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ABSTRACT 
The biological activity of thyroid hormone (TH) is regulated at the target tissue level by two 
important processes, i.e. deiodination and plasma membrane transport. The first process 
involves the expression of the deiodinase D2, which converts the prohormone T4 to bioactive 
T3, and/or of the deiodinase D3 which converts both T4 and T3 to inactive metabolites. 
Intracellular metabolism and action of TH in target cells as well as transcellular TH transport 
across, for instance, the blood-brain barrier (BBB) and the intestinal wall depends on the 
expression of transporters facilitating uptake and/or efflux of iodothyronines.  

Recently, several important TH transporters have been identified, including 
monocarboxylate transporter 8 (MCT8), MCT10 and organic anion transporting polypeptide 
1C1 (OATP1C1). The physiological relevance of MCT8 has been demonstrated in studies of 
male patients with the Allan-Herndon-Dudley syndrome, characterized by severe 
psychomotor retardation and abnormal TH levels caused by hemizygous mutations of the X-
linked MCT8 gene. In human brain, MCT8 appears to be important in particular for T4 and T3 
transport across the BBB and for T3 uptake in neurons, whereas OATP1C1 is predominantly 
involved in T4 uptake in astrocytes to allow its conversion to T3 by D2 also expressed in 
these cells. MCT10 also transports aromatic amino acids and its physiological role in tissue 
TH transport remains to be established. For complete coverage  of this and related areas of 
Endocrinology, visit our free web-book, www.thyroidmanager.org . 
 
INTRODUCTION 
 
It was thought for a long time that thyroid hormone (TH) crosses the plasma membrane of 
tissue cells by simple diffusion since iodothyronines are lipophilic compounds which would 
easily pass the lipid bilayer of the plasma membrane. However, it has become increasingly 
clear that diffusion plays a minor role, if any, in TH transport across the plasma membrane. 
Rather, TH is transported into cells by specific carrier-mediated mechanisms. In the second 
half of the 20th century, many studies have been published about the biochemical 
characterization of TH transport mechanisms in a variety of cell types. In general, these 
studies have indicated that cellular TH transport is a saturable process which in liver cells 
may be Na+ dependent and in other cell types may be inhibited by aromatic and/or aliphatic 
amino acids. Early studies of cellular TH transport have been extensively reviewed in 2001 
(1) and only some of them will be mentioned here.  
 
About 80% of circulating T3 is produced outside the thyroid gland by peripheral conversion of 
T4, and only 20% is directly secreted by the thyroid gland (2). T3 is considered to be the 
major bioactive TH, whereas T4 is mainly a prohormone that becomes activated upon its 
conversion to T3 (2). Most TH actions are initiated by binding of T3 to its nuclear receptors in 
target cells (3,4). Therefore, the biological activity of TH is determined largely by the 
intracellular T3 concentration, which depends on a) the circulating concentration of T3 and its 
precursor T4; b) the activities of deiodinases that catalyze the production (D1, D2) or 
degradation (D1,D3) of T3; and c) the activities of transporters which mediate the cellular 
uptake or efflux of T3 and T4 (Fig. 1). It should be noted that TH bioactivity may be regulated 
in an autocrine fashion as shown in Fig. 1, or in a paracrine fashion, where T3 production 
and action take place in the same cell or in separate cells, respectively.  

Recently, three relatively specific TH transporters have been identified. OATP1C1 is a 
member of the organic anion transporting polypeptide family, which shows preference for T4 
above T3, and is expressed almost exclusively in brain (5). In human brain, OATP1C1 is 
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importantly expressed in astrocytes, where it facilitates entry of T4 allowing its conversion to 
T3 also expressed in these cells (6). MCT8 and MCT10 are members of the 
monocarboxylate transporter family. While MCT10 is also known to transport aromatic amino 
acids, no other substrates have been identified for MCT8 than iodothyronines and 
iodotyrosines (7-9). MCT8 and MCT10 are expressed in various tissues (10). In human brain, 
MCT8 is importantly expressed in endothelial cells of the blood-brain barrier (BBB) as well as 
in neurons (6). Mutations in the MCT8 transporter have been identified in male patients with 
the Allan-Herndon-Dudley syndrome, characterized by severe X-linked psychomotor 
retardation and elevated serum T3 levels (11-14). 
 
THYROID HORMONE TRANSPORTERS 
Organic Anion Transporters 

Organic anion transporting polypeptides (OATPs) represent a large family of 
homologous proteins, many of which have been shown to transport different iodothyronines 
and their sulfate conjugates (Table 1) (15-17). The genes coding for these transporters are 
now referred as the SLCO family. The OATPs accept a wide range of substrates, not only 
anionic but also neutral and sometimes even cationic compounds. Some members are 
expressed in a single tissue, whereas others have a wider tissue distribution. The SLCO1A2, 
1B1, 1B3 and 1C1 genes are clustered together with a related pseudogene on human 
chromosome 12p12 (17). The encoded OATPs have all been shown to transport 
iodothyronines (18). Of these, OATP1B1 and 1B3 are expressed specifically in the liver, 
OATP1C1 is expressed only in brain and testis, and OATP1A2 is expressed in brain, liver 
and kidney. In terms of TH transport, OATP1C1 is the most intriguing as it shows a high 
specificity and affinity towards T4 and rT3. In mouse brain, Oatp1c1 is localized both in 
capillary, the choroid plexus, and astrocytes, but in human brain localization of OATP1C1 in 
endothelial cells is negligible (5,19-22). Therefore, the primary role of OATP1C1 in human 
brain appears to be the transport of T4 into astrocytes to allow its conversion to T3 by D2 
that is also expressed in astrocytes. 

It should be realized that the organization of the OATP1 subfamily is very different in 
humans than in mice and rats (Fig. 2) (23). Although human, mouse and rat OATP1C1 are 
clearly orthologues, the OATP1A branch has only 1 member in humans (1A2) but 4 
members in mice (1A1,4-6) and 5 members in rats (1A1,3-6), whereas the OATP1B branch 
has 2 members in humans (1B1,3) and one member in rats and mice (1B2). Therefore, mice 
and rats are not good animal models for TH transport by members of the OATP1A/B 
subfamily. Considering the different cellular distribution of OATP1C1 in human and mouse 
brain, the same precaution may also apply to this transporter. 

OATPs transport their substrates in a Na-independent manner. The solute carrier 
family 22 (SLC22) also contains many organic anion transporters (OATs) and organic cation 
transporters (OCTs) (24), but information about the possible transport of TH by any of these 
transporters has not been published. We have demonstrated that the Na-taurocholate co-
transporting polypeptide (NTCP, SLC10A1) facilitates uptake of the different iodothyronines 
as well as their sulfates (25,26). The SLC10 family contains 7 members of which NTCP is 
expressed exclusively in liver (27-29). SLC10A2 is another bile acid transporter expressed in 
the intestine and kidney. SLC10A6 transports different organic anions but substrates for the 
other SLC10 transporters have not yet been identified. NTCP is the only SLC10 family 
member capable of transporting TH (26).  

Interestingly, NTCP has recently been identified as the receptor involved in the 
infection of liver cells by hepatitis B virus (HBV) and hepatitis D virus (HDV) (30). This NTCP-
mediated internalization of HBV and HBD is specifically inhibited by the novel drug 
Myrcludex B, a synthetic peptide derived from the HBV/HBD surface protein preS1 (30). 
Myrcludex B also inhibits bile acid transport by NTCP (31,32) and it would be interesting to 
know if it affects TH transport into the liver. Clinical trials are now conducted with this drug in 
hepatitis B and D patients (33).  
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Amino Acid Transporters 
Iodothyronines are a particular class of amino acids built from two tyrosine residues. 

Therefore, it is no surprise that amino acid transporters, in particular the L and T-type amino 
acid transporters, are involved in TH uptake into several tissues (34-38). L-type transporters 
mediate uptake of large neutral, branched-chain and aromatic amino acids, whereas T-type 
transporters are specific for the aromatic amino acids Phe, Tyr and Trp.  

Four L-type transporters (LAT1-4) have been identified, two of which (LAT1,2) belong 
to the heterodimeric amino acid transporter family. These transporters consist of a heavy 
chain and a light chain, linked through a disulfide bond (39). There are 2 possible heavy chains, 
SLC3A1 (rBAT) and SLC3A2 (4F2hc or CD98), and in humans there are 13 possible light 
chains belonging to the SLC7 gene family. The 4F2 or CD98 cell surface antigen is expressed 
in many tissues, especially on activated lymphocytes and tumor cells. 4F2hc is a glycosylated 
protein with a single transmembrane domain, whereas the light chains are not glycosylated and 
have 12 transmembrane domains (40). LAT1 and LAT2 consist of the SLC3A2 heavy chain in 
combination with the SLC7A5 and SLC7A8 light chain, respectively. They are obligate 
exchangers, implying that the cellular uptake of extracellular substrates is tightly coupled to the 
efflux of intracellular substrates. 

Significant Na-independent transport of iodothyronines has been observed in Xenopus 
oocytes expressing heterodimeric transporters consisting of human SLC3A2 and either human 
SLC7A5 (LAT1) or mouse SLC7A8 (LAT2) (Table 1) (41). The rate of iodothyronine uptake by 
the 4F2hc/LAT1 transporter decreased in the order 3,3’-T2 > T3 ~ rT3 > T4. Apparent Km values 
were found to be in the micromolar range, being lowest for T3 (1.5 µM) (41).  

Ritchie et al. have reported on the stimulation of T3 transport in oocytes injected with 
mRNA for 4F2hc and for the IU12 Xenopus LAT1 homolog (42). They have also shown that 
overexpression of the heterodimeric L type transporter in cells results in increased intracellular 
T3 availability and, thus, augmented T3 action (43). Furthermore, they demonstrated T3 uptake 
via the 4F2hc/LAT1 transporter into human BeWo placental choriocarcinoma cells, suggesting 
that this transporter plays a role in the trans-placental transfer of maternal TH to the fetus (44). 
Indeed both LAT1 and LAT2 have been localized in the human placenta, in particular in 
cytotrophoblasts (45-48). 

TH transport by LAT1 and LAT2 has recently been characterized in more detail, and a 
structural model of LAT2 has been obtained (49-51). LAT1 facilitates cellular uptake of all 
iodothyronines tested with a clear preference for 3,3’-T2 and rT3. LAT2 also shows 
significant cellular uptake of T3 and, in particular, 3,3’-T2. Both LAT1 and LAT2 also 
markedly facilitate cellular entry of 3-iodotyrosine (MIT) (51).  

In addition to LAT1 and LAT2, two other L-type amino acid transporters have recently 
been identified in the SLC43 family. LAT3 (SLC43A1) and LAT4 (SLC43A2) are monomeric 
proteins containing 12 trans-membrane domains, which apparently do not require ancillary 
proteins for proper expression in the plasma membrane (52). Both LAT3 and LAT4 especially 
facilitate the cellular efflux of their substrates, including 3,3’-T2 and MIT (51). The function of 
the third member of this small family (SLC43A3) is unknown. 

A T-type amino acid transporter (TAT1) has been cloned from rats and humans, 
showing transport of Phe, Tyr and Trp (53,54). This protein is a member of the 
monocarboxylate transporter family, and is also called MCT10 (SLC16A10). The MCT family 
consists of 14 members, and earned its name because MCT1-4 have been characterized as 
monocarboxylate transporters (55). Endogenous substrates are being recognized for other 
MCT family members, such as β-hydroxybutyrate for MCT7 (56), carnitine for MCT9 (57), 
and carnitine for MCT12 (58) The degree of homology between MCT proteins is especially 
high for MCT1-4 and for MCT8/10. In contrast to the initial failure to demonstrate TH 
transport by MCT10, we have demonstrated that both MCT8 and MCT10 are highly effective 
iodothyronine transporters (Table 1) (7-9).  
 
MCT8 and MCT10 

MCT8 and MCT10 have identical gene structures; both consist of 6 exons and 5 
introns, with a particularly long first intron (~100 kb). The MCT10 gene is located on human 
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chromosome 16q21-q22 and codes for a protein of 515 amino acids. The MCT8 gene is 
located on human chromosome Xq13.2 and has 2 possible translation start sites, coding for 
proteins of 613 or 539 amino acids (Fig. 2). The significance of the N-terminal extension of 
long versus short human MCT8 (indicated in yellow in Fig. 2) remains to be investigated. A 
patient has been reported with psychomotor retardation associated with a Met to Leu 
mutation (M1L) at the upstream translation start site. However this mutation was also 
identified in a healthy relative (59), suggesting that the long MCT8 protein does not have a 
crucial physiological function. Moreover, a recent study indicated that if the long MCT8 
protein is generated it undergoes effective ubiquitination and proteasomal degradation (60).  
Most species, including mice and rats, only express the short MCT8 protein as they lack the 
first translation start site. Functional studies of human MCT8 have been carried out so far by 
expression of the short protein. 

Both MCT8 and MCT10 proteins have 12 putative transmembrane domains, with both 
N- and C-terminal ends located on the inside of the plasma membrane. The common amino 
acids in MCT8 and MCT10 are indicated in green in Fig. 2, showing a high degree of 
homology in particular in the transmembrane domains. Unique to the MCT8 structure is the 
presence of PEST domains in the N-terminal intracellular part of the protein, rich in Pro (P), 
Glu (E), Ser (S) and Thr (T) residues. The function of these domains is unknown. MCT8 is 
expressed in many tissues, including human liver, kidney, heart, brain, placenta, adrenal 
gland, skeletal muscle, and thyroid. MCT10 also shows a wide tissue distribution, with 
particularly high expression in human skeletal muscle, intestine, kidney and pancreas (10). 

After the cloning of MCT8 in 1994 (61), no reports on the biological function or the 
transported substrates have been published until Friesema et al. identified rat MCT8 as a 
specific TH transporter (8). Expression of rat Mct8 in Xenopus oocytes induced a ~10-fold 
increase in iodothyronine uptake, much greater than that induced by any other transporter, 
including rat NTCP, rat OATP1A1 and human LAT1 (8). Although rat MCT8 does not 
discriminate between T4, T3, rT3 and 3,3’-T2, it does not transport iodothyronine sulfates, 
the amino acids Phe, Tyr, Trp and Leu, or the monocarboxylates lactate and pyruvate. 
Apparent Km values amount to 2-5 µM for the different iodothyronines in the absence of 
protein in the medium. T4 and T3 transport are largely Na+ independent (8).  

Subsequent studies in mammalian cells transfected with human MCT8 or MCT10 
cDNA have demonstrated that both transporters effectively facilitate transmembrane TH 
transport (7,9). Co-transfection of the high-affinity cytoplasmic TH-binding protein mu-
crystallin (CRYM) strongly augments the cellular accumulation of iodothyronines compared 
with cells transfected with MCT8 or MCT10 alone. These and other findings suggest that 
MCT8 and MCT10 facilitate both cellular uptake and efflux of T4 and T3. MCT10 appears to 
transport T3 better than MCT8 whereas the opposite is true for T4. Transfection of MCT8 or 
MCT10 into cells that express D1, D2 or D3 results in a marked increase in the intracellular 
metabolism of different iodothyronine substrates (7,9).   
 
CLINICAL RELEVANCE OF MCT8 

Worldwide, over 100 families have been reported where males are affected by severe 
psychomotor retardation associated with a particular combination of abnormal serum TH 
levels. A large family with this X-linked mental retardation (XLMR) syndrome was first 
reported in 1944 by Allan, Herndon and Dudley (62,63). Since then, this disorder is usually 
referred to as the Allan-Herndon-Dudley syndrome (AHDS). Only 60 years later it was 
realized that patients with AHDS also have abnormal TH levels (11,12,64).  

Usually, patients with AHDS are born at term following an uncomplicated pregnancy 
with a normal birthweight, body length and head circumference. During the first 6 months a 
general hypotonia is noticed. During development the truncal hypotonia remains, whereas 
the distal hypotonia progresses into dystonia and spasticity. The truncal hypotonia results in 
poor head control. Growth is relatively normal, but final body length is reduced and body 
weight is usually extremely low with obvious signs of muscle wasting. There is also 
progressive microcephaly. In the first 2 years of life, brain MRI shows clearly delayed 
myelination. Although myelination improves in subsequent years, it never really normalizes. 
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This is supported by a recent study of post-mortem brains from a fetal and a 11-year old 
AHDS patient (65). Based on observations of delayed myelination, AHDS has also been 
referred to as a Pelizaeus-Merzbacher-like disorder (PMLD) (66). 

Although in some families the clinical phenotype is somewhat milder, AHDS patients 
are usually incapable of sitting, standing or walking independently, and do not develop any 
speech. They are severly mentally retarded with IQ values <40. Feeding is a problem in 
AHDS patients as they have difficulties swallowing; aspiration is a frequent cause of 
pneumonia. For a detailed description of the clinical features of patients with AHDS, the 
reader is referred to recent literature (66-69).  

AHDS patients have a characteristic combination of abnormal serum TH levels (68). 
Both T4 and FT4 levels are low-normal to clearly reduced, whereas serum T3 and FT3 are 
markedly elevated. Serum rT3 is always low. Consequently, the serum T3/T4 and T3/rT3 
ratios are strongly elevated. Serum TSH is usually within the normal range, but the mean 
serum TSH level in AHDS patients is about twice that in healthy controls. Serum SHBG 
levels are markedly elevated, and several studies have reported on elevated serum lactate 
levels in young patients (70,71). 

In 2004, it was demonstrated by the group of Refetoff and by our group that AHDS 
represents a TH resistance syndrome caused by a defect in TH uptake in target cells due to 
mutations in MCT8. Since then, MCT8 mutations have been identified in over 100 families 
with AHDS. These mutations include 1) deletions affecting one or more exons, 2) frame-shift 
mutations resulting in scrambled and often truncated proteins, 3) splice site mutations, 4) 
nonsense mutations resulting in truncated proteins; 5) deletions or insertions of one or more 
codons and, thus, amino acids, 6) missense mutations asociated with single amino acid 
substitutions. A list of missense mutations is provided in Table 2. 

The larger deletions, frame shift mutations and nonsense mutations are obviously 
deleterious for MCT8 function. The functional consequences of single amino acid 
substitutions, deletions or insertions have been investigated in cells transfected with wild-
type or mutated MCT8. Most mutations were found to result in an amost complete loss of TH 
transport by MCT8. However, the extent to which these mutations affect MCT8 function 
depends on the type of cell used for transfection for reasons which need to be fully explored 
(72-75). Studies of the localization of wild-type and mutant MCT8 protein have indicated two 
distinct pathogenic mechanisms, in that certain mutations interfere with the trafficking of the 
transporter to the plasma membrane, while other mutations allow proper routing of MCT8 but 
interfere with the substrate translocation process (73,76,77). The functional consequences of 
MCT8 mutations have also been demonstrated using fibroblasts cultured from skin biopsies, 
showing that T4 and T3 uptake by cells from AHDS patients is markedly reduced compared 
with cells cultured from healthy controls (75,78-82). 
 
ANIMAL STUDIES 

Studies in humans and animals have indicated that MCT8 is expressed in a variety of 
tissues, including brain. The distribution of MCT8 expression in mouse brain has been 
studied in detail by Heuer et al (83). These studies have demonstrated that MCT8 is 
predominantly expressed in neurons in different brain areas, including hippocampus, cerebral 
cortex, striatum, hypothalamus and cerebellum. In addition, MCT8 is importantly expressed in 
capillary endothelial cells, the choroid plexus, and tanycytes which line the third ventricle 
(83,84). MCT8 expression in neurons coincides with expression of D3. D2 is largely 
expressed in adjacent astrocytes. In mouse brain, the T4 transporter OATP1C1 is expressed 
in capillaries, in the choroid plexus and in astrocytes (83-86). However, in primate brain 
localization of OATP1C1 in capillaries appears to be negligible (22,87).  

MCT8 (KO) mice have been studied in the laboratories of Heuer (88-90), Refetoff (91-
94), Bernal (95-97) and Schweizer (98-100). In contrast to the severe neurological phenotype 
in male patients with MCT8 mutations, neither hemizygous MCT8 KO male mice nor 
homozygous MCT8 KO female mice show an obvious phenotype. However, they show the 
same abnormal serum thyroid parameters as patients with MCT8 mutations, i.e. a large 
decrease in T4, a large increase in serum T3, and slightly elevated TSH levels. In addition, 
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MCT8 KO mice show the following features: 1) normal brain T4 uptake but impaired brain T3 
uptake, 2) decreased brain T4 and T3 contents, 3) increased D2 and decreased D3 activities 
in brain, 4) normal liver T4 and T3 uptake, 5) increased kidney T4 and T3 uptake, 6) 
increased kidney T4 and T3 contents, and 7) increased D1 activity in both liver and kidney 
(90).  

The paradoxical increase in renal T4 and T3 uptake in MCT8 KO mice is unexplained, 
but the increase in renal T4 content in combination with the increased D1 expression may 
account for an enhanced renal T4 to T3 conversion, and thus contribute to the decrease in 
serum T4 and increase in serum T3 (90). In addition, there is evidence suggesting that 
thyroidal hormone secretion is affected by MCT8 inactivation, perhaps leading to preferential 
T3 secretion (89,92). Since MCT8 is expressed in the hypothalamus, inactivation of MCT8 is 
associated with an impaired feedback of TH at the hypothalamic level, contributing to the 
slightly increased serum TSH level (88,101).  

In addition to MCT8 KO mice, a number of other interesting mouse models have been 
generated which in addition to MCT8 are also deficient in other TH-related genes. Liao et al 
(102) have studied the effects of the deletion of D1 and/or D2 on serum and brain TH levels 
in MCT8 KO and WT mice. The results indicate that D1 plays an important role in the altered 
TH homeostasis in MCT8 KO mice, probably involving and increased T4 to T3 conversion in 
the thyroid and the kidneys (89,90,92,103). In a recent study, the effect of MCT8 deletion was 
investigated in D3 deficient mice (104). Inactivation of D3 in mice is associated with marked 
morbidity and mortality, which is largely prevented by deletion of MCT8. The mechanism by 
which MCT8 deletion improves the phenotype of D3 deficient mice is unknown.  

Of special interest are studies using mice which in addition to MCT8 are also deficient 
in other TH transporters, such as MCT8/MCT10 (105) and MCT8/LAT2 (106) double 
knockout (DKO) mice. The additional deficiency of LAT2 or MCT10 results in interesting 
changes in TH levels compared with MCT8 only KO mice, although deletion of MCT10 or 
LAT2 alone have little effect on TH homeostasis (105-107). Perhaps most interesting are the 
findings obtained in MCT8/OATP1C1 DKO mice (21). In contrast to the only mild reduction in 
brain T3 levels and the lack of an obvious phenotype in mice deficient in MCT8 alone or 
OATP1C1 alone (108), MCT8/OATP1C1 DKO mice show a dramatic decrease in brain T3 
content associated with a markedly impaired neurodevelopment (21). These findings suggest 
overlapping activities of MCT8 and OATP1C1 in TH transport in the brain, as they are both 
capable of transporting T4 across the BBB. Apparently, development of the human brain is 
more vulnerable to mutations in MCT8, since OATP1C1 is not significantly expressed in the 
human BBB and thus cannot compensate for the loss of MCT8.  

Figure 3 shows a schematic of the regulation of T3 supply to neuronal target cells, 
based largely on studies by Heuer et al (21) and Bernal et al (109). The steps involved in this 
process include 1) TH transport across the BBB by both OATP1C1 and MCT8 in mice and by 
MCT8 alone in humans, 2) uptake of T4 in astrocytes by OATP1C1, 3) conversion of T4 to 
T3 by D2 in astrocytes, 4) release of T3 from the astrocytes by an unidentified transporter, 5) 
uptake of T3 in neurons by MCT8. These neurons may also express D3 for termination of T3 
activity. MCT8 may also be involved in T3 uptake by oligodendrocytes, but this remains to be 
established. This schema is an oversimplification as, for instance, it ignores the importance of 
TH transport across the blood-CSF barrier by MCT8 and OATP1C1.  

 
PATHOGENESIS OF AHDS BY MCT8 MUTATIONS 

TH plays an essential role in brain development. This requires optimal spatio-temporal 
regulation of T3 supply to brain target cells, in particular neurons. MCT8 is supposed to be 
crucial for T4 and T3 transport across the BBB and may also play an important role in T3 
uptake by neurons. Inactivation of MCT8 results in an impaired development of the central 
nervous system and thus in severe psychomotor retardation. It is also possibe that MCT8 is 
more important for T3 uptake in certain subsets of neurons than for others. This may result in 
a dysbalance of T3 supply to different neuronal populations and thus in a defect in the 
coordinated development of neuronal networks in the brain.  
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In addition to the TH dysregulation in the brain, the effects of MCT8 mutations on the 
thyroid state of peripheral tissues should also be considered. Usually, the heart appears to 
function normally in MCT8 patients despite exposure to highly elevated serum T3 levels. This 
suggest a partially impaired cardiac T3 upake in case of a MCT8 mutation, implying the 
involvement of additional TH transporters in the heart. MCT8 patients show extensive muscle 
wasting and increased serum SHBG levels, which likely reflect a hyperthyroid state of the 
skeletal muscles and liver, respectively (hepatic SHBG production is increased by TH). This 
would indicate that MCT8 inactivation does not impair muscle and liver T3 uptake, suggesting 
a more important role of other transporters. Finally, findings in MCT8 KO mice suggest that 
the kidneys are also in a hyperthyroid state in MCT8 patients, but there is no direct evidence 
for this assumption. 
 
CONCLUSIONS AND PERSPECTIVES 

Much progress has been made in recent years with the identification of TH transporters 
and their role in the tissue-specific regulation of TH bioactivity in health and disease. 
However, it is likely that important TH transporters still remain to be discovered. For instance, 
none of the TH transporters characterized recently at the molecular level have the properties 
of transporters involved in TH uptake in liver cells, such as nanomolar affinities, ATP and Na+ 
dependence, as determined in previous studies (1). Further, the physiological relevance of 
OATP1C1 and MCT10 need to be demonstrated. Although it has been demonstrated that 
mutations in MCT8 cause severe psychomotor retardation, the pathogenic mechanism has 
not been established. For this it is essential to know exactly where MCT8 is expressed in the 
human brain and other tissues. A beginning has been made with the treatment of AHDS 
patients with T3 analogues which do not require MCT8 for cellular uptake, such as DITPA 
(110) and Triac (https://clinicaltrials.gov/ct2/show/NCT02060474), but further work is needed 
to develop an optimal therapy for these patients. 
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Table 1. Characteristics of human thyroid hormone transporters 
 
Gene Protein Chr Tissue distribution Ref. 
SLC10A1 NTCP 14q24.1 Liver (26) 
SLCO1A2 OATP1A2 12p12 Brain, kidney, liver (18,111,112) 
SLCO1B1 OATP1B1 12p12 Liver (112-114) 
SLCO1B3 OATP1B3 12p12 Liver (18,112) 
SLCO1C1 OATP1C1 12p12 Brain, cochlea, testis (5,115) 
SLCO3A1 OATP3A1 15q26 Brain, testis (116) 
SLCO4A1 OATP4A1 20q13.33 Multiple (111) 
SLCO4C1 OATP4C1 5q21.2 Kidney, other (117) 
SLC7A5 LAT1 16q24.3 Multiple, tumors (41) 
SLC7A8 LAT2 14q11.2 Multiple, tumors (41) 
SLC16A2 MCT8 Xq13.2 Brain, liver, kidney, 

heart, thyroid etc  
(8,9) 

SLC10A10 MCT10 16q21-
q22 

Multiple. (7) 
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Table 2. Missense MCT8 mutations in AHDS patients 
 
Exon 1 Exon 2 Exon 3 Exon 4 Exon 5 Exon 6 
      
c.563T>A 
p.I188N 
(118) 

c.661G>A 
p.G221R 
(64,66,119) 

c.812G>A 
p.R271H 
(72,120-
124) 

c.1298T>A 
p. L433H 
(NP) 

c.1412T>C 
p.L471P 
(11,125,126) 

c.1658C>A 
p.A553D 
(NP) 

c.575A>G 
p.H192R 
(66) 

c.670G>A 
p.A224T 
(120,127) 

c.826G>A 
p.G276R 
(128) 

c.1301T>G 
p.L434W 
(64) 

c.1475T>C 
p.L492P 
(80) 

c.1673G>A 
p.G558D 
(59) 

c.575A>C 
p.H192P  
(2,129) 

c.671C>T 
p.A224V 
(11,72,118,130,
131) 

c.844G>T 
p.G282C 
(132) 

c.1333C>T 
p.R445C 
(79,133) 

c.1481T>C 
p.L494P 
(65) 

c.1690G>A 
p.G564R 
(75,134) 

c.581C>T 
p.S194F 
(64,73) 

c.671C>A 
p.A224E 
(2) 

c.869C>T 
p.S290F 
(81,135) 

c.1333C>A 
p.R445S 
(136) 

c.1484G>C 
p.G495A 
(137) 

c.1691G>A 
p.G564E 
(NP) 

c.587G>A 
p.G196E 
(138) 

c.703G>A 
p.V235M 
(64,73) 

c.872T>G 
p.L291R 
(139) 

c.1358A>T 
p.D453V 
(NP) 

c.1492G>A 
p.D498N 
(140) 

c.1703T>C 
p.L568P 
(64,73) 

  c.911T>C 
p.L304P 
(141) 

 c.1535T>C 
p.L512P 
(12) 

 

  c.962C>T 
p.P321L 
(66,142) 

 c.1610C>T 
p.P537L 
(143) 

 

  c.1061A>G 
Y354C 
(144) 

 c.1621G>T 
p.G541C 
(145) 

 

  c.1163G>A 
p.R388Q 
(146) 

   

  c.1201G>A 
p.G401R 
(147) 
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Fig. 1.  Thyroid hormone transport, metabolism and action in a target cell. 
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Fig. 2. Structure of the human MCT8 protein with 12 transmembrane domains. The blue 

lines represent the plasma membrane. The N- and C-terminal domains are 
located in the cytoplasm. The N-terminal extension of long vs. short MCT8 protein 
generated using the first or the second translation start site is indicated in yellow. 
The amino acid identity with human MCT10 is indicated in green.  
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Fig. 3. Schematic of steps involved in the supply of bioactive T3 to target cells in the 

brain. In contrast to the mouse brain, OATP1C1 does not seem to play an 
important role in T4 transport across the blood-brain barrier.  

 (Courtesy of Drs. Steffen Mayerl and Heike Heuer). 


	OLE_LINK3
	OLE_LINK2
	OLE_LINK1

