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ABSTRACT  
 
Diabetes is the most common cause of end-stage 
kidney disease (ESKD) in the US and other developed 
countries. Diabetic nephropathy is a chronic condition 
characterized by a gradual increase in urinary albumin 
excretion, blood pressure levels and cardiovascular 
risk, and declining glomerular filtration rate (GFR), 
which can progress to ESKD. Chronic kidney disease 
(CKD) is common among patients with diabetes, and 
it develops in approximately 50% of the patients with 
type 1 diabetes (T1D) and 30% of those with type 2 
diabetes (T2D).  Patients with diabetes should be 
screened for CKD annually.  Screening should include 
both albuminuria measurements and estimates of 
GFR. The kidney structural changes of diabetic 
nephropathy are unique to this disease, and closely 
correlate with kidney function. Multiple factors are 
associated with CKD in diabetes, and patients with 
diabetes often require multiple therapies aimed at 
prevention of progressive CKD and its associated co-
morbidities and mortality. Management of cardiorenal 
risk factors, including lifestyle modifications (diet, 
exercise, and stop smoking), glucose, blood pressure 
and lipid control, use of agents blocking the renin 
angiotensin aldosterone system and use of SGLT2 

inhibitors in patients with T2D and other agents with 
proven renal or cardiovascular benefit are the 
cornerstones of therapy. 
 
INTRODUCTION AND EPIDEMIOLOGY  
 
Diabetes and its complications are a substantial public 
health problem. In 2021, 10% of the global population 
(about 537 million adults) were living with diabetes (1).  
It is estimated that by 2045 this will rise to 784 million 
(1). Moreover, in a large proportion of patients, 
diabetes is undiagnosed. The estimates for the 
increased number of adults with diabetes vary largely 
according to the geographic region, going from a 
predicted 13% increase in Europe to a predicted 129% 
increase in Africa in the next 25 years (1), including a 
24% increase in North America and Caribbean. It is 
estimated that over one in ten (37.3 million) Americans 
have diabetes, and one in three adult Americans (96 
million Americans) have prediabetes 
(https://www.cdc.gov/diabetes/library/features/diabet
es-stat-report.html).  
 
While in populations of European origin, nearly all 
children and adolescents have type 1 diabetes (T1D), 



 
 
 
 

 
www.EndoText.org 2 
 

in certain populations (e.g., Japan), type 2 diabetes 
(T2D) is more common than T1D in this age group.  
Although the incidence of T1D is also increasing 
around the globe (2, 3), the rapid increase in the 
incidence of T2D among children and adolescents is 
alarming, and it has been linked to increased obesity 
rates and physical inactivity in this group. 
 
Diabetes is associated with increased mortality and 
morbidity, and it is the main cause of incident end-
stage kidney disease (ESKD) in the US and other 
developed countries (4). In the US alone, diabetes is 
responsible for more than 47% of the new ESKD 
cases.  This is in large part due to T2D as most 
patients with diabetes have T2D rather than T1D. 
However, the proportion of individuals starting kidney 
replacement therapy due to diabetes varies 
significantly, ranging from 13% in China to 66% in 
Singapore (4). The likelihood of a patient with diabetes 
developing chronic kidney disease (CKD) is about 
40% for patients with T1D and 30% for those with T2D, 
while the likelihood of a patient with diabetes 
developing ESKD is lower than that, as a large 
proportion of these die prematurely, especially from 
cardiovascular causes, before progressing to ESKD.  
ESKD is devastating to the individual and of enormous 
financial and social consequences.   
  
PATHOPHYSIOLOGY   
 
Diabetic nephropathy is a chronic condition that 
develops over many years. It is characterized by a 
gradual increase in urinary albumin excretion, blood 
pressure levels, and cardiovascular risk, declining 
glomerular filtration rate (GFR) and eventual ESKD. 
Diabetic nephropathy is associated with characteristic 
histopathological features (5, 6). About 25 to 50% of 
individuals with T1D (7, 8) and 45-57% of those with 
T2D (9-12) have progressively declining GFR with no 
or minimal albuminuria. Non-albuminuric renal 
impairment was the predominant phenotype among 

youth with T1D (13) and also among patients with T2D 
(14) in Italy, and a strong predictor of mortality (15). 
T1D patients with non-albuminuric CKD were older (8, 
16) at evaluation and at T1D onset (16), were more 
often female (8, 16), had lower HbA1c (8, 16), total 
cholesterol, LDL-cholesterol, triglyceride levels (8),  
and serum uric acid levels (8, 16), had higher 
estimated GFR (eGFR) (8), were less often 
hypertensive (8, 16) and less likely to have retinopathy 
(8, 16) or to smoke (8, 16) than patients with 
albuminuric CKD (14, 15, 17, 18). HbA1c and blood 
pressure levels were higher and HDL-cholesterol was 
lower among non-albuminuric youth with type 1 
diabetes and CKD as compared to patients with 
normal renal function (13).  T2D patients with non-
albuminuric CKD were also older (19), more often 
female (10, 11, 19), non-smokers (10, 11), Caucasian 
or Asian (10), had shorter diabetes duration (11), 
lower HbA1c (11), total cholesterol (12), LDL-
cholesterol (12), triglyceride (11, 12), and systolic 
blood pressure levels (11, 12), higher eGFR (12, 19), 
and less often had retinopathy (11, 12) or a history of 
cardiovascular disease (11) than T2D patients with 
albuminuric CKD. 
 
CKD in people with diabetes can be the result of 
diabetic nephropathy, other associated conditions 
such as hypertensive renal disease and obesity-
related glomerulopathy, or other renal diseases, such 
as IgA nephropathy, focal segmental 
glomerulosclerosis, acute tubular necrosis, 
membranous nephropathy, among others (13-15).  
The frequency of other renal diseases depends, 
among others, on the prevalence of these conditions 
in the background population (see Excluding Other 
Causes of Kidney Disease below). 
 
SCREENING, DIAGNOSIS, STAGES, AND 
MONITORING   
Diabetic kidney disease, or CKD in diabetes, is 
diagnosed by measurements of kidney function. CKD 
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diagnosis and staging in diabetes follows the same 
criteria as for patients without diabetes. In the clinical 
setting, CKD is classically diagnosed by estimates of 
GFR and measurements of urinary albumin. A 
decreased GFR indicates loss of filtration capacity, 
while an elevated albuminuria indicates that an 
abnormal (elevated) proportion of the albumin filtered 
by the kidneys is being eliminated in the urine, 
indicating changes in barrier selectivity.   
 
Screening 
 
Multiple guidelines recommend annual CKD screening 
of patients with diabetes, starting about 5 years after 
diagnosis in patients with T1D and at diagnosis in 
patients with T2D (20-22). Screening tests should 
include both albuminuria measurements and 
estimates of GFR.  
 
ALBUMINURIA   
 
Albuminuria screening should be undertaken when the 
person is free from acute illness and in reasonably 
stable glucose control, as acute illnesses and acute 
hyperglycemia can transiently increase albuminuria. 
Albuminuria may also increase in the upright posture 
and with exercise, thus measurements are best made 
in an early-morning urine sample; however, a spot 
urine sample is acceptable if there is no alternative. 
Because of the high day-to-day variation in urinary 
albumin excretion, if the first sample is abnormal, 
further samples should be obtained, ideally within 1–3 
months. At least two out of three measurements 
should be abnormal before a diagnosis of albuminuria 
is made.  First-morning void urinary albumin-to-
creatinine ratio (ACR) measurement is the test of 
choice, as it is less cumbersome than timed urine 
collections and has lower day-to-day variability as 
compared to other methods (23). 
 

GFR 
 
In the clinical setting, GFR is estimated using 
equations that include patients’ age, sex, and serum 
creatinine.  Serum creatinine should be measured 
annually, using an accredited assay standardized to 
the recommended isotope dilution mass spectrometry 
reference method (IDMS-traceable). Most laboratories 
currently calculate the eGFR using the serum 
creatinine CKD-EPI equation 
(https://www.mdcalc.com/ckd-epi-equations-
glomerular-filtration-rate-gfr).  Race is now optional on 
this equation, as its inclusion may or may not provide 
more precise estimates of GFR.  The CKD-EPI 
equation estimates measured GFR more accurately 
than previous equations, particularly when GFR levels 
are greater than 60 mL/min/1.73 m2 (24). The CKD-
EPI equation also categorizes risk of mortality and 
ESKD more accurately than the previous MDRD 
equation in a wide range of populations, including 
those with diabetes (25, 26).  In elderly patients and in 
those with obesity, it has been suggested that 
equations based on creatinine lack precision, 
particularly in situations where weight loss is 
significant, as muscle mass usually changes without 
changes in eGFR (27). 
 
Although there are data suggesting that GFR 
estimations based on cystatin C measurements may 
be slightly more precise than those based on serum 
creatinine (28), there is no agreement that cystatin C-
based estimates are superior to creatinine-based GFR 
estimates (29, 30).  Moreover, cystatin-C 
measurements are not interchangeable among 
laboratories, and not routinely available in the majority 
of the centers. The Kidney Disease: Improving Global 
Outcomes (KDIGO) guidelines recommend 
calculating cystatin-based eGFR in adults whose 
creatinine-based eGFR is 45–59 mL/min/1.73 m2 
without other markers of kidney disease (31). Although 
this may help identify individuals with falsely reduced 
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GFR, it is unclear if this approach improves the 
identification of individuals with progressive CKD 
compared with sequential measurements of 
creatinine-based eGFR. Recently, it was proposed the 
use of a CKD-Epi equation including both creatinine 
and cystatin C, and without race, for optimal precision 
when needed (32). 
 
Diagnosis  
 
CKD is diagnosed when two eGFR, at least 3 months 
apart, are <60 mL/min/1.73 m2 and/or 2 out of 3 
albuminuria measurements are abnormal (ACR ≥ 30 

mg/g creatinine).  Diagnosis should be made in the 
absence of an acute serious illness (31).  
 
CKD Stages  
 
The 2020 KDIGO Clinical Practice Guideline for the 
Evaluation and Management of CKD advocates that 
final screening status should indicate both the GFR 
and albuminuria status (Tables 1 and 2) (22). The 
information can then be used as a measure of risk of 
progression to ESKD, and this classifier is also a good 
indicator of cardiovascular morbidity and mortality 
(Figure 1). 

 
Table 1. Glomerular Filtration Rate (GFR) Categories in Chronic Kidney Disease. 
GFR category GFR (mL/min/1.73 m2) Description 
G1 ≥90 Normal or high 
G2 60–89 Mildly decreaseda 

G3a 45–59 Mildly to moderately decreased 
G3b 30–44 Moderately to severely decreased 
G4 15–29 Severely decreased 
G5 <15 Kidney failure 

aRelative to young adult level. 
 

Table 2. Albuminuria Categories in Chronic Kidney Disease. 
Category AER 

(mg/24 h) 
ACR (approximate 
equivalent) 

Description Previous 
terminology 

mg/mmol mg/g 
A1 <30 <3 <30 Normal to mildly 

increased 
Normal 

A2 30–300 3–30 30–300 Moderately 
increaseda 

Microalbuminuria 

A3 >300 >30 >300 Severely 
increasedb 

Proteinuria 

aRelative to young adult level. 
bIncluding nephrotic syndrome. 
ACR, urine albumin:creatinine ratio; AER, albumin excretion rate. 
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Figure 1. Classification and prognosis of chronic kidney disease by estimated glomerular filtration rate 
and albuminuria. Source: Reprinted by permission from Macmillan Publishers Ltd: Kidney International, 
Levin A, Stevens PE (21), copyright 2014.   
 
Monitoring Kidney Disease  
 
Once urinary albumin excretion is abnormal, the ACR 

should be measured every 3 months and eGFR every 
3–6 months, depending on the CKD stage (Figure 2)

 



 
 
 
 

 
www.EndoText.org 6 
 

 
Figure 2. Risk of progression by intensity of coloring (green, yellow, orange, red, deep red). The numbers 
in the boxes are a guide to the frequency of monitoring (number of times per year).  These are general 
parameters only based on expert opinion and must take into account underlying comorbid conditions 
and disease state, as well as the likelihood of impacting a change in management for any individual 
patient. CKD, chronic kidney disease; GFR, glomerular filtration rate.  Source: Reprinted by permission 
from American Diabetes (252). 
 
EXCLUDING OTHER TREATABLE CAUSES OF 
KIDNEY DISEASE   
 
Excluding other causes of kidney disease is especially 
important among patients who do not follow the 
classical course of diabetic nephropathy disease 
progression.  Diabetic nephropathy is a chronic 
disease, thus if acute decline in GFR is present, other 
causes should be sought.  Other causes of kidney 
dysfunction should also be considered if proteinuria is 
present before 5 years of T1D duration, in the 

presence of active urinary sediment (acanthocytes, 
cellular casts, etc.), and if there are signs or symptoms 
of other systemic diseases. Retinopathy may or may 
not be present in patients with T2D and diabetic 
nephropathy. The frequency of other kidney diseases 
will also depend on the frequency of specific diseases 
(IgA nephropathy, for example) in the background 
(non-diabetic) population. Urinalysis, ultrasound of the 
kidney tract, measurement of autoantibodies and 
immunoglobulins, and kidney biopsy may help clarify 
the diagnosis. Studies evaluating the frequency of 
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other kidney diseases in patients with diabetes 
indicate that the frequency of other diseases varies 
depending on the policy and on the reasons for a 
kidney biopsy (33-35).  When kidney biopsies are 
done for research purposes, the frequency of other 
kidney disease is extremely low among patients with 
T1D without CKD (36, 37) and in Pima Indians with 
T2D (38).   
 
STRUCTURAL KIDNEY LESIONS IN DIABETES   
 
In patients with T1D, glomerular lesions can be 
demonstrated after diabetes has been present for a 
few years, while in T2D they can be present at 
diagnosis, probably reflecting delayed diagnosis. The 
changes in kidney structure caused by diabetes are 
specific, creating a pattern not seen in any other 
kidney disease.  The severity of these diabetic lesions 
correlates with functional abnormalities (decreased 
GFR and albuminuria) (5, 6, 36) and it is also related 
to diabetes duration, glycemic control, and genetic 
factors. These later relationships are not precise and 
are in line with the marked variability in diabetic 
nephropathy susceptibility among patients with 
diabetes (see Relationships between Kidney Structure 
and Function below).  

 
Light Microscopy 
 
Renal hypertrophy, the earliest renal structural change 
in T1D, is not reflected in any specific light microscopy 
findings. In some patients, glomerular structure may 
remain normal or near normal for many decades, while 
others develop progressive disease. Early changes 
often include arteriolar hyalinosis, thickening of the 
glomerular basement membrane (GBM), and diffuse 
mesangial expansion (5, 6, 36). In about 40-50% of 
patients developing proteinuria, areas of extreme 
mesangial expansion called Kimmelstiel-Wilson 
nodules, or nodular mesangial expansion can be 
observed. Although Kimmelstiel-Wilson nodules are 
diagnostic of diabetic nephropathy, they are not 
necessary for severe renal dysfunction to develop. 
Global glomerulosclerosis can also be observed, 
especially with progressive disease (Figure 3). 
Atubular glomeruli and glomerulotubular junction 
abnormalities can also be present in proteinuric 
patients with T1D (39, 40). Tubular atrophy and 
interstitial fibrosis, common to most chronic renal 
disorders, can be present at later stages. 
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Figure 3.  Light microscopy photographs of glomeruli in sequential kidney biopsies performed at 
baseline and after 5 and 10 years of follow-up in a long-standing normoalbuminuric type 1 diabetic 
patient with progressive mesangial expansion and renal function deterioration. A. Note the diffuse and 
nodular mesangial expansion and arteriolar hyalinosis in this glomerulus from a patient who was 
normotensive and normoalbuminuric at the time of this baseline biopsy, 21 years after diabetes onset 
[Periodic Acid Schiff (PAS) X 400]. B. 5-year follow-up biopsy showing worsening of the diffuse and 
nodular mesangial expansion and arteriolar hyalinosis in this now microalbuminuric patient with 
declining GFR (PAS X 400). C. 10-year follow-up biopsy showing more advanced diabetic 
glomerulopathy in this now proteinuric patient with further reduced GFR.  Note also the multiple small 
glomerular probably efferent arterioles in the hilar region of this glomerulus (PAS X 400), and in the 
glomerulus in Fig. 3A above.  Source: Reprinted with permission from National Kidney Foundation. 
Pathogenesis and Pathophysiology of Diabetic Nephropathy. Caramori ML, Mauer M.  Primer on Kidney 
Diseases, 5th Edition, Greenberg A, et al., Copyright 2009 (253). 
 
Immunofluorescence 
 
Immunofluorescence findings include linear GBM and 
tubular basement membrane, as well as Bowman’s 
capsule, increased staining IgG (mainly IgG4), and 
albumin staining.  The intensity of staining is not 
related to the severity of the underlying lesions.   
 
 
 
 

Electron Microscopy 
 
Using morphometric techniques, the first measurable 
diabetic nephropathy change is thickening of the 
GBM, which can be detected as early as 1 and 1/2 to 
2 and 1/2 years after onset of type 1 diabetes (6, 41-
44) (Figure 4).  Tubular basement membrane 
thickening can also be detected, and it parallels GBM 
thickening (45).  Increase in the relative area of the 
mesangium becomes measurable by 4-5 years (6, 36, 
42). Immunohistochemical studies indicate that these 
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changes in mesangium, GBM, and tubular basement 
membrane represent expansion of the intrinsic 
extracellular matrix components at these sites, likely 
including types IV and VI collagen, laminin, and 
fibronectin. Foot processes (podocyte) changes can 
be observed by electron microscopy, and the severity 
of these abnormalities has been associated with 

kidney function (46, 47). Changes in fenestrated 
endothelium have also been described in diabetes 
(47).  Interstitial expansion is common to many kidney 
diseases. Early on in diabetes, interstitial expansion is 
associated with cellular alterations, while later in the 
disease process, when GFR is already reduced, there 
is increase in fibrillar collagen in the interstitium (48).   

 

 
Figure 4.  Electron microscopy photographs of mesangial area in normal control (A) and in type 1 
diabetic patient (B) [X 3,900].  Note the increase in mesangial matrix and cell content, the glomerular 
basement membrane thickening and the decrease in the capillary luminal space in the diabetic patient 
(B). Source: Reprinted with permission from National Kidney Foundation. Pathogenesis and 
Pathophysiology of Diabetic Nephropathy. Caramori ML, Mauer M.  Primer on Kidney Diseases, 5th 
Edition, Greenberg A, et al., Copyright 2009 (253). 
 
While about 30% of patients with T2D and 
microalbuminuria who have had a kidney biopsy 
performed for research rather than clinical reasons 
had the classical diabetic nephropathy lesions 

described above, 41% have disproportionally severe 
interstitial fibrosis and tubular atrophy while the 
remaining 29% had minimal lesions with normal or 
near normal glomerular structure (49) (Figure 5). 
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Figure 5.  Light microscopy photographs of glomeruli of patients with type 1 (A) and type 2 diabetes (B-
D). A. Diffuse and nodular mesangial expansion and arteriolar hyalinosis in this glomerulus from a 
microalbuminuric type 1 diabetic patient [Periodic Acid Schiff (PAS) X 400]. B. Normal or near normal 
renal structure in this glomerulus from a microalbuminuric type 2 diabetic patient (PAS X 400).  This 
photograph was kindly provided by Dr. Paola Fioretto. C. Changes "typical" of diabetic nephropathology 
(glomerular, tubulo-interstitial and arteriolar changes occurring in parallel) in this renal biopsy from a 
microalbuminuric type 2 diabetic patient (PAS X 400). D. “Atypical" patterns of injury, with absent or only 
mild diabetic glomerular changes associated with disproportionately severe tubulo-interstitial changes.  
Note also a glomerulus undergoing glomerular sclerosis (PAS X 400). Source: Reprinted with permission 
from National Kidney Foundation. Pathogenesis and Pathophysiology of Diabetic Nephropathy. 
Caramori ML, Mauer M.  Primer on Kidney Diseases, 5th Edition, Greenberg A, et al., Copyright 2009 
(253).   
 
RELATIONSHIPS BETWEEN KIDNEY 
STRUCTURE AND FUNCTION  
 

In type 1 diabetes, the relationships between kidney 
structure and function are strong (5, 50, 51). 
Mesangial fractional volume and GBM width are 
inversely correlated with GFR, and directly correlated 
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with albuminuria (5, 51) and blood pressure (51, 52).  
Importantly, GBM width is a strong independent 
predictor of progression to clinically advanced kidney 
disease among normoalbuminuric patients with T1D 
(53). Among these patients, global glomerular 
sclerosis (53, 54) and interstitial expansion (53, 55) 
are present and are additional independent predictors 
of GFR loss (53).  Although increases in podocyte foot 
process width also correlates with albuminuria 
increases in T1D (56-58), our studies in patients with 
T1D who had no clinical manifestations of CKD at time 
of their research kidney biopsies indicate that 
podocyte parameters did not predict long-term 
progression to clinical CKD (59). 
 
RISK FACTORS  
 
Many factors are associated with CKD in diabetes. 
Associations may be with both albuminuria and GFR 
or with one measurement only. Factors that influence 
the initial development of kidney disease may not be 
the same as factors influencing progression. Duration 
of diabetes is one of the strongest risk factors for 
diabetic nephropathy, particularly in T1D. 
 
Glucose Control  
 
Glucose control is an important risk factor for the 
development and progression of diabetic 
nephropathy. Data from multiple observational and 
intervention studies in both T1D and T2D support this 
view (60). There is a strong positive association 
between HbA1c and incident CKD (eGFR <60 
mL/min/1.73 m2), independent of other risk factors, 
and present even in the absence of albuminuria (61). 
Greater variability in HbA1c is independently 
associated with albuminuria and diabetic nephropathy 
(62-64), and variability in blood glucose levels as 
detected by continues glucose monitoring (CGM) has 
also been associated with complications (65, 66). 

 
Blood Pressure  
 
Blood pressure is critical in the development and 
progression of diabetic kidney disease. The excess 
prevalence of hypertension in T1D is confined to those 
with nephropathy (67). In young people with 
moderately elevated albuminuria, changes in blood 
pressure are subtle, perhaps manifesting only as 
reduced nocturnal diastolic blood pressure dipping 
(68). Once severely increased albuminuria is present, 
frank hypertension is present in 80% of patients, and 
is almost universal in ESKD. Variability in systolic and 
diastolic blood pressure independently predicts the 
development of albuminuria in T1D (62). 
 
In T2D, the link between hypertension and kidney 
disease is less striking, perhaps due to the fact that 
hypertension is very common among these patients, 
present in 70-80% of the patients with T2D at the time 
of diagnosis. Almost all patients with moderately 
elevated albuminuria or worse have hypertension. In 
people with diabetic nephropathy, variability in systolic 
blood pressure is independently associated with the 
development of ESKD in patients with T1D (62) and 
T2D (69). 
 
Other Metabolic Factors 
 
Blood lipids, including triglycerides (70, 71), are 
associated with the development and progression of 
nephropathy, although the lipid phenotype alters as 
nephropathy progresses (72-74). Current smoking 
predicts the development of albuminuria (75). Insulin 
resistance increases the risk of albuminuria and rapid 
eGFR decline in patients with T1D (76) and of 
albuminuria in those with T2D (77). Individuals with 
T1D or T2D and nephropathy are more likely to have 
the metabolic syndrome (78, 79).  Uric acid predicts 
the development of severely increased albuminuria 
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(80) and decline in GFR as well as cardiovascular 
events (81). Probably this association is not causal as 
a reduction in uric acid by treatment with allopurinol 
could not slow GFR decline in patients with T1D (17).  
 
Hyperfiltration 
 
Hyperfiltration is common at onset of T1D and it is also 
present in some individuals at T2D diagnosis. GFR 
often returns to normal as glucose is controlled, but it 
may remain elevated in certain individuals. Whether 
individuals with persistent hyperfiltration are at 
increased diabetic nephropathy risk remains 
controversial (82-85). Sodium glucose cotransporter 2 
inhibitors (SGLT2i) were introduced to lower glucose 
in T2D and have been demonstrated to slow 
progression of kidney disease (see below). A marked 
effect on hyperfiltration in T1D with SGLT2i was 
suggested to reflect lowering of intraglomerular 
hypertension and to support lowering of hyperfiltration 
as an important kidney protective measure (86). On 
the other hand, the results in T2D were less clear (87). 
 
Genetic Factors 
 
Genetic factors influence susceptibility to diabetic 
nephropathy (85, 86). If one sibling with T1D has 
nephropathy, the risk for the second sibling is 
increased 4–8 fold compared with siblings where 
neither have nephropathy (88). The clustering of 
conventional cardiovascular risk factors and 
cardiovascular disease (CVD) in people with diabetic 
nephropathy also occurs in their parents (89, 90). This 
suggests that the genetic susceptibility to nephropathy 
also influences the associated CVD. Research kidney 
biopsies in siblings with T1D also demonstrated 
heritability in the severity and patterns of renal lesions 
(91). Sodium-hydrogen antiport activity (92) and 
mRNA expression of catalase, an antioxidant enzyme 
associated with diabetic nephropathy risk, (93) were 

also found to be, at least in part, genetically  regulated 
in siblings concordant for T1D.  It is likely multiple 
genes are associated with DKD, and they can be 
either protective or deleterious. Moreover, different 
loci may influence albuminuria and GFR (94). 
Epigenetic modifications may also be important (95). 
 
Ethnicity  
 
In the Unites States, the prevalence of early CKD 
(defined as moderately elevated albuminuria or 
greater and eGFR<60 mL/min/1.73 m2) is higher in 
Latino and African American individuals than white 
people (96).  A similar pattern is seen in Europe, where 
United Kingdom Afro-Caribbean and South Asian 
individuals more often have albuminuria and 
advanced CKD (stages 4-5) than white European 
individuals (97, 98). Albuminuria and CKD are also 
more common in Pima Indians (99) and in Māoris and 
Pacific Islanders (100, 101) than white Europeans. 
Reasons for this varying prevalence may include 
differing genetic influences and altered response to, or 
poorer access to, treatments. 
 
Development of T2D in Youth 
 
Individuals who develop T2D in youth have a high 
prevalence of hypertension and moderately elevated 
albuminuria (102). ESKD and death are particularly 
common in young people from ethnic minorities (103-
105). However, in some of these populations, there is 
a high prevalence of non-diabetic kidney disease 
(106). 
 
Albuminuria and GFR 
 
Baseline albuminuria and eGFR independently 
influence the development and rate of progression of 
CKD (75, 107). Baseline albuminuria strongly predicts 



 
 
 
 

 
www.EndoText.org 13 
 

ESKD (108). Higher levels of albuminuria in the 
normoalbuminuric range (109, 110) and lower eGFR 
(111) predict a faster decline in eGFR. Conversely a 
short-term reduction in albuminuria with intervention 
suggest reduced progression of kidney and 
cardiovascular complications (112, 113). 
 
Other Risk Factors 
 
Other risk factors for nephropathy include pre-
eclampsia (114), inflammatory markers (115, 116), 
cytokines and growth factors (117), periodontitis (118), 
and serum bilirubin levels (119, 120). Obstructive 
sleep apnea (121) and non-alcoholic fatty liver disease 
are both independently associated with diabetic 

nephropathy (122, 123). Circulating levels of tumor 
necrosis factor-α receptor 1 are independently 
associated with the cumulative risk of ESKD in T1D 
and T2D (124-126). 
  
CO-MORBIDITIES AND ASSOCIATED 
COMPLICATIONS  
 
The prognosis for people with diabetes and CKD is 
much poorer than for those without CKD. Both 
albuminuria and eGFR <60 mL/min/1.73 m2 (Figure 6 
and 7) contribute independently and synergistically to 
the increased all-cause and cardiovascular risk (127-
131). 
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Figure 6. Declining glomerular filtration rate is associated with all-cause and cardiovascular mortality in 
individuals with and without diabetes. (A, B) All-cause mortality. (C, D) Cardiovascular mortality. Panels 
A and C use one reference point (diamond, eGFR of 95 mL/min per 1.73 m2 in the no diabetes group) for 
both individuals with and without diabetes to show the main effect of diabetes on risk. Panels B and D 
use separate references (diamonds) in the diabetes and no diabetes groups to assess interaction with 
diabetes specifically. Hazard ratios were adjusted for age, sex, race, smoking, history of cardiovascular 
disease, serum total cholesterol concentration, body-mass index, and albuminuria (log albumin-to-
creatinine ratio, log protein-to-creatinine, or categorical dipstick proteinuria [negative, trace, 1+, ≥2+]). 
Blue and red circles denote p<0.05 as compared with the reference (diamond). Significant interaction 
between diabetes and eGFR is shown by x signs. eGFR=estimated glomerular filtration rate. Reproduced 
from Fox et al. 2012 (254), Copyright 2012, with permission from Elsevier. 
 

 
Figure 7. Increasing albuminuria is associated with all-cause and cardiovascular mortality in individuals 
with and without diabetes. (A, B) All-cause mortality. (C, D) Cardiovascular mortality. Panels A and C use 
one reference point (diamond, ACR of 5 mg/g in the no diabetes group), for both individuals with and 
without hypertension to show the main effect of diabetes on risk. Panels B and D use separate references 
(diamonds) in the diabetes and no diabetes groups to assess interaction with diabetes specifically. 
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Hazard ratios were adjusted for age, sex, race, smoking, history of cardiovascular disease, serum total 
cholesterol concentration, body-mass index, and estimated glomerular filtration rate. Blue and red 
circles denote p<0.05 as compared with the reference (diamond). Significant interaction between 
diabetes and ACR is shown by x signs. ACR=albumin-to-creatinine ratio. Reproduced from Fox et al. 
2012 (254), Copyright 2012, with permission from Elsevier. 
 
Association of Diabetic Kidney Disease with 
Cardiovascular Disease  
 
TYPE 1 DIABETES 
 
In T1D, the relative risk of premature mortality is 2–3-
fold higher in moderately elevated albuminuria, 9-fold 
in severely increased albuminuria, and 18-fold in 
ESKD compared with the non-diabetic population 
(132). Individuals with T1D and normoalbuminuria do 
not have a higher risk of premature death (132, 133). 
CVD is 1.2-fold more common in people with 
moderately increased albuminuria (134) and 10-fold 
higher in those with severely increased albuminuria 
compared with those with normoalbuminuria (135). 
The cumulative incidence of CVD by the age of 40 
years is 43% in people with T1D and severely 
increased albuminuria, compared with 7% in 
individuals with normoalbuminuria, with a 10-fold risk 
of coronary heart disease and stroke. In ESKD, the 
risk of CVD is even higher. Median survival on kidney 
replacement therapy is 3.84 years (136). 
 
TYPE 2 DIABETES 
 
In T2D, CVD risk is increased 2–4-fold with 
moderately increased albuminuria (137) and 9-fold in 
severely increased albuminuria (138). Once serum 
creatinine is outside the normal range, cardiovascular 
risk increases exponentially (139). Median survival 
from initiation of kidney replacement therapy is 2.16 
years (136). 

 
 

Microvascular Complications 
 
Patients with diabetic nephropathy often have other 
microvascular complications. Significant retinopathy is 
almost always present in people with T1D and 
moderately elevated albuminuria or more. Progression 
of retinopathy and development of nephropathy each 
increases the risk for the other, supporting the notion 
of a common etiology (140). In people with T2D, the 
relationship is less strong (141). Those with classical 
nephropathy and progressively increasing albuminuria 
usually have significant retinopathy, and indeed 
moderately elevated albuminuria predicts the 
development and progression of retinopathy in T2D 
(142-144). In those with non-classical disease, 
retinopathy may be absent. 
 
Peripheral neuropathy is also more common in 
diabetic nephropathy and associated with both 
albuminuria and declining GFR (144). Autonomic 
neuropathy, diagnosed by loss of nocturnal blood 
pressure dipping, occurs frequently (145, 146) and 
predicts kidney function decline (147). 
  
PREVENTION AND TREATMENT    
 
Although multiple strategies are now available to slow 
diabetic nephropathy progression, prevention of 
kidney disease remains crucial. The risk of developing 
diabetic nephropathy is particularly reduced by 
achievement and maintenance of good blood glucose 
and blood pressure control (22). 
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A guideline on management of diabetes in CKD from 
Kidney Disease Improving Global Outcomes (KDIGO) 
emphasize management of cardiorenal risk factors 
lifestyle factors (diet, exercise, and stop smoking), 

glucose, blood pressure, and lipids including blockade 
of the renin angiotensin aldosterone system and in 
T2D SGLT2 inhibition (Figure 8) (148). 

 

 
Figure 8. Putative promoters of progression of diabetic nephropathy. Source: Reproduced from Fox et 
al. 2012 (254), Copyright 2012, with permission from Elsevier. 
 
Glucose Control  
 
GLUCOSE CONTROL IN T1D 
 
Among the participants in the DCCT who initially had 
normoalbuminuria, the relative risk reduction for 
development of moderately elevated albuminuria was 
39% and for grade A3 (macroalbuminuria or 
proteinuria) 54% in those allocated to the intensively 
treated group compared with those in the 
conventionally managed group over the 6.5-year study 
(149). Mean achieved HbA1c was 7.0% and 9.1%, 
respectively. There is no HbA1c threshold below 
which risk is not reduced (150). 

 

In the open follow-up of the DCCT cohort, the EDIC 
study, HbA1c in the previously intensive and 
conventional treatment groups became similar, 
~8.0%. Despite this, the incidence of moderately and 
severely increased albuminuria grades (151), eGFR 
<60 mL/min/1.73 m2, and ESKD (151) were 
significantly reduced in those who had previously 
received intensive management, as summarized in 
Table 3. These results are supported by an 
observational study of individuals with T1D and CKD 
stages 1–3 with severely increased albuminuria at 
baseline (152). The cumulative risk of ESKD after 15 
years was significantly lower in those whose HbA1c 
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improved compared with those whose HbA1c 
remained stable or deteriorated. Hence improving 
glucose control significantly reduces the risk of 
development and progression of all stages of diabetic 
nephropathy in T1D. The beneficial effects extend far 
beyond the actual period of good glucose control, a 
phenomenon termed “metabolic memory.” In highly 
selected patients undergoing serial kidney biopsies 
after successful pancreas transplantation, kidney 
structural changes regressed after 10 but not 5 years 
(153). Thus, prolonged periods of “normoglycemia” 

are necessary to reverse kidney structural changes. It 
has been suggested that not only mean glycemic level 
as reflected by HbA1c, but also time in target glycemic 
range is important for the development of renal 
complications (154). In a small, study insulin pump 
therapy was associated with less variability compared 
to multiple daily insulin injections, and the reduced 
variability and improved time in range contributed to 
decline in albuminuria in T1D with increased 
albuminuria, beyond change in HbA1c (65). 

 
Table 3. Kidney Benefits of Intensive Insulin Therapy Demonstrated by the 
Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions 
and Complications Cohort. 
Parameter Duration of 

observation (years) 
Conventional 
insulin therapy 

Intensive insulin 
therapy 

Moderately elevated 
albuminuria 

8 15.8% 6.8% 

Severely increased 
albuminuria 

8 9.4% 1.4% 

eGFR <60 
mL/min/1.73 m2 

22 46 (n) 24 (n) 

ESKD 22 16 (n) 8 (n) 
n, Number. 
eGFR estimated glomerular filtration rate; ESKD, end-stage kidney disease. 
Source: Data from (142, 145). 
 
GLUCOSE CONTROL IN T2D 
 
In the UKPDS, although the mean achieved HbA1c in 
the intensively managed group was 7.0% compared 
with 7.9% in the less strictly managed group, there 
was a 30% reduction in the relative risk of developing 
moderately or severely increased albuminuria after 9–
12 years (155). No threshold of HbA1c and risk was 
observed, suggesting that the lower the HbA1c, the 
lower is the risk of nephropathy (156). In the open 
follow-up of the UKPDS cohort, HbA1c was similar in 
the previously intensively and conventionally 

managed groups after 1 year (157). Despite this, 
microvascular risk remained lower, confirming the 
“metabolic memory” seen in the DCCT/EDIC study. In 
the ADVANCE study, the HbA1c achieved in the 
intensively managed group was 6.5%, compared with 
7.3% in the standard care group (158). In the intensive 
group there was a 9% relative risk reduction in new-
onset moderately elevated albuminuria, a 30% 
reduction in the development of severely increased 
albuminuria, and a 65% reduction in ESKD over 5 
years (159). The ACCORD study also demonstrated 
significant reductions in new onset moderately and 
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severely increased albuminuria and of ESKD with 
intensive glucose management (160). Progression of 
albuminuria was reduced and regression increased. 
However, in those with CKD at baseline, the risk of all-
cause and cardiovascular mortality was significantly 
increased in the intensive glucose management group 
(161). Hence the kidney benefits of extremely tight 
glucose control were outweighed by the excess 
mortality. A less intensive HbA1c target in individuals 
with T2D and duration >10 years seems sensible. 
 
GLUCOSE CONTROL IN ESKD 
 
Most (162-164) but not all (165) observational studies 
have demonstrated increasing all-cause and 
cardiovascular mortality with increasing HbA1c in 
people with diabetes on kidney replacement therapy. 
Some also showed a U-shaped relationship, with 
mortality increasing at low HbA1c levels (162, 164, 
166). However, there have been no studies that 
demonstrated improved survival in patients with ESKD 
with improving glucose control.  Among patients 
undergoing kidney transplant, improved allograft 
survival was demonstrated in patients with more strict 
blood glucose control (167). 
 

Glucose Lowering Medications and Organ 
Protection 
 
SGLT2 INHIBITORS  
 
For over twenty years renin angiotensin system (RAS) 
blockade was the only recommended treatment for 
diabetic nephropathy. After many unsuccessful 
attempts in developing new therapies the first success 
has been with SGLT2 inhibitors. When initially tested 
for safety in cardiovascular outcome trials, 
empagliflozin showed not only a benefit on the primary 
endpoint major adverse cardiovascular events (168) 
but also a significant benefit on hospitalization for 

heart failure was also observed. In addition, a 
reduction in incident or worsening nephropathy 
occurred (HR 0.61; 95% CI, 0.53 to 0.70) (169). These 
findings were confirmed in cardiovascular outcome 
trials with canagliflozin, dapagliflozin and ertugliflozin 
(170). Importantly the benefits on kidney outcomes 
were independent of baseline eGFR from <45 
ml/min/1.73m2 to >90 ml/min/1.73m2 and also 
independent of urinary albumin creatinine ratio 
<30mg/g, 30-300 or >300 mg/g (171).  The first study 
with hard renal endpoints (end stage kidney disease, 
significant loss of renal function) as primary endpoint 
using a SGLT2 inhibitor was CREDENCE showing a 
major benefit on renal outcome, but also on heart 
failure and major adverse cardiovascular events in 
people with type 2 diabetes, urine albumin creatinine 
ratio >300 mg/g and eGFR 30-90 ml/min/1.73m2 (172). 
The primary outcome was a composite of end stage 
kidney disease, a doubling of the serum creatinine 
level, or death from renal or cardiovascular causes. 
The study was stopped early showing a benefit of 
canagliflozin with a HR 0.70; (95% CI, 0.59 to 0.82). 
These data were confirmed and extended by the 
DAPA-CKD study including subjects with chronic 
kidney disease with or without diabetes (173). EMPA-
KIDNEY included participants with CKD with and 
without T2D as DAPA-CKD, but in addition to 
participants with albuminuria, EMPA-KIDNEY also 
included a group of study participants with impaired 
eGFR (20-45 mL/min/1.73m2) and normal albumin 
excretion (174). This study was recently stopped for 
positive findings which remain to be disclosed. 
Whereas SGLT2i’s were introduced to treat 
hyperglycemia, they also provide organ protection in 
diabetes with eGFR <45 mL/min/1.73m2 where there 
is no effect on blood glucose. Dapagliflozin and 
empagliflozin were also able to reduce heart failure 
hospitalization in people with heart failure with 
reduced ejection fraction (175), and empagliflozin  was 
the first agent reported to reduce hospitalization for 
heart failure in people with heart failure with preserved 
ejection fraction, with similar benefit in those with and 
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without diabetes (86, 176). In the DAPA-CKD study it 
was also demonstrated that dapagliflozin was able to 
reduce progression of CKD, hospitalization for heart 

failure and mortality in people with CKD with type 2 
diabetes, but just as well in people with non-diabetic 
CKD (173) (Table 4). 

 
Table 4. Summary of SGLT2 Inhibitors on Renal Disease 
 Number Mean Follow-up 

(years) 
Hazard Ratio* (95% 
CI) 

P value 

EMPA-REG 
Empagliflozin 

7,020 3.1 0.54 
(0.40-0.75 

<0.001 

CANVAS 
Canagliflozin 

10,142 3.6 0.60 
(0.47-0.77) 

-- 

DECLARE-TIMI 58 
Dapagliflozin 

17,160 4.2 0.53 
(0.43-0.66) 

<0.001 

VERTIS-CV 
Ertugliflozin 

8,246 3.0 0.81 
(0.63-1.04) 

0.08 

CREDENCE 
Canagliflozin 

4,401 2.6 0.66 
(0.53-0.81) 

<0.01 

DAPA-HF 
Dapagliflozin 

4,774 1.5 0.71 
(0.44-1.16) 

0.17 

EMPEROR 
Empagliflozin 

3,730 1.3 0.52 
(0.32-0.77) 

0.026 

DAPA-CKD 
Dapagliflozin 

4304 2.4 0.56 
(0.45-0.68) 

<0.001 

*Renal composite outcomes  Adapted from (177) 
 
The explanation for the renal and cardiac benefits is 
not clear but multiple mechanisms have been 
suggested and probably glucose reduction is not very 
important. The inhibition of SGLT2 in the proximal 
tubule leads to blockade of glucose and sodium 
reabsorption, thus increasing distal tubular sodium 
delivery, which via macula densa and tubulo-
glomerular feedback reduces intraglomerular 
pressure through constriction of the afferent 
glomerular arterioles. This is reflected clinically in the 
small dip in GFR when starting SGLT2i treatment and 
this mechanism has been suggested as the key 
mechanism behind the kidney protective effects. 
Reduction in blood pressure, body weight, increased 
uric acid excretion, and change in fuel metabolites 
have also been suggested to contribute (169). 

Blocking uptake of sodium in the proximal tubule has 
also been suggested to reduce oxygen consumption, 
thereby reducing hypoxia, leading to less inflammation 
and fibrosis in experimental studies and acute studies 
in humans were able to demonstrate improved renal 
oxygen availability (178). 
 
In T2D with CKD metformin is recommended as first 
glucose lowering agent after lifestyle intervention, as 
in others with T2D, and then SGLT2 inhibitors are 
recommended independent of HbA1c for their organ 
protective effect, particularly in patients with 
albuminuria or heart failure (179, 180)(181) (Figure 9). 
In Europe the SGLT inhibitors sotagliflozin and 
dapagliflozin were initially approved for treatment of 
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T1D, however the risk for normoglycemic diabetic 
ketoacidosis is increased compared to T2D and there 
are no studies of the kidney benefit in diabetic 
nephropathy in T1D. Currently, sotagliflozin is not 
marketed and the indication for dapagliflozin for 

treatment of T1D was stopped, and additional studies 
are needed to determine whether these agents can be 
safely used in patients with T1D to prevent CKD and 
cardiovascular progression. 

 

 
Figure 9. Patients with diabetes and CKD should be treated with a comprehensive strategy to reduce 
risks of kidney disease progression and cardiovascular disease Source: Reproduced with permission 
from Kidney Disease: Improving Global Outcomes (KDIGO) (172).  
 
GLUCAGON LIKE PEPTIDE 1 RECEPTOR 
AGONSISTS  
 

For some long-acting glucagon-like peptide-1 receptor 
agonists (GLP1-RA) (liraglutide, semaglutide, and 
dulaglutide) the cardiovascular outcome trials in type 
2 diabetes demonstrated cardiovascular benefits, in 
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subjects with already existing atherosclerotic CVD 
(180). The benefit on CVD outcomes was also 
demonstrated in CKD populations and thus GLP1-RA 
are recommended in the treatment of T2D with 
diabetic nephropathy when metformin and SGLT2 
inhibition cannot control glucose (Figure 10). Studies 
also demonstrated positive kidney effects as 
secondary endpoints, mostly driven by reductions in 
albuminuria, but also some potential effects on eGFR. 

A kidney benefit was supported by the AWARD 7 
study with dulaglutide in T2D with CKD although the 
primary endpoint was glycemic control (182). 
Semaglutide is being tested in the FLOW study 
(ClinicalTrials.gov NCT03819153) to determine 
whether it will confer benefits on hard renal and 
cardiovascular outcomes among participants with T2D 
when compared to placebo. 

 

 
Figure 10. Antihyperglycemic Therapies in Patients with Diabetes and CKD Source KDIGO guideline on 
management of diabetes in CKD Source: Reproduced with permission from Kidney Disease: Improving 
Global Outcomes (KDIGO) (172). 
 
Blood Pressure Control 
 
Rigorous blood pressure control improves the 
prognosis in diabetic nephropathy dramatically. 
Conservative estimates suggest that good blood 
pressure management doubles the time taken from 
first appearance of severely increased albuminuria to 
need for kidney replacement therapy, from a mean of 
9 to 18 years. Improved management in moderately 

elevated albuminuria may prevent progression and 
promote regression normoalbuminuria. Blood 
pressure and blood glucose lowering effects are 
independent of one another but have synergistic 
effects (183, 184). In contrast to glucose “metabolic 
memory,” the benefits of blood pressure reduction are 
lost rapidly when control deteriorates (157). 
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TYPE 1 DIABETES 
 
RAS inhibitors do not prevent moderately elevated 
albuminuria in normotensive people with T1D (37, 
185, 186). There is also no evidence that control of 
hypertension in T1D and normoalbuminuria prevents 
progression of albuminuria and decline in kidney 
function. However, it seems highly likely. 
 
Once moderately or severely increased albuminuria is 
present, inhibition of the RAS is the backbone of 
therapy, because it reduces intraglomerular pressure. 
A meta-analysis summarized the effects of ACE 
inhibitors in people with T1D and moderately elevated 
albuminuria (187). The odds ratio for progression to 
severely increased albuminuria was reduced by ACE 
inhibition to 0.35, and for regression to 
normoalbuminuria it increased to 3.07, compared with 
placebo treatment. After 2 years of treatment, the 
mean reduction in albumin excretion was 50.5% with 
ACE inhibition and it was greatest in those with highest 
baseline levels. However, the response to treatment 
plateaued with time, suggesting that treatment delays, 
rather than prevents, progression. 
 
Addition of an ACE inhibitor to non-ACE inhibitor 
antihypertensive therapy reduced the risk of a 
doubling of the serum creatinine by 48% and the 
composite end-point of death, need for dialysis or 
kidney transplantation, by 50%, in people with T1D 
and with severely increased albuminuria and 
hypertension (188). Both benefits were independent of 
blood pressure. In short-term studies, the effects of 
angiotensin receptor blockers (ARBs) on blood 
pressure and urinary albumin excretion were similar to 
those of ACE inhibitors in T1D and severely increased 
albuminuria (189). 
 
For a similar reduction in blood pressure, there is a 
greater reduction in protein excretion using ACE 

inhibitors compared with other classes of 
antihypertensive agents (190). This may be beneficial, 
as the passage of protein across the glomerular 
filtration barrier may accelerate the progression of 
nephropathy (191). Animal data show that this is due 
to preferential reduction in intraglomerular pressure 
with ACE inhibitors due to a dilatation of the efferent 
vessels (192). An effect on the filtration barrier has 
also been suggested (193).  
 
RAS inhibitors should be offered to all individuals with 
T1D and albuminuria, regardless of blood pressure. 
The dose should be titrated up to the maximum 
recommended or tolerated, to obtain maximal 
antiproteinuric effect. If blood pressure remains 
>125/75 mmHg on maximum dose of RAS inhibitor, 
antihypertensive therapy should be intensified. Lower 
blood pressure reduces the rate of decline of GFR 
from 10–12 mL/min/year untreated to <5 mL/min/year 
(194). Regression from severely to moderately 
increased albuminuria can be achieved, with the fall in 
GFR reduced to <1 mL/min/year (71). The choice of 
agent should be made on an individual basis, as there 
is no evidence in T1D that any one add-on agent is 
better than any other. Often multiple agents are 
needed in CKD stage 3 and beyond. 
 
TYPE 2 DIABETES 
 
Control of hypertension reduces the risk of developing 
moderately or severely increased albuminuria (195-
198). There may be a particular benefit of RAS 
inhibition in prevention of nephropathy (199-201) but 
lowering blood pressure sufficiently is the key. 
Achieved blood pressure in these studies was 
generally ~140/80 mmHg, but most guidelines now 
suggest a blood pressure target of 130/80 mmHg in 
T2D (20, 21). 
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As with T1D, there is good evidence in T2D that 
inhibition of the RAS should be the backbone of 
therapy if albuminuria is elevated. RAS blockade 
reduces progression of moderately elevated 
albuminuria to severely increased albuminuria (196, 
202) and increases regression to normoalbuminuria 
(202). The benefits are at least partly independent of 
blood pressure lowering. In more advanced diabetic 
nephropathy, RAS inhibition with ARB reduces 
progression, defined as doubling of serum creatinine, 
ESKD, or death (203, 204). Hence people with T2D 
and moderately or severely increased albuminuria 
should be prescribed a RAS inhibitor, titrated to the 
maximum tolerated dose (205). Hyperkalemia is 
common in individuals with T2D and nephropathy 
taking an ARB and is associated with increased risk of 
kidney failure (206). General steps to lower potassium 
such as dietary advice, diuretics, discontinuation of 
other medications or dietary supplements which might 
be increasing potassium levels, or potassium binders 
should be considered before stopping RAS blockade 
(179). Introduction of a RAS inhibitor often leads to an 
acute decline in GFR, which then stabilizes. 
Individuals with the greatest initial fall in GFR have the 
slowest subsequent decline in kidney function (207). 
 
Most people with T2D and albuminuria will require 
additional antihypertensive therapy. The choice of 
additional agents should be made on an individual 
basis, with diuretics and calcium channel blockers 
often being appropriate. In resistant hypertension with 
preserved renal function mineralocorticoid receptor 
antagonists may be useful (208). 
 
In the UKPDS, there was no blood pressure level 
below which risk of developing moderately elevated 
albuminuria or beyond increased, i.e., no “J” shape 
(209). The ADVANCE study explored the effects of 
reduction of blood pressure below the currently 
recommended targets of 130/80 mmHg in individuals 
with normal or moderately increased albuminuria and 

125/75 mmHg in those with severely increased 
albuminuria (210). Over 4 years, the risk of kidney 
events was reduced by 21%, mainly because of 
reduced risk of developing moderately or severely 
elevated albuminuria. However, an achieved systolic 
blood pressure below 120–130 mmHg was associated 
with increased mortality and ESKD (211). Therefore, 
extremely tight blood pressure control should be 
avoided. 
 
DUAL BLOCKADE OF THE RAS 
 
Addition of an ARB to an ACE inhibitor (212, 213) or 
of the direct renin inhibitor aliskiren to an ARB reduces 
blood pressure and albuminuria more than each agent 
individually. However, in the longer term, dual 
blockade increases the risk of hyperkalemia, 
hypotension, and acute, irreversible kidney failure 
(214-217). Hence dual blockade is not recommended. 
 
MINERALOCORTICOID RECEPTOR ANTAGONISM  
 
Prevention of diabetic nephropathy was attempted in 
the PRIORITY trial including T2D with 
normoalbuminuria. High risk for progression to 
CKD/moderately elevated albuminuria was identified 
with a urinary proteomic based risk score (CKD-273). 
High risk individuals were randomized to 
spironolactone or placebo, and although the 
biomarker predicted progression of kidney disease, 
spironolactone was not able to reduce progression 
compared to placebo over three years (218). 
 
Short term studies in established diabetic nephropathy 
revealed ~30% reduction in albuminuria with the 
steroidal mineralocorticoid receptor antagonists 
(MRAs) spironolactone or eplerenone (219). 
Preventing over activation of the mineralocorticoid 
receptor reduces inflammation and fibrosis, but due to 
potassium problems, diabetes with kidney disease 
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became a contraindication for these agents. Non-
steroidal MRAs have been developed and may cause 
less potassium issues. The non-steroidal MRAs 
esaxerenone and finerenone reduced moderately 
elevated albuminuria in T2D in short term studies with 
a good safety profile with very little hyperkalemia (220, 
221). This led to two large studies testing finerenone 
in T2D with CKD.  
 
FIDELIO-DKD tested finerenone on a background or 
RAS blockade with an angiotensin converting enzyme 
inhibitor (ACEi) or ARB and included 5734 subjects 
with relatively advanced CKD and T2D (UACR ≥30–
≤5000 mg/g, eGFR ≥25–<75 mL/min/1.73 m2 and the 
primary endpoint (kidney failure, sustained decrease 
of eGFR ≥40% or kidney death) was reduced with a 
hazard rate (HR) 0.82 (95%CI 0.73-0.93, p=0.001). 
The key secondary outcome (cardiovascular death, 
myocardial infarction, stroke, or hospitalization for 
heart failure) was also reduced (HR: 0.86; 95% CI 
0.75–0.99; p=0.03). The incidence of hyperkalemia-
related treatment discontinuation was rare, but higher 
with finerenone than placebo (2.3% and 0.9%, 
respectively) (222).  
 
FIGARO-DKD also tested finerenone, but included 
patients with T2D with less advanced CKD, including 
a greater number of patients with albuminuria in the 
range 30-300 and impaired eGFR or albuminuria >300 
with normal eGFR. FIGARO-DKD was a randomized 
double-blind phase III study of CV morbidity and 
mortality, and the primary endpoint was time to first 
occurrence of CV death, nonfatal myocardial infarction 
(MI), nonfatal stroke, or hospitalization for HF. The key 
secondary composite outcome was time to kidney 
failure, sustained ≥40% decrease in eGFR from 
baseline, or renal death (223). The study randomized 
7437 patients, and the results demonstrated a 
significant reduction in the primary CV composite 
endpoint with finerenone compared with placebo 
(HR: 0.87; 95% CI, 0.76–0.98; P = 0.03). The effect on 

the ≥40% kidney composite endpoint was not 
significant with finerenone versus placebo (HR: 0.87; 
95% CI, 0.76–1.01 P = 0.07) (223). However, the 
standard kidney composite endpoint with a ≥57% 
decline in eGFR (equivalent to doubling of serum 
creatinine) instead of the ≥40% decline in eGFR was 
significantly reduced with finerenone compared with 
placebo (HR: 0.77; 95% CI, 0.60–0.99; P = 0.04) 
(223).  
 
Finerenone has now been approved for treatment of 
CKD in T2D by FDA, and will thus be a new 
opportunity for treatment of diabetic nephropathy. It is 
not clear where finerenone will be placed in guidelines 
compared to SGLT2i, but a subgroup analysis from 
FIDELIOIO-DKD suggest that finerenone is just as 
efficient when added to SGLT2i and thus it will be 
interesting to study if the combination provides added 
benefit (224). 
 
SODIUM INTAKE  
 
Short-term dietary sodium restriction (target sodium 
intake 50 mmol or 1150 mg Na+ per day), added to 
RAS blockade, reduces albuminuria (225). The 
treatment effects of ARB are greater in patients with 
lower rather than higher dietary sodium intake (226). 
Hence dietary counselling to reduce sodium intake is 
essential and an intake of <2 g of sodium per day (or 
<90 mmol or 2070 mg of sodium per day, or <5 g of 
sodium chloride per day) is recommended (179). 
 
NON-CLASSICAL DIABETIC KIDNEY DISEASE  
 
There is no specific evidence for the use of RAS 
inhibition in individuals without albuminuria. However, 
control of blood pressure remains crucial to slow 
progression. Ongoing studies are investigating the 
effect of the SGLT2 inhibitor empagliflozin on CKD 
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including low eGFR (20-45 ml/min/1.73m2) but normal 
urinary albumin excretion (227). 
 
Endothelin Receptor Antagonists 
 
Atrasentan is an endothelin receptor A antagonist 
which demonstrated ability to lower proteinuria without 
significant edema (228). Previously edema had been 
a concern with this class of agents (229). The SONAR 
study tested atrasentan in T2D with severely 
increased albuminuria with progression of kidney 
disease, ESKD and mortality as the primary outcome 
(230). Although stopped early for concern of futility, 
the study eventually showed a kidney benefit of the 
same magnitude as with the SGLT inhibitors, but 
without effect on major adverse cardiovascular events 
and with a tendency to increased risk of heart failure. 
The primary endpoint was a composite of doubling of 
serum creatinine (sustained for ≥30 days) or end-
stage kidney disease (eGFR <15 mL/min per 1.73 m2 
sustained for ≥90 days, chronic dialysis for ≥90 days, 
kidney transplantation, or death from kidney failure). 
The hazard ratio for atrasentan compared to placebo 
was 0.65 (95% CI 0.49 to 0.88) p=0·0047). The mode 
of action may relate to an effect on inflammation, but 
also an effect on podocytes and endothelium and 
glycocalyx has been proposed from experimental data 
(231). 
 
Low-Protein Diet 
 
A meta-analysis concluded that a low protein diet 
significantly improves GFR but not albuminuria, 
across all subtypes of diabetes and stages of 
nephropathy (232). A randomized trial of 82 patients 
with T1D,, severely increased proteinuria and 
progressive loss of kidney function demonstrated 
reduced mortality and ESKD (relative risk 0.23; 95% 
CI 0.07 to 0.72) for patients assigned to a low-protein 
diet targeting 0.8 g protein/kg body weight/day 

compared to usual diet (233). Protein intake should 
not be restricted to less than 0.7 g protein/kg body 
weight/day because of concerns about malnutrition in 
ESKD. In line with recommendations for the general 
population a protein intake of 0.8 g protein/kg body 
weight/day is recommended for diabetes and CKD, 
except for people on peritoneal dialysis where a higher 
intake (1.0-1.2 g protein/kg body weight/day is 
recommended (179). 
 
Lipids 
 
In diabetic nephropathy lipid lowering medications are 
recommended to reduce the risk for CVD. There is 
some evidence that lipid-lowering agents are 
beneficial to the kidney. In a post hoc analysis of the 
Collaborative Atorvastatin Diabetes Study, the rate of 
decline of eGFR was significantly less in those 
individuals taking atorvastatin 10 mg daily compared 
with placebo. Fibrates also reduce albuminuria, 
although they reversibly increase serum creatinine 
(234). 
 
Cardiovascular Risk—Other Factors 
 
Smoking increases the likelihood for development of 
diabetic nephropathy as discussed above. There have 
been no good trials of smoking cessation. However, 
smoking cessation should clearly be encouraged. 
There are no studies in diabetic kidney disease with 
aspirin evaluating long term benefits although short 
term studies suggest no effect on urinary albumin 
excretion or GFR (235). In many individuals with 
established CVD or high risk for CVD aspirin should 
be considered for prevention of cardiovascular events. 
There is an increased risk for atrial fibrillation in 
diabetes and in CKD, and higher morbidity and 
mortality associated with thromboembolic events 
including stroke in diabetes with atrial fibrillation (236). 
In diabetes with atrial fibrillation anticoagulation is 
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often recommended, and direct oral anticoagulants 
are usually preferred compared to vitamin K 
antagonists. In addition to a reduced risk for bleeding 
and similar or better effects on reducing risk for 
thrombosis, observational studies suggest reduction in 
progression of CKD. Thus, a recent study using a 
health claim database included patients with 
nonvalvular atrial fibrillation and diabetes that newly 
initiated rivaroxaban (N=10,017) or warfarin 
(N=11,665) (237). Patients were matched using 
propensity scores. In comparison to warfarin, 
rivaroxaban was associated with lower risks of acute 
kidney injury events (HR: 0.83; 95% CI, 0.74 to 0.92) 
and development of stage 5 CKD or need for 
hemodialysis (HR: 0.82; 95% CI, 0.70 to 0.96) (237). 
The mechanism could be reduced vascular 
calcification but needs to be confirmed in randomized 
controlled trials. 
 
Weight Loss 
 
In a trial comparing intensive lifestyle intervention with 
diabetes support and education in T2D, individuals 
randomized to intensive lifestyle modification were 
less likely to develop CKD over 8 years (238). The 
effect was partly attributable to reductions in body 
weight, HbA1c, and systolic blood pressure. Low 
carbohydrate, Mediterranean, and low-fat diets have 
similar beneficial effects on change in eGFR and 
albuminuria over 2 years (239). In individuals with T2D 
who have undergone bariatric surgery, moderately 
and severely increased albuminuria regresses to 
normoalbuminuria (240). Similar benefits were 
described in a 5-year study in severely obese 
adolescents with and without T2D (241). 
 
FURTHER MANAGEMENT OF CHRONIC KIDNEY 
DISEASE STAGE 3 OR POORER  

Monitoring Anemia and Bone Chemistry 
 
In progressive CKD from stage 3 onwards, bone 
chemistry, full blood count, and iron stores should be 
assessed every 3–6 months. 
 
Monitoring Glucose Control 
 
Red blood cell and protein turnover are abnormal in 
CKD, making the interpretation of HbA1c, glycated 
albumin, and fructosamine results difficult, particularly 
in subjects with CKD 4+. Thus, more reliance should 
be placed on self-monitoring of blood glucose and 
continuous glucose monitoring, particularly if 
treatment can cause hypoglycemia (179). 
 
With declining kidney function, it is important to be 
aware of the increased risk for hypoglycemia.  The 
glycemic target may have to be increased to avoid 
hypoglycemic episodes (179) and glucose lowering 
agents may have to be changed or have their dose 
adjusted (Table 5). There are several explanations for 
this: a) the kidney is important for the metabolism of 
many glucose lowering medications and this function 
is impaired in advanced CKD; b) the kidney 
contributes to total endogenous glucose production by 
approximately 30% which declines with loss of kidney 
function; c) in advanced CKD acidosis affects the 
liver’s ability to produce glucose and compensate for 
failing kidney gluconeogenesis, and malnutrition and 
muscle wasting contributes to the risk for 
hypoglycemia; d) people with diabetic nephropathy 
are often older, have longer diabetes duration, and 
more frequently suffer from comorbidities, especially 
cardiovascular disease, and are thus more likely to be 
on multiple medications with can have potential 
interactions with glucose lowering medications (242).  
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Table 5. Glucose-Lowering Agents in Chronic Kidney Disease 
Drug Comment 
Metformin Risk of accumulation and possibly lactic acidosis 

Caution when eGFR <45 mL/min/1.73 m2 

Stop when eGFR <30 mL/min/1.73 m2 
Sulfonylureas Glibenclamide, gliclazide, and tolbutamide 

predominantly renally excreted; may need to 
reduce dose 

Meglitinides ~10% excreted via kidney; usually safe 
Thiazolidinediones Predominantly hepatic metabolism; use may be 

limited by fluid retention 
Dipeptidyl peptidase IV inhibitors Dose may need to be reduced in some agents 

Glucagon-like peptide-1 receptor 
agonists 

Few data when eGFR <15 mL/min/1.73 m2 

Sodium–glucose co-transporter 2 
inhibitors 

Protect kidney and heart down to eGFR>25, but 
ineffective at reducing glucose at eGFR <45 
mL/min/1.73 m2 

Insulin Excreted by kidney; may need to reduce dose 
and/or switch to shorter-acting preparations 

 
Metformin and its metabolites are excreted mainly by 
the kidney. In kidney failure, they accumulate and 
inhibit lactate oxidation. Metformin should therefore be 
used cautiously in those with eGFR <45 mL/min/1.73 
m2, and stopped completely when eGFR <30 
mL/min/1.73 m2 (243). 
 
The sulfonylureas glibenclamide, gliclazide, and 
tolbutamide are excreted predominantly by the 
kidneys and accumulate in CKD. Their dose, and 
indeed the dose of any sulfonylurea, may need to be 
reduced as CKD progresses. Only ~10% of the 
meglitinides, repaglinide and nateglinide, are excreted 
by the kidneys, making them suitable alternative 
agents. The thiazolidinediones, rosiglitazone and 
pioglitazone, are predominantly metabolized in the 
liver. However, their use in ESKD may be limited by 
fluid retention. 
 

Insulin is also excreted by the kidney so that reduced 
dosage, and perhaps a switch to shorter acting 
preparations, may be required. 
 
The dose of some but not all DPP-4 inhibitors and 
GLP-1 receptor agonists may need to be reduced as 
kidney function deteriorates. The SGLT-2 inhibitors 
become less effective at decreasing glucose levels as 
GFR falls. 
 
Anemia 
 
Anemia is common in people with diabetes and CKD 
stage 3 or poorer (244). Full investigation of iron 
deficiency anemia may be needed to exclude a non-
kidney cause. Those with anemia have a higher 
mortality, higher rates of hospital admission with heart 
failure, and poorer quality of life. Iron stores should be 



 
 
 
 

 
www.EndoText.org 28 
 

repleted with oral or parenteral iron as necessary, and 
erythropoietin replacement commenced if indicated. In 
the TREAT trial it was investigated if treatment of 
anemia in T2D with CKD would improve renal or 
cardiovascular outcome, but the trial showed no 
benefit (245). 
 
When to Refer to Nephrology 
 
Patients who begin dialysis as an emergency do less 
well than those in whom treatment is planned (246). 

Referral to nephrology should be made when eGFR is 
declining rapidly (>5 mL/min/1.73m2/year or when 
eGFR is <30-45 mL/min/1.73 m2. This allows 
structured physical and psychological preparation for 
kidney replacement therapy. Earlier referral may be 
necessary in particular circumstances (Table 6). The 
need for kidney replacement therapy should be 
discussed with all patients and those who wish it 
should have access. People without significant 
comorbidities will usually be offered transplantation. 
Full cardiovascular assessment and treatment are 
essential before transplantation. 

 
Table 6. Indications for Referral to Nephrology 
Diagnosis uncertain 
Hypertension difficult to control 
Fluid overload 
Anemia unresponsive to oral iron 
Abnormal bone chemistry (calcium, phosphorus, PTH)  
eGFR 30–45 mL/min/1.73 m2 

Nephrotic syndrome 
eGFR fall >5 mL/min/1.73 m2 per year 

 
Organization of Care 
 
Structured care, delivered by trained specialists 
working with clear protocols with specific, multiple 
treatment goals for all the variables described above, 
reduces the incidence of moderately elevated 
albuminuria (247, 248) and provides greater kidney 
and cardiovascular benefits than routine care for 
individuals with T2D and CKD (179, 249, 250). 
Progression to ESKD or death, need for laser therapy 
for management of retinopathy, and cardiovascular 

endpoints including stroke and heart failure are all 
reduced by such multifactorial interventions (251-254). 
When structured intensive multifactorial intervention 
targeting lifestyle factors (diet, exercise, smoking) and 
heart and kidney risk factors (blood glucose, blood 
pressure, lipid management) compared to usual care 
was started already in T2D with moderately elevated 
albuminuria, long-term follow-up of the Steno-2 study 
demonstrated that eight years of intervention 
translated into almost 8 years of extended median 
survival (Figure 11) (251). 
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Figure 11. Steno-2 post-trial: Twenty-one years sustained effect of intensive multifactorial intervention 
compared to standard of care for 8 years targeting lifestyle and heart and kidney risk factors. 
 
Pregnancy in Women with Diabetes and Chronic 
Kidney Disease 
 
Women with diabetic nephropathy have poor 
pregnancy outcomes (255). They remain at increased 
risk of hypertension, preeclampsia, abnormal fetal 
growth, and preterm delivery (256). In a recent series, 
the prevalence of diabetic nephropathy and 
moderately elevated albuminuria in early pregnancy 

was similar in women with T1D or T2D, and pregnancy 
outcomes were comparable regardless of the type of 
diabetes (257). Women with any evidence of CKD 
therefore should be counselled pre-pregnancy. RAS 
inhibitors should be stopped and therapies safe in 
pregnancy, such as methyldopa, labetolol, and 
nifedipine, used as substitutes. In women with T1D, 
maintenance of BP <135/85 mmHg and proteinuria 
<300 mg/24 h with methyldopa improves outcomes 
(208, 258). 
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