by skeletal resorption 

induced by estrogen deficiency and PTHrP, with vitamin D/calcitriol playing no substantial role in 

lactational mineral homeostasis. It is the neonate who will suffer the consequences of being born of a 

vitamin D deficient mother. This is especially true if the infant is exclusively breast fed, since both 

vitamin D and 25-hyroxyvitamin D are normally present at very low concentrations in breast milk.  

 

The high-dose (6,400 IU) vitamin D supplementation strategy raises the maternal vitamin D 

concentration substantially for hours and, in turn, this increases the penetration of vitamin D into milk. 

Consequently, breastfed babies whose mothers consumed 6,400 IU per day achieved the same 

25OHD level as babies who received a 300 IU dose of vitamin D directly (197). The potential advantage 

of this approach is that all of the neonate’s nutrition can then come from breast milk, rather than 

requiring that breastfed babies receive a vitamin D supplement. Further study is needed regarding the 

safety of this approach for the mothers and their babies. 

 

A misconception about vitamin D and milk often arises because marketed forms of cow’s and goat’s 

milk contain approximately 100 IU of vitamin D per standard serving, but that is a synthetic vitamin D 

supplement which is added to the milk after the pasteurization stage. It is not put there by the cow or 

goat. 

 

Given that vitamin D deficiency does not affect breast milk content in humans, it is likely that genetic 

absence of VDR or calcitriol also does not affect milk calcium, but this has not been studied. 

 

Whether vitamin D deficiency impairs the ability of the maternal skeleton to recover post-weaning has 

not been examined in any clinical study. However, studies in mice lacking the vitamin D receptor or 

Cyp27b1 to synthesize calcitriol, indicate that these mice are able to fully remineralize their skeletons 

after lactation (23,45). 

 

24-Hydroxylase Deficiency 

 

Hereditary absence of Cyp24a1 reduces calcitriol catabolism, which can lead to very high calcitriol 

concentrations and marked maternal hypercalcemia during pregnancy. But calcitriol production falls to 

non-pregnant levels during normal lactation, and the same should be true in women with 24-

hydroxylase deficiency. Consistent with this, in one affected woman who breastfed, calcitriol was 

normal and hypercalcemia was milder compared to pregnancy (145). 

 

Low and High Calcium Intakes 

 

The calcium content of milk appears to be largely derived from skeletal resorption during lactation, a 

process that cannot be suppressed in women by consuming greater amounts of calcium (however, it 

can be suppressed in rodents by high calcium intakes). It shouldn’t be surprising, therefore, that low 

calcium intake does not impair breast milk quality, nor does it accentuate maternal bone loss (153). 

Even in women with very low calcium intakes, the same amount of mineral was lost during lactation 

from the skeleton as compared to women who had supplemented calcium intakes, and the breast milk 



calcium content was unaffected by calcium intake or vitamin D status (198-200).  Conversely, since 

randomized trials and cohort studies have shown that high calcium intakes do not affect the degree of 

skeletal demineralization that occurs during lactation (173-176), it is unlikely that increasing calcium 

supplementation well above normal would affect skeletal demineralization either.  

 

There is a lingering concern that adolescent mothers with low calcium intakes may not achieve normal 

peak bone mass as a consequence of lactation-induced bone loss. In fact the adolescent skeleton 

appears to recover fully from lactation (201), and adolescent women who breastfed have higher BMD 

than those who did not breastfeed or had not been pregnant as adolescents (202). However, it remains 

reasonable to give a calcium supplement to adolescents who lactate in order to ensure that the needs 

of adolescent growth are met and that peak bone mass is achieved (153,201). 

 

IMPLICATIONS 

 

During pregnancy and lactation, novel regulatory systems specific to these settings complement the 

usual regulators of mineral homeostasis. Intestinal calcium absorption more than doubles from early in 

pregnancy in order to meet the fetal demand for calcium. In comparison, skeletal calcium resorption is a 

dominant mechanism by which calcium is supplied to the breast milk, while renal calcium conservation 

is also apparent. Calcium supplementation during pregnancy will result in a woman absorbing more 

calcium, but it is clear from clinical trials and observational studies that calcium supplements have little 

or no impact on the amount of bone lost during lactation. 

 

The skeleton appears to recover promptly from lactation to achieve the pre-pregnancy bone mass 

through mechanisms that remain unclear. The transient loss of bone mass during lactation can at least 

temporarily compromise skeletal strength and lead to fragility fractures in some women. Furthermore, 

full recovery of mineral content and bone strength may not always be achieved after weaning. But the 

majority of women can be assured that the changes in calcium and bone metabolism during pregnancy 

and lactation are normal, healthy, temporary, and without adverse consequences in the long-term. 
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