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INTRODUCTION 
Congenital hypothyroidism (CH) is the most frequent endocrine-metabolic disease in infancy, 
with an incidence of about 1/2000-4000 newborns (1,2). With the exception of rare cases due 
to hypothalamic or pituitary defects, CH is characterized by elevated TSH in response to 
reduced thyroid hormone levels. In absence of an adequate treatment, CH determines 
growth retardation, delays in motor development, and permanent intellectual disability. 
Primary CH is due to alterations occurring during the gland development (thyroid dysgenesis, 
TD) or distruptions in thyroid hormone biosynthesis (thyroid dysormonogenesis). Less 
common causes of CH are secondary or peripheral defects in TSH synthesis and/or action, 
defects in thyroid hormone transport, metabolism, or action (3). 
In the majority of cases (80-85%), primary permanent CH is due to alterations occurring 
during the gland organogenesis, resulting in a thyroid that is absent (athyreosis), hypoplastic 
(thyroid hypoplasia) or located in an unusual position (thyroid ectopy). All these entities are 
grouped under the term “thyroid dysgenesis” (TD)(4). TD occurs mostly as a sporadic 
disease, however a genetic cause of the disease has been demonstrated in about 5% of the 
reported cases (5). Genes associated with TD include several thyroid transcription factors 
expressed in the early phases of thyroid organogenesis (NKX2.1/TITF1, FOXE1/TITF2, 
PAX8, NKX2.5) as well as genes, like the thyrotropin receptor gene (TSHR) expressed later 
during gland morphogenesis.  
 
In the remaining 15-20% of cases, CH is caused by inborn errors in the molecular steps 
required for the biosynthesis of thyroid hormones, and generally it is characterized by 
enlargement of the gland (goiter), presumably due to elevated TSH levels(6). Thyroid 
dyshormonogenesis shows classical Mendelian recessive inheritance.  
Rarely CH has a central origin, as consequence of hypothalamic and/or pituitary diseases, 
with reduced production and/or effect of the thyrotropin releasing hormone (TRH) or of the 
thyrotropin hormone (TSH)(7). 
 
CONGENITAL HYPOTHYROIDISM: DIAGNOSIS AND TREATMENT 
Clinical manifestations 
CH is usually a sporadic disease with a 2:1 female to male ratio. Familial cases occur with a 
frequency that is 15-fold higher than by chance alone (8). The genetic basis of these familial 
cases has been established in some, but not all pedigrees (9). Most newborn babies with 
congenital hypothyroidism have few or no clinical manifestations of thyroid hormone 
deficiency, and the majority of cases are sporadic. As a result, it is not possible to predict 
which infants are likely to be affected. For these reasons, newborn screening programs in 
which either thyroxine (T4) or thyrotropin (TSH) are measured in heel-stick blood specimens 
were developed in the mid-1970s to detect this condition as early as possible. These 
screening efforts have been largely successful, but more severely affected infants may still 
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have a slightly reduced IQ and other neurologic deficits despite prompt diagnosis and 
initiation of therapy. 
International studies show that the incidence of permanent primary CH is approximately 1 in 
3000 newborns (in iodine sufficient areas). There is considerable ethnic variation in 
incidence, ranging from 1 in 30,000 in the African-American population in the United States 
(10,11) to 1 in 900 in Asian populations in the United Kingdom (12).  
In absence of an adequate treatment, severe CH results in serious mental retardation, in 
motor handicaps as well as in the signs and symptoms of impaired metabolism. Before the 
introduction of a neonatal screening program, congenital hypothyroidism was one of the most 
frequent causes of mental retardation. 
The clinically detectable consequences of CH strongly depend on severity and duration of 
thyroid hormone deprivation, but there is also a large individual variability in treatment 
response. In the first four-six months after birth, only untreated patients with severe CH have 
clinical manifestations (Table 1). Milder cases can remain undiscovered for years. Clinical 
features of CH are subtle and non-specific during the neonatal period due in part to the 
passage of maternal thyroid hormone across the placenta; however, early symptoms may 
include: 
• Decreased activity 
• Wide posterior fontanel 
• Poor feeding and weight gain 
• Small stature or poor growth 
• Long-term jaundice 
• Decreased stooling or constipation 
• Hypotonia 
• Hoarse cry 
• Coarse facial features 
• Macroglossia 
• Umbilical hernia 
• Developmental delay 
• Pallor 
• Myxedema 
• Goiter 
 
Infants with congenital hypothyroidism are usually born at term or after term. Often, they are 
described as "good babies" because they rarely cry and sleep most of the time. Anemia may 
occur, due to decreased oxygen carrying requirement. The accumulation of subcutaneous 
fluid (intracellularly and extracellularly) is usually more pronounced in patients with primary 
(thyroid) hypothyroidism than in those with pituitary hypothyroidism. Thickening of the lips 
and macroglossia is due to increased accumulation of subcutaneous mucopolysaccharides 
(i.e., glycosaminoglycans) because of decrease in the degradation of these substances. The 
long-term effects of severe hypothyroidism on craniofacial growth and dental development 
have also included impaction of the mandibular second molars (13).  
Family history should be carefully reviewed for information about similarly affected infants or 
family members with unexplained mental retardation. Maternal history of a thyroid disorder 
and mode of treatment, whether before or during pregnancy, can occasionally provide the 
etiology of the infant's problem. 
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A small but significant number (3-7%) of infants with congenital hypothyroidism have other 
birth defects, mainly atrial and ventricular septal defects or other cardiac malformations 
(approximately 10% of infants with CH, compared with 3% in the general population) (14). 
 
NEONATAL SCREENING 
Screening programs for CH were initially developed in Quebec, Canada, and Pittsburgh, 
Pennsylvania, in 1974 (15), and have now been established in Western Europe, North 
America, Japan, Australia, and parts of Eastern Europe, Asia, South America, and Central 
America (16). Since the introduction of the screening, the apparent overall incidence of CH 
has increased considerably as a consequence of the detection of mild disorders that 
previously remained undetected or were not recognized as congenital problems. 
Neonatal screening programs allow for early detection and treatment of CH, and have proven 
to be successful in preventing brain damage.  
The population-based newborn screening measures TSH or TSH and total T4 in dried blood 
spots obtained in the first 3 days of life. In newborns with a screening result suspicious for 
hypothyroidism, the diagnosis of primary CH is confirmed when serum TSH levels are above 
and free T4 levels are below the age-related reference ranges. Hypothalamic-pituitary 
hypothyroidism is more difficult to diagnose. Most infants with this diagnosis are missed in 
screening programs unless T4 and TSH or TSH, T4 and thyroxine binding globulin (TBG) are 
simultaneously measured. 
Worldwide, most neonatal screening programs are TSH based in the first 3 days of life and 
effectively detect only thyroidal congenital hypothyroidism (CHT). Only a few screening 
programs in some countries employ a method in which total T4 or free T4 and TSH are 
measured simultaneously or stepwise (“T4+TSH-method”) enabling detection of CHT as well 
as CHC (central congenital hypothyroidism) (17-19). 
If hypothyroidism is confirmed by laboratory analysis, imaging studies should be performed, 
but it is not acceptable to delay hormone replacement therapy if imaging studies are not 
readily available (20).  
 
DIAGNOSIS 
Tests commonly used to determine the underlying cause of congenital hypothyroidism are 
presented in Table 2.  
Imaging studies are useful to establish the presence of thyroid morphogenesis alterations, 
which are the most common cause of CH. Thyroid scintigraphy, with 99mtechnetium or 123I, is 
the most informative diagnostic procedure in patients with thyroid dysgenesis (21,22). 
Scintigraphy should be performed immediately at birth, if this will not delay the start of 
thyroxine (L-T4) treatment, or around the age of 4, when L-T4 therapy can be interrupted for 
4 weeks without consequences for the child development.  
More than 80% of newborn infants with TSH elevation can be diagnosed correctly on initial 
imaging with combined radioisotope scan and ultrasound. Ultrasound cannot reliably detect 
thyroid ectopia. Although thyroid ultrasonography is useful in demonstrating enlarged or 
absent glands, it is less accurate than scintigraphy in showing ectopic glands (23).  
Radioisotope scan, especially if performed late, may show no uptake despite the presence of 
a eutopic gland (22). 
Recently it has been suggested that intramuscular injections of recombinant human TSH can 
be useful to perform 123I- uptake studies during L-thyroxine treatment in CH patients (24,25).  
Assay of serum thyroglobulin (Tg) will be useful in to establish the presence of some thyroid 
tissue, while 123I- will provide information about the thyroidal uptake of iodide. 
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More specialized tests, such as perchlorate discharge, evaluation of serum, salivary, and 
urinary radioiodine (26), and measurement of serum T4 precursors, may be necessary to 
delineate specific inborn errors of thyroid hormone biosynthesis (27).  
When both the maternal and fetal thyroid glands are compromised, significant cognitive delay 
can occur despite early and aggressive postnatal therapy. Maternal thyrotropin-stimulating 
hormone receptor (TSHR)-blocking antibodies (Abs) can be transmitted to the fetus and 
cause combined maternal-fetal hypothyroidism. Measurement of TSHR Abs is necessary to 
establish the diagnosis; the presence of other thyroid Abs is insufficiently sensitive and may 
miss some cases (28). 
The measurement of the total urinary iodine excretion differentiates inborn errors from 
acquired transient forms of hypothyroidism due to iodine deficiency or iodine excess. 
A small number of infants with abnormal screening values will have transient hypothyroidism 
as demonstrated by normal serum T4 and TSH concentrations at the confirmatory laboratory 
tests. Transient hypothyroidism is more frequent in iodine-deficient areas and it is much more 
common in preterm infants. CH can also be the consequence of intrauterine exposure to 
maternal antithyroid drugs, maternal TSHR-blocking antibodies (TSHRBAb), as well as 
heterozygous DUOX1 and DUOX2 or TSHR germ-line mutations (29,30).  
Because the transient nature of the hypothyroidism will not be recognized clinically or 
through laboratory tests, initial treatment will be similar to that of the infant with permanent 
CH, however at a later age interruption of therapy allows to distinguish from transient to 
permanent hypothyroidism (31). 
The standard approach for the treatment of hypothyroidism is replacement therapy with 
thyroxine (levothyroxine sodium). Thyroxin (T4) is converted to the more metabolically active 
triiodothyronine (T3) in the peripheral tissues. This returns patients to a biochemical 
euthyroid state, with normal levels of TSH concentration and serum-free T4 (FT4). Once the 
euthyroid state is achieved, the patient's TSH and FT4 levels are followed at periods of six 
months to one year (13). 
 
GENETIC CLASSIFICATION OF CONGENITAL THYROID DISEASES 
1. Central hypothyroidism 
Congenital central hypothyroidism (C-CH) is a rare disease in which thyroid hormone 
deficiency is caused by insufficient thyrotropin (TSH) stimulation of a normally-located thyroid 
gland. Patients with this disorder cannot be identified by neonatal screening program based 
on TSH measurement. However, neonatal screening for CH on the basis of thyroxine (T4) or 
free T4 and TSH concentrations can be performed to diagnose this type of CH (32-34). 
C-CH is more prevalent than previously thought, reaching 1 in 16,000 neonates in countries 
consistently identifying C-CH through T4-based CH screening strategies (35). Neonatal 
detection and early treatment of C-CH would prevent the risk of developing mental 
retardation secondary to late diagnosis of infantile hypothyroidism (36) and is generally 
associated with alterations in hypothalamus or pituitary development causing life-threatening 
situations. The accompanying pituitary hormonal deficiencies, especially the lack of cortisol, 
may be responsible for high morbidity and mortality. 
The current knowledge on the genetic bases of C-CH is scarce. At the hypothalamic level no 
gene defects causing C-CH have yet been identified in humans, but pituitary (thyrotrope)-
selective genes encoding the TSH-releasing hormone (TRH) receptor (TRHR), the TSH β-
subunit (TSHB) and, recently, the immunoglobulin superfamily factor 1 (IGSF1) are genes 
involved in isolated central hypothyroidism (36). 
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1.1 Developmental defects of the pituitary 
The pituitary gland is formed from an invagination of the floor of the third ventricle and from 
Rathke’s pouch, developing into the thyrotropic cell lineage and the four other 
neuroendocrine cell types, each defined by the hormone produced: TSH, growth hormone 
(GH), prolactin, gonadotropins (luteinizing hormone [LH] and follicle-stimulating hormone 
[FSH]), and adrenocorticotropic hormone (ACTH). 
The ontogeny of the pituitary gland depends on numerous developmental genes that guide 
differentiation and proliferation. These genes are highly conserved among species, 
suggesting crucial evolutionary roles for the proteins (PIT1 and PRPO1, HESX1, LHX3, 
LHX4 and SOX3).  
 
Lhx3 and Lhx4 belong to the LIM family of homeobox genes that are expressed early in 
Rathke’s pouch. In Lhx3 knockout mice the thyrotropes, somatotropes, lactotropes, and 
gonadotropes cell lineages are depleted, whereas the adrenocorticotropic cell lineage fails to 
proliferate. This murine knock out model shows that pituitary organ fate commitment 
depends on Lhx3. Lhx4 null mutants show Rathke’s pouch formation with expression of a 
glycoprotein subunit, TSH-beta, GH and Pit1 transcripts, although cell numbers are reduced.  
In humans, homozygous or compound heterozygous carriers of LHX3 mutations present with 
combined pituitary hormone deficiency diseases and cervical abnormalities with or without 
restricted neck rotation. Some patients also present with sensorineural hearing loss. 
Mutations can also be frameshift or splicing anomalies. In addition, the heterozygous carriers 
of a dominant negative LHX3 mutation are characterized by limited rotation of the neck.  
Patients with heterozygous missense or frameshift mutations in LHX4 have variable 
phenotypes, including GH disease and variable TSH, gonadotropin and ACTH deficiencies 
with a hypoplastic anterior pituitary, with or without an ectopic posterior pituitary (37,38). 
 
Hesx1 (also called Rpx), a member of the paired-like class of homeobox genes, is one of the 
earliest markers of the pituitary primordium (39). Extinction of Hesx1 is important for 
activation of downstream genes such as Prop1, suggesting that the proteins act as opposing 
transcription factors (40). Targeted disruption of Hesx1 in the mouse revealed a reduction in 
the prospective forebrain tissue, absent optic vesicles, markedly decreased head size, and 
severe microphthalmia. A similar phenotype it has been observed in patients with the 
syndrome of septo-optic dysplasia (SOD). SOD is a complex and highly variable disorder, 
diagnosed in the presence of: 1) optic nerve hypoplasia, 2) midline neuroradiologic 
abnormalities and/or 3) anterior pituitary hypoplasia with consequent hypopituitarism (37). 
The number of genetic factors implicated in this condition is increasing and currently includes 
HESX1, OTX2, SOX2 and SOX3. These genes are expressed very early in forebrain and 
pituitary development and so it is not surprising that mutations affecting these genes can 
induce the SOD disorders.  
Very recently Sonic hedgehog (Shh) has been associated to SOD, since mouse embryos 
lacking in the gene exhibit key features of the disease, including pituitary hypoplasia and 
absence of the optic disc (41). 
The human HESX1 gene maps to chromosome 3p21.1–3p21.2, and its coding region spans 
1.7 Kb, with a highly conserved genomic organization consisting of four coding exons. The 
first homozygous missense mutation (Arg160Cys) was found in the homeobox of HESX1 in 
two siblings with SOD (39). Subsequently several other homozygous and heterozygous 
mutations have been shown to present with different phenotypes characterized by pituitary 
hormone deficiency and SOD (40,42).  
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1.2 Defects in the TRH and TRH receptor 
In mice, homozygous deletion of the TRH gene produced a phenotype characterized by 
hypothyroidism and hyperglycemia (43). Only a few patients with reduced TRH production 
have been described in the literature (44,45), but no human mutations have been identified 
so far. Mice lacking the TRH receptor appear almost normal, with some growth retardation, 
and decreased serum T3, T4, and prolactin (PRL) levels but normal serum TSH (46). So far 
only one family with a compound heterozygous (47) and one family with homozygous (48) 
loss of function mutation of TRH receptor have been described.  
 
1.3 Defects in Thyroid-Stimulating Hormone (TSH) synthesis 
The thyroid stimulating hormone (TSH) is produced and secreted by the thyrotrophic cells of 
the anterior pituitary gland and it is the classic ligand for the TSH receptor (TSHR) in the 
thyroid. TSH is a heterodimeric glycoprotein consisting of an α subunit and β subunit, The α 
subunit is shared with other glycoprotein hormones (i.e. follicle-stimulating hormone (FSH), 
luteinizing hormone (LH), and chorionic gonadotropin (CG)), whereas the TSHβ subunit is 
unique, determining the specificity of TSH. The beta-subunit (gene map locus 1p13) 
synthesis is under the control of several transcription factors, including POU1F1 and PROP1. 
 
Pit1/POU1F1 
Pit1 (called POU1F1 in humans) is a pituitary-specific transcription factor belonging to the 
POU homeodomain family. The human POU1F1 maps to chromosome 3p11 and consists of 
six exons spanning 17 Kb encoding a 291 aminoacid protein.  
Identified mutations of the POU1F1 gene in human result in combined pituitary hormone 
deficiency (CPHD) with an incidence between 38% and 77% in unselected cohorts, and 
between 25% and 52% in patients with a family history of CPHD. To date, several recessive 
and six dominant POU1F1 gene mutations have been described in CPHD patients and 
include missense, nonsense, frameshift, whole gene deletion and two mutations that result in 
the mis-splicing of the pre-mRNA (49,50).  
Deficiency of GH, prolactin and TSH is generally severe in patients harbouring mutations in 
POU1F1. The patients are often affected by extreme short stature, learning difficulties, and 
anterior pituitary hypoplasia (50). 
 
PROP1 
Prop1 (Prophet of Pit1) is a pituitary-specific paired-like homeodomain transcription factor 
required for the expression of Pit1, and transcriptional activator to stimulate pituitary cell 
differentiation. Dwarf mice, harboring a homozygous missense mutation in Prop1, exhibit 
GH, TSH and prolactin deficiency, and an anterior pituitary gland reduced in size by about 
50%. Additionally, these mice have reduced gonadotropin expression (51). 
The human PROP1 maps to chromosome 5q. The gene consists of three exons encoding for 
a 226 aminoacids protein. After the first report of mutations in PROP1 in four unrelated 
pedigrees with GH, TSH, prolactin, LH and FSH deficiencies (52), several distinct mutations 
have been identified in over 170 patients (40), suggesting that mutations in PROP1 are the 
most prevalent cause of multiple pituitary hormone deficiency, accounting for up to 50% of 
familial cases, although the incidence of PROP1 mutations is much lower in sporadic cases 
(37). 
Affected individuals exhibit recessive inheritance (42). The timing of initiation and the severity 
of hormonal deficiency in patients with PROP1 mutations is highly variable: diagnosis of GH 
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deficiency preceded that of TSH deficiency in 80%. Following the deficiencies in GH and 
TSH, there is a reduced fertility due to gonadotropin insufficiency. Although most patients fail 
to enter puberty spontaneously, some start puberty before deficiencies in LH and FSH 
evolve. ACTH deficiency is a relatively late manifestation of PROP1 mutation, often evolving 
several decades after birth. The degree of prolactin deficiency and pituitary morphological 
alterations are variable (40).  
  
1.4 Structural Thyroid-Stimulating Hormone defects 
Mutation in the TSH-beta gene are a rare cause of congenital hypothyroidism, and in all the 
reported cases, the mutations were homozygous or compound heterozygous. Available data 
have been recently reviewed by Miyai (53). The phenotype is very variable and it may range 
from a very mild hypothyroidism to severe forms associated with mental retardation in case 
of delayed treatment. Patients with mutation in the TSH-beta are characterized by the 
presence of low levels of circulating TSH that will not be stimulated by TRH (54). Finally, 
cases of immunologycally reactive but biologically inactive TSH have also been reported 
(53). 
 
1.5 Deficiency of immunoglobulin superfamily member 1 (IGSF1) 
IGSF1 is a plasma membrane immunoglobulin superfamily glycoprotein (55,56). Human 
IGSF1 and murine Igsf1 mRNAs are highly expressed in Rathke’s pouch and in adult 
pituitary gland and testis. Moreover, IGSF1 protein is expressed in murine thyrotropes, 
somatotropes, and lactotropes, but not in gonadotropes or in the testis (57). Igsf1 knockout 
mice showed no alternation of follicle stimulating hormone synthesis or secretion, and normal 
fertility (58). 
The physiological role of IGSF1 is unknown, but it’s lack is responsible for a variety of 
symptoms such as hypothyroidism, prolactin deficiency, macroorchidism and delayed 
puberty. IGSF1 is important for the pituitary-thyroid axis and the development puberty and 
thus represents a new player controlling growth and puberty in childhood and adolescence. 
So far, 8 distinct mutations and 2 deletions in IGSF1 have been identified in 11 families (57), 
and three other mutations reported in Japanese patients (59). The mutations included in-
frame deletions, single nucleotide deletions, nonsense mutations, missense mutations and 
one single-base duplication. In vitro expression studies of several mutations done to analyze 
the functional consequences demonstrated that the encoded proteins migrated 
predominantly as immature glycoforms and were largely retained in the endoplasmic 
reticulum, resulting in decreased membrane expression (57). It is likely that there is no clear 
genotype-phenotype correlation. Even in familial cases sharing the same IGSF1 defects, a 
variable degree of hypothyroidism was observed (57,60). Other genetic or environmental 
factors may influence the phenotypic expression of IGSF1 deficiency. 
 
2. Alterations of thyroid morphogenesis (thyroid dysgenesis) 
In the majority of cases (80-85%), primary permanent CH is due to alterations occurring 
during the gland organogenesis, resulting either in a thyroid that is absent (thyroid agenesis 
or athyreosis) or hypoplastic (thyroid hypoplasia) or located in an unusual position (thyroid 
ectopy). All these entities are grouped under the term “thyroid dysgenesis” (TD)(4). TD 
occurs mostly as a sporadic disease, however a genetic cause of the disease has been 
demonstrated in about 5% of the reported cases.  
The most critical events in thyroid organogenesis occur during the first 60 days of gestation 
in man and the first 15 days in mice. It is likely that alterations in the molecular events 
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occurring during this period can be associated to TD. Studies on thyroid development in 
normal and mutated mouse embryos indicate that the simultaneous presence of Pax8, Nkx2-
1, Foxe1, and Hhex is required for thyroid morphogenesis. Indeed, thyroid dysgenesis is 
present in animal models with mutations in these genes, and mutations in the same genes 
have been identified in patients with congenital hypothyroidism associated with TD. 
 
2.1 Athyreosis 
The absence of thyroid follicular cells TFC in orthotopic or ectopic location is called 
athyreosis. This condition can either be the consequence of lack of formation of the thyroid 
bud or results from alterations in any of the step following the specification of the thyroid bud 
and determining a defective survival and/or proliferation of the precursors of the TFC. In 
athyreotic patients, the presence of cystic structures resulting from the persistence of 
remnants of the thyroglossal duct is frequently reported. This finding indicates that in these 
subjects some of the early events of thyroid morphogenesis have taken place but the cells 
fated to form the TFCs either did not survive or switched to a different fate. In many cases, 
scintigraphy failed to demonstrate the presence of thyroid tissue, but thyroid scanning by 
ultrasound reveals a very hypoplastic thyroid. 
So far, the absence of thyroid was reported in 3 patients with CH associated with FOXE1 
gene defects (Bamforth-Lazarus syndrome), in three subject carrying a mutation in PAX8, in 
two patients with NKX2-1 mutation, in two patients with NKX2-5 mutation and in one patient 
with both a heterozygous NKX2-5 mutation and a heterozygous mutation in the PAX8 
promoter region (5)  (Table 4). 
Homozygous mutations in FOXE1 gene have been reported in patients affected by Bamfort’s 
syndrome. This syndrome is characterized by cleft palate, bilateral choanal atresia, spiky hair 
and athyreosis. All the affected members carry homozygous missense mutations in 
conserved amino acids of FOXE1, and the mutant proteins, when tested in vitro, show a 
reduction in both DNA binding and transcriptional activity. While in mice the absence of 
FoxE1 causes either athyreosis or ectopy, in humans FOXE1 mutations have never been 
associated to thyroid ectopy. 
 
2.2 Ectopic thyroid 
The ectopic thyroid is the consequence of a failure in the descent of the developing thyroid 
from the thyroid anlage region to its definitive location in front of the trachea. An ectopic 
thyroid can be found in any location along the path of migration from the foramen caecum to 
the mediastinum. In the majority of cases, the ectopic thyroid appears as a mass in the back 
of the tongue (lingual thyroid, usually functioning). Sublingual ectopic tissues are less 
frequent; in this case, thyroid tissue is present in a midline position above, below or at the 
level of the hyoid bone. Ectopic thyroid tissues within the trachea or thyroid tissue in the 
submandibular region have also been reported. 
In humans more than 50% of TD cases are associated with an ectopic thyroid; however, up 
to now, only three heterozygous mutations in the NKX2-5 gene (p.R25C, p.A119S, 
p.R161P), one mutation in FOXE1 and two mutations in PAX8  (p.R108*, p. T225M) have 
been associated to the human ectopic thyroid (5) (Table 4). Thyroid ectopy was observed 
also in two cases of PAX8 (p.R31H) mutation, a finding that has not been reported previously 
(18). The functional studies of the mutant NKX2-5, demonstrated a significant functional 
impairment with reduction of transactivation properties and a dominant negative effect. The 
patients described were all heterozygous and the mutations were inherited from one of the 
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parents, suggesting that NKX2-5 mutations have variable penetrance and clinical 
significance (61).  
Surprisingly, monozygotic (MZ) twins are usually discordant for CH due to thyroid 
dysgenesis, suggesting that most cases are not caused by transmitted genetic variation. One 
possible explanation is somatic mutation in genes involved in thyroid migration occurring 
after zygotic twinning. To test the hypothesis of somatic mutation, Magne (62) performed 
whole exome sequencing of DNA from three pairs of MZ twins discordant for CH with ectopic 
glands, but no somatic mutations were identified. 
Recently gene expression, genome-wide methylation, and structural genome variations have 
been compared between normal and ectopic thyroid tissue. Ectopic thyroids show a 
differential gene expression compared to normal thyroids, although molecular basis could not 
be properly defined probably as consequence of the small number of samples examined or 
of the different gene expression pattern between adult and embryonic gland (63). 
 
2.3 Hypoplasia 
Orthotopic and hypoplastic thyroid is reported in 5% of CH cases. The relative proportions of 
the main TD phenotypes vary in different studies, depending on the methodology used to 
detect the presence of the gland. The most frequent form of TD is thyroid gland ectopy and 
only the combination of ultrasound sonography and 99Tc scintigraphy might resolve a precise 
relative proportion of these phenotypes. Thyroid hypoplasia is a genetically heterogeneous 
form of thyroid dysgenesis, since mutations in NKX2-1, PAX8 or TSHR gene have been 
reported in patients with thyroid hypoplasia (Table 4). 
NKX2-1 mutations have been described in several patients with primary CH, respiratory 
distress and benign hereditary chorea, which are manifestations of the “Brain-Thyroid-Lung 
Syndrome” (BLTS). In the majority of cases haplo-insufficiency has been considered to be 
responsible for the phenotype. Only a few mutations produce a dominant negative effect on 
the wild type NKX2-1, and among those in two cases a promoter-specific dominant negative 
effect was reported (64). All the published NKX2-1 mutations have variable functional effects, 
even if the mutations occur in similar regions of the protein. The phenotypes of patients 
affected by NKX2-1 mutations are very variable and there is no correlation between the 
clinical manifestations and the molecular alterations. Usually, mutations in NKX2-1 caused a 
Benign Hereditary Chorea (BHC), a rare autosomal dominant condition characterized by 
early onset of non progressive chorea. To date, 78 mutations associated with BHC have 
been reported in the NKX2-1 gene (65). Thirty-four are de novo (43.6%), 29 (37.2%) showed 
an autosomal dominant transmission and, for 15, the transmission was not defined (19.2 %). 
Recently (66), it has been demonstrated that sudden unexpected falls may be an early 
clinical manifestation of BHC, predating the onset of abnormal movements. A heterozygous 
mutation of the NKX2-1 gene (14q13) was detected in these patients. The two novel 
mutations identified in both patients are predicted to cause NKX2-1 haplo-insufficiency, by 
truncating the protein before (c.437_438dupGC; p.N147Pfs*20) and inside (c.634 
C>T:p.Q212*) the homeodomain, thus affecting its DNA binding properties and interfering 
with the transcriptional activity on target genes. 
 
The involvement of PAX8 has been described in sporadic and familial cases of CH with TD 
(67-73). All affected individuals are heterozygous for the mutations and autosomal dominant 
transmission with incomplete penetrance and variable expressivity has been described for 
the familial cases. In vitro transfection assays demonstrated that the mutated proteins are 
unable to bind DNA and to drive transcription of the TPO promoter.  
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TSHR mutations 
TSHR belongs to the G-protein coupled receptors superfamily. The gene encoding  TSHR 
maps to chromosome 14q31 and to mouse chromosome 12. It consists in ten exons codify 
for a 764 aminoacid protein.  
The role of the TSHR in thyroid differentiation was first identified in Tshr hyt/hyt mice, 
affected by primary hypothyroidism with elevated TSH and hypoplastic thyroid, as a 
consequence of a loss of function mutation in the fourth transmembrane domain of TSHR 
(pro556Leu), which abolishes the cAMP response to TSH.  
Several patients with homozygous or compound heterozygous loss-of-function TSHR 
mutations have been reported. The disease, known as resistance to TSH (OMIM #275200) is 
inherited as an autosomal recessive trait, and patients are characterized by elevated serum 
TSH levels, absence of goiter with a normal or hypoplastic gland, and normal to very low 
serum levels of thyroid hormones. The clinical manifestations are very variable spanning 
from euthyroid hyperthyrotropinemia to severe hypothyroidism. Indeed, recently occurrence 
of a novel nonsynonymous substitution was reported in the HinR of the large N-terminal 
extracellular domain of the TSHR gene in a patient with thyroid hypoplasia. In contrast with 
four others in whom TSHR mutations of the hinge portion were previously identified, this 
p.S304R TSHR variation affected neither TSH binding nor cAMP pathway activation. This 
TSHR gene variant was documented in a CH patient, but the current data do not support its 
role in the clinical phenotype (74). 
 
2.4 Hemiagenesis 
Thyroid hemiagenesis is a rare congenital abnormality, in which one thyroid lobe fails to 
develop. Thyroid hemiagenesis is often associated with mild and or transient hypothyroidism 
but several patients were found to be in the euthyroid state (both serum TSH and thyroid 
hormone levels are within the normal range). Thyroidal hemiagenesis is predominantly seen 
in females with an incidence to 0.2% in healthy children. In the large majority of the cases, 
the left lobe is absent (75). 
The causes of thyroid hemiagenesis are still unclear and it is unknown whether the 
disturbance of the lobulation process is due to interference of environmental factors or to 
genetic abnormality. In addition, the occurrence of some cases of thyroid hemiagenesis 
among members of the same family suggests that genetic factors could be involved in this 
anomaly.  
The molecular mechanisms leading to the formation of the two thyroid symmetrical lobes, 
which are impaired in the case of hemiagenesis, are still unclear and in humans, candidate 
genes responsible for the hemiagenesis of the thyroid have not yet been described. Indeed, 
Shh-/- mice embryos can display either a non lobulated gland (76) or hemiagenesis of thyroid 
(77), and hemiagenesis of the thyroid is also frequent in mice double heterozygous Titf1+/-, 
Pax8+/- (78). To date, no genetic alterations have been found in patients with thyroid 
hemiagenesis. 
FOXE1 within its coding sequence contains a polyalanine tract of variable length, ranging 
from 11 to 19 alanines.  Several studies have pointed to the potential role of FOXE1-polyAla 
length polymorphism in determining the susceptibility to TD (79-81). 
 
2.5 Other genetics defects 
Congenital Hypothyroidism has also been associated with a rare syndrome, characterized by 
congenital hypothyroidism and neonatal diabetes (NDH). Patients with NDH exhibit 
diminished levels of T3 and T4 along with elevated TSH and Tg. Patients additionally 
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develop hyperglycemia and hypo-insulinemia often accompanied by polycystic kidney 
disease, hepatic fibrosis, glaucoma and mild mental retardation. Thyroid ultrasound and 
scintigraphy also suggested athyreosis or hypoplasia. In most cases, these patients do not 
respond to conventional treatment and TSH remains elevated, despite normalization of 
serum T4 levels. Several mutations in the GLI-similar 3 (GLIS3) gene have been identified in 
patients with NDH. Glis3-knockout mice die in one week after birth probably for severe 
neonatal diabetes. Hypothyroidism was also observed in Glis3 knockout mice; however, 
histological examination of the thyroid gland suggested that Glis3 does not significantly affect 
thyroid gland development. 
It has been suggested that Glis3 plays a critical role in the maintenance and/or proliferation 
of endocrine progenitor cells and in development and maintenance β-cells.  
GLI-similar 3 (GLIS3) is a transcription factor containing five Kruppel-like zinc finger motifs. 
The human gene maps to chromosome 9p24.2 and encodes for a protein that is 
approximately 90 kD. Glis3 is expressed in a tissue-specific manner with the highest levels of 
expression observed in the kidney, thyroid gland, endocrine pancreas, thymus, testis, and 
uterus. Low levels of expression have also been reported in the brain, lung, ovary and liver. 
Mutations in GLIS3 have been identified in ten patients from seven families with nine of the 
ten born to consanguineous parents (82-84). 
 
3. Defects in thyroid hormone synthesis (dyshormonogenesis) 
As mentioned before, in about 15% of cases, CH is due to hormonogenesis defects caused 
by mutations in genes involved in thyroid hormone synthesis, secretion or recycling. These 
cases are clinically characterized by the presence of goiter, and the molecular mechanisms 
in most of these forms have been well defined (6) (Table 5). 
In thyroid follicular cells, iodide is actively transported and concentrated by the sodium iodide 
symporter present in the baso-lateral membrane. Subsequently it is oxidised by hydrogen 
peroxide generation system (thyroperoxidase, Pendrin) and bound to tyrosine residues in 
thyroglobulin to form iodotyrosine (iodide organification). Some of these iodotyrosine 
residues (monoiodotyrosine and diiodotyrosine) are coupled to form the hormonally active 
iodothyronines T4 and triiodothyronine (T3). When needed, thyroglobulin is hydrolyzed and 
hormones are released in the blood. A small part of the iodotyronines are hydrolyzed in the 
gland, and iodine is recovered by the action of specific enzymes, namely the intrathyroidal 
dehalogenases. 
Defects in any of these steps lead to reduced circulating thyroid hormone, resulting in 
congenital hypothyroidism and goiter. With the exception of rare cases, all mutations in these 
genes appear to be inherited in autosomal recessive fashion (6). 
 
3.1 Sodium-iodide symporter 
The sodium-iodide symporter (NIS) is a member of the sodium/solute symporter family that 
actively transports iodide across the membrane of the thyroid follicular cells. In 1996, NIS 
mRNAs from rats (85) and humans (86) were isolated. The human gene (SLC5A5) maps to 
chromosome 19p13.2-p12. It has 15 exons encoding for a 643-amino acid protein expressed 
primarily in thyroid, but also in salivary glands, gastric mucosa, small intestinal mucosa, 
lacrimal gland, nasopharynx, thymus, skin, lung tissue, choroid plexus, ciliary body, uterus, 
lactating mammary tissue and mammary carcinoma cells, and placenta (87,88). Only in 
thyroid cells is iodide transport regulated by TSH. It was demonstrated that the δ-amino 
group at position 124, is required for the transporter’s maturation and cell surface targeting 
(89).   
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The inability of the thyroid gland to accumulate iodine was one of the early known causes of 
CH, and before the cloning of NIS, a clinical diagnosis of hereditary iodide transport defect 
(ITD) was made on the basis of goitrous hypothyroidism and absent thyroidal radioiodine 
uptake. To date, 15 mutations in the SLC5A5 gene have been identified in patients with ITD. 
Some of these, including V59E,G93R, Δ439-443, R124H, Q267E, T354P, G395R, and 
G543E, have been studied in detail and have provided key mechanistic information on NIS 
function. Since SLC5A5 mutations are inherited in an autosomal recessive manner, 
heterozygous individuals, NIS gene defects can be detected only when both alleles are 
mutated and the clinical picture is characterized by hypothyroidism of variable severity (from 
severe to fully compensated) and goiter (90,91).  
Furthermore, under the conditions of high iodine intake, when full preservation of iodine 
concentrating function is not required to achieve normal thyroid hormone synthesis, 
mutations causing impairments of function may not be detected even in the homozygous 
patients. For these reasons, the actual prevalence of NIS gene mutations may be higher than 
that reported (92). 
In the neonatal period, infants with iodide transport defects are found to have a normal-size 
or slightly enlarged thyroid gland by ultrasonography and elevated serum thyroglobulin levels 
(93). Radioactive iodide uptake is absent. Measurement of the saliva-to-plasma 123I ratio is 
around one. The degree of hypothyroidism is variable and ranges from mild to severe, 
possibly depending on the amount of iodide in the diet. These children are severely 
hypothyroid if maintained with a normal iodine diet, while addition of high amount of iodide to 
the diet tends to compensate the iodide transport failure. 
 
3.2 Thyroperoxidase 
The most frequent cause of dyshormonogenesis is thyroperoxidase (TPO) deficiency. TPO is 
the enzyme that catalyses the oxidation, organification, and coupling reactions.  
Accumulation of iodine in the thyroid gland reaches a steady state between active influx, 
protein binding, and efflux, resulting in a relatively low free intracellular iodide concentration 
in normal conditions, while increased in the presence of TPO defects. The kinetics of iodide 
uptake and release can be traced by administration of radioiodide and iodide re-uptake can 
be inhibited by anions of similar molecular size and charge, such as perchlorate or 
thiocyanate. Radioiodide uptake and perchlorate inhibition gives an idea of the intrathyroidal 
iodide concentration in relation to the circulating iodine. Iodine organification defects can be 
quantified as total or partial: total iodide organification defects are characterized by discharge 
of more than 90% of the radioiodide taken up by the gland within 1 hour after administration 
of sodium perchlorate, usually given 2 hours after radioiodide. A total disappearance of the 
thyroid image is also observed. Partial iodide organification defects are characterized by 
discharge of 20% to 90% of the accumulated radioiodine (94). 

The human TPO gene is located on chromosome 2p25 and spans approximately 150 kb; the 
coding sequence of 3048 bp is divided over 17 exons (95) and encodes for a 933 amino 
acid, membrane bound, glycated, heme-containing protein, located on the apical membranes 
of the thyroid follicular cell.  



13 

Mutations in TPO gene (particularly nonsynonymous cSNPs) can lead to severe defects in 
thyroid hormone production, due to total or partial iodide organification defects. TPO 
mutations are inherited as autosomal recessive traits. Based on the literature, Exons 7–11 
encode the catalytic center of the TPO protein (heme binding region) which is crucial for the 
enzymatic activity, thus mutations in these regions are expected to have major effects on 
TPO activity and result in severe organification defect and hypothyroidism. Nonsense, splice-
site, and frameshift mutations have been also described by several groups (91,96,97). 
If untreated, patients with organification defects show variable degrees of mental retardation, 
very large goiter and hypothyroidism. In some cases with partial defects hypothyroidism 
appears compensated (97). 
 
3.3 DUOX1 and DUOX2 
The generation of H2O2  is a crucial step in thyroid hormonogenesis. DUOX1 and DUOX2 (du 
al ox idase) are glycoproteins with seven putative transmembrane domains. These proteins, 
initially named THOX1 and THOX2 (for thyroid oxidase), map on chromosome 15q15.3, only 
16kb apart from each other and in opposite transcriptional orientation. Their function 
remained unclear until a factor, named DUOXA2, which allows the transition of DUOX2 from 
the endoplasmic reticulum to the Golgi was identified (98).  The coexpression of this factor 
with DUOX2 in HeLa cells is able to reconstitute the H2O2 production in vitro. A similar protein 
(DUOXA1) is necessary for the complete maturation of the DUOX1. Interestingly, both 
DUOXA genes maps in the 16kb that separates the DUOX1 and DUOX2 genes on 
chromosome 15. 
Several mutations in DUOX genes have been reported in patients with congenital 
hypothyroidism showing very variable phenotype (99-101). In order to produce congenital 
permanent hypothyroidism a severe alteration of both alleles of DUOX2 gene is required. 
The presence of some residual activity in one of the alleles may produce a less severe 
phenotype, whereas monoallelic inactivation of the DUOX2 gene is associated with transient 
CH. In addition, the phenotype of monoallelic inactivation seems to be modulated by other 
factors, including environmental conditions (such as iodine insufficiency), lifetime events 
(pregnancy, immediate postnatal life) or alterations in the dual oxidase maturation factor 2 
(DUOXA2) (102,103). 
DUOX2 is a transmembrane protein, which is expressed at the apical membrane of thyroid 
follicular cells. DUOX2 produces hydrogen peroxide (H2O2), which is required for iodination 
of thyroglobulin. After the first description of DUOX2 mutations in patients with CH, at least 
41 patients belonging to 33 families have been reported to date. All previously reported 
DUOX2 mutation-carrying families have followed autosomal recessive inheritance, as is the 
case in other forms of thyroid dyshormonogenesis. Recently, a nonconsanguineous 
Japanese family harbouring biallelic DUOX2 mutations was reported, in which an apparently 
dominant inheritance (defined as pseudo-dominant inheritance) of non-autoimmune 
hypothyroidism presented. Although DUOX2 mutations are usually inherited recessively, the 
relatively high frequency of mutations (1:20000) could lead to pseudo-dominant inheritance 
in Japan (104). 
 
3.4 Pendrin 
In 1896, Vaughan Pendred described a syndrome characterized by congenital 
neurosensorial deafness and goiter (105). The disease is transmitted as autosomal recessive 
disorder. Patients have a moderately enlarged thyroid gland, are usually euthyroid and show 
only a partial discharge of iodide after the administration of thiocyanate or perchlorate. The 
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impaired hearing is not constant, and is due to a cochlear defect that corresponds to the 
Mondini’s type of developmental abnormality of the cochlea. 
In 1997, the PDS gene was cloned and the predicted protein of 780 amino acids (86-kD) was 
called Pendrin (106). The PDS gene maps to human chromosome 7q31, contains 21 exons, 
and it is expressed both in the cochlea and in the thyroid.  Pendrin has been localized in the 
apical membrane of thyroid follicular cell (107,108). In thyroid follicular cells, and in 
transfected oocytes, pendrin is able to transport iodide..Patients with Pendred’s syndrome 
are subclinically hypothyroid with goiter, and show moderate-to-severe sensineural hearing 
impairment. Discharge of radioiodide after administration of sodium perchlorate is moderately 
increased (>20%). The prevalence varies between 1:15,000 and 1:100,000 (109). 
 
A number of mutations in the PDS gene have been described in patients with Pendred 
syndrome. Despite the goiter, individuals are likely to be euthyroid and only rarely present 
congenital hypothyroidism. However, TSH levels are often in the upper limit of the normal 
range, and hypothyroidism of variable severity may eventually develop (109-111).  
Recently, a homozygous missense mutation (p.Leu597Ser) in the SLC26A4 gene was 
unexpectedly identified by exome-sequencing in a patient with hypoplastic thyroid tissue, 
otherwise healthy. In the same paper, by screening other patients with CH, a second case 
with a homozygous missense mutation (p.Gln413Arg) in the SLC26A4 gene was identified in 
a patient presenting severe hearing problems (112). Both mutations were previously 
described as loss-of-function mutations in patients with Pendred syndrome and non-
syndromic EVA (enlarged vestibular aqueduct). The identification of these mutations in 
patients with thyroid dysgenesis suggested a possible role of SLC26A4 alterations in 
modulation of TD supporting the hypothesis of multigenic origin of congenital hypothyroidism 
(78). 
 
3.5 Thyroglobulin 
Thyroglobulin is a homodimer protein synthesized exclusively in the thyroid. The human 
gene is located on chromosome 8q24 and the coding sequence, containing 8307 bp (113), is 
divided into 42 exons (114). Following a signal peptide of 19 amino acids, the polypeptide 
chain is composed of 2750 amino acids containing 66 tyrosine residues. Thyroglobulin is a 
dimer with identical 330-kDa subunits containing 10% carbohydrate residues.  
Patients with disorders of thyroglobulin synthesis are moderately to severely hypothyroid. 
Usually, plasma thyroglobulin concentration is low, especially in relation to the TSH 
concentrations, and do not change after T4 treatment or injection of TSH. Patients classified 
in the category “thyroglobulin synthesis defects” often have other abnormal iodoproteins, 
mainly iodinated plasma albumin, and they excrete iodopeptides of low molecular weight in 
the urine (115). 
Several mutations in the thyroglobulin gene have been reported in patients with CH 
(6,116,117) and in animals including Afrikander cattle (p.R697X) (118), Dutch goats 
(p.Y296X) (119), cog/cog mouse (p.L2263P) (120) and rdw rats (p.G2300R) (121). 
Mutations in the human thyroglobulin gene are associated with congenital goiter and with 
moderate to severe hypothyroidism (6).  
 
3.6 DEHAL1 
In addition to the active transport from the blood due to NIS, iodine in the thyroid follicular 
cells derives also from the deiodination of monoiodotyrosine and diiodotyrosine (122). The 
gene encoding for this enzymatic activity was recently identified and named IYD (or 
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DEHAL1) (123,124). The human gene maps to chromosome 6q24-q25 and  consists of six 
exons encoding a protein of 293 amino acids, a nitroreductase-related enzyme capable of 
deiodinating iodotyrosines. In the past it was suggested that IYD mutations could be 
responsible for congenital hypothyroidism, but only in 2008 were the first IYD mutations 
described in three different consanguineous families (125,126).  All the patients had 
homozygous IYD mutations, and presented goiter and hypothyroidism. The onset of 
symptoms was very variable, either at birth or later in infancy or childhood. A particular 
mutation of IYD, (c.658G>A, p.Ala220Thr), was reported in a heterozygous 14-yr-old boy 
affected by hypothyroidism and goiter, suggesting a possible dominant effect of the mutation. 
Very recently, a new IYD mutation was identified by genome-wide approach in a 20-yr-old 
patient with hypothyroidism and goiter and in his 4.5-yr-old apparently healthy sister of a 
consanguineous Moroccan family (127).  
The wide inter- and intrafamilial variability of the disease severity remains unclear, and can 
derive either form the molecular effects of the mutation (complete absence or partial activity 
of the protein), or due to environmental factors, such as iodine diet content. 
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Table 1. Clinical picture of the forms of congenital hypothyroidism with a genetic origin 
 

Thyroid 
alteration 

Thyroid 
morpholog
y 

Gene Clinical manifestations 

Central 
hypothyroidism 

No goiter 

LHX3 and 
LHX4 

Hypothyroidism, combined pituitary hormone 
deficiency, short stature, metabolic 
disorders, reproductive system deficits, 
nervous system developmental 
abnormalities 

HESX1 

Hypothyroidism, septo-optic dysplasia 
(SOD): hypoplasia of the optic nerves, 
various types of forebrain defects, multiple 
pituitary hormone deficiencies 

TRH and 
TRHR 

Hypothyroidism, short stature 

Thyroid 
dysgenesis 

Athyreosis 

PAX8 No goiter, severe hypthyroidism 

NKX2-5 
No goiter, severe hypothyroidism, no cardiac 
alterations 

FOXE1 
Severe hypothyroidism, Bamforth-Lazarus 
syndrome 

Thyroid 
ectopy 

NKX2-5 
No goiter, hypothyroidism, no cardiac 
alterations 

FOXE1 
Hypothyroidism, Bamforth-Lazarus 
syndrome 

Thyroid 
hypoplasia 

NKX2-1 
No goter, variable hypothyroidism (mild to 
severe), choreoathetosis, pulmonary 
alterations 

TSHR 
Reistance to TSH: no goiter, variable 
hypothyroidism (mild to severe) 
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PAX8 
No goiter, variable hypothyroidism 
(moderate to severe) 

Dysormonogen
esis 

Goiter 

NIS 
Variable hypothyroidism (moderate to 
severe) 

TPO 
Variable hypothyroidism (moderate to 
severe) 

DUOX1 
and 
DUOX2 

Permanent hypothyroidism (mild to severe), 
transient and moderate hypothyroidism 

DUOXA2 Variable hypothyroidism (mild to severe) 
PDS Moderate hypothyroidism and deafness; 

TG 
Variable hypothyroidism (from moderate to 
severe) 

DHEAL1 Variable hypothyroidism (mild to severe)  
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Table 2. Tests used to complete the diagnosis of CH 
 
1. Imaging studies (to determine thyroid location and size)  
 a. Scintigraphy (99mTc or 123I)  
 b. Ultrasonography  
2. Functional studies  
 a. 123I uptake  
 b. Serum thyroglobulin  
3. Suspected inborn errors of thyroid hormone synthesis  
 a. 123I uptake and perchlorate discharge  
 b. Serum/salivary/urine iodine studies  
4. Suspected autoimmune thyroid disease  
 a. Maternal and neonatal serum thyroid-antibodies determination  
5. Suspected iodine exposure (or deficiency)  
 a. Urinary iodine measurement  
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Table 3. Genes involved in thyroid development: chromosomal localization and 
molecular features of the gene product 
 

Gene 
Chromosome 

Features of the gene product Mouse Human 
Titf1/Nkx2-1 12 C1-C3 14q13 Homeodomain transcription factor 
Pax8 2 2q12-14 Paired domain transcription factor 
Foxe1 4 9q22 Forkhead domain transcription factor 
Hhex 19 10 Homeodomain transcription factor 
Nkx2-5 17 5q34 Homeodomain transcription factor 
Tshr 12 14q31 G protein coupled receptor 
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Table 4. Genetic basis of thyroid dysgenesis 
 
Thyroid alteration Genes  Clinical manifestations References 
Athyreosis PAX8 

FOXE1 
NKX2-5 

Hypothyroidism 
Bamforth-Lazarus syndrome 
Athyreosis, no cardiac alterations 

(67)  
(128,129) 
 (61) 

Thyroid Ectopy NKX2-5 
FOXE1 

Ectopy, no cardiac alterations 
Bamforth-Lazarus syndrome 

 (61) 
 (130) 

Thyroid hypoplasia NKX2-1 
TSHR 
PAX8 

Choreoathetosis, hypothyroidism, 
and pulmonary alterations 
Resistance to TSH 
Hypothyroidism 

 (131-148) 
 (7,149) 
 (67-73) 
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Table 5. Gene causing defects in thyroid hormone synthesis 
Gene Protein function Inheritance Human phenotype 
Sodiun-Iodide 
symporter (NIS) 

Transports iodine across 
basal membrane 

AR CH ( moderate to 
severe); 
Euthyroid goiter 

Thyroperoxidase (TPO) Catalyses the oxidation, 
organification, and coupling 
reactions 

AR Goiter and CH due to 
a total iodide 
organification defect 

Dual oxidases  
(DUOX1 and DUOX2) 

H2O2 generation in the follicle AD and AR Permanent hypo 
(from mild to severe);  
Transient and 
moderate hypo 

Dual oxidase 
maturation factor 2 
(DUOXA2) 

Required to express DUOX2 
enzymatic activity 

AR Goiter and CH due to 
partial iodide 
organification defect 

Pendrin (PDS) 
 

Transport iodine across 
apical membrane 
 

AR  Goiter, moderate 
hypothyroidism and 
deafness; 

Thyroglobulin (TG) Support for thyroid hormone 
synthesis 
 

AD and AR Goiter and CH (from 
moderate to severe) 

Iodotyrosine 
deiodinase (DHEAL1) 

Nitroreductase-related 
enzyme capable of 
deiodinating iodotyrosines 

AR Hypothyroidism with 
variable age of 
diagnosis 

 
 




