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ABSTRACT 
 
A plethora of gut hormones have been discovered and are linked to clinical syndromes. The 
proliferation and totipotentiality of the enterochromaffin cell (EC) is responsible for many of the 
neuroendocrine tumors. Somatostatin has a myriad of physiologic actions in the human body 
ranging from control of secretions, hormones, gut motility and tumor growth and proliferation. 
Somatostatin has five receptors conferring specificity of function. Attaching the molecule to 
various tracers has fostered development of radiotracers to identify the sites of tumor formation 
and Gallium 68 RPR-PET has a 40-100 fold greater potency than Octreoscan. Combination 
with lutetium or yttrium creates powerful destructive tools and there has been born a period of 
“theranostics” in which the same molecule enhances detection and diagnosis but also the 
ability to treat. When Guillemin discovered somatostatin that inhibited growth hormone 
secretion from the pituitary he exclaimed that it had not escaped his attention that there may be 
multiple targets for this peptide. I am not sure that he anticipated the Theranostic explosion that 
lay ahead. And beyond somatostatin we have tyrosine kinase and MTOR inhibitors and peptide 
receptor radiotherapy (PRRT) for the treatment of NETS.  
 
INTRODUCTION 
 
The birth of endocrinology was in the gastrointestinal tract!  Figure 1 shows the progression 
from the discovery of the first hormone secretin when Bayliss and Starling instilled acid into the 
denervated duodenum of a dog and observed the flow of pancreatic secretions and said this 
must be due to a hormone which is a word derived from the Greek to “excite”. Subsequently  
gastrin was identified by Edkins as a potent gastric acid secretogogue in 1905 and Zollinger 
and Ellison in 1955 recognized it as the principal culprit for the Zollinger Ellison syndrome due 
to gastric acid overproduction. These discoveries led to a focus on pancreatic and gastric 
secretion. In 1925 Oberg and Ivy discovered CCK which contracted the gallbladder and it took 
eons to recognize a clinical syndrome associated with gastric hypersecretion by Jens Rehfeld. 
Meanwhile Verner and Morrison discovered VIP in 1972 which identified the culprit behind the 
watery diarrhea , hypokalemia acidosis syndrome (WDHHA) . A flurry of activity in the 60s and 
70s led to the discovery of a host of peptides including gastric Inhibitory polypeptide (GIP) by 
John Brown who renamed it as glucose dependent insulin releasing peptide which has 
conferred upon it much greater notoriety. Advances in this field were catapulted with the 
development of radioimmunoassay by Berson and Yalow in 1959 led to the ability of 
quantification of hormones in the circulation in picomolar amounts and the application of the 
assay to glucagon by Roger Unger. The advances in immunological techniques and protein 
chemistry led to intensive progress with the purification and sequencing of a host of other 
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peptides such as motilin, gastric inhibitory peptide somatostatin, leptin and ghrelin. Thus, grew 
the interest in physiologic mechanisms of action of these hormones digestive glandular 
secretion, gastrointestinal motility, visceral blood flow and tissue growth and proliferation as 
well as dedifferentiation of cells into their malignant counterparts. This era was recognized for 
the discovery of molecules without known biological function such as pancreatic polypeptide 
(PP), physiologic activity without known peptide regulators, hormones with dual function or as 
in the case of somatostatin discovered by Schally and Guillemin which was the second peptide 
captured for a role in peptide therapy. The ability to derive molecules from the parent molecule 
and its precursor enhanced the capacity to exploit its actions in controlling physiology as a 
virtual inhibitor of all secretions, to radiolabel the peptide in the development of imaging 
techniques such as the Octreoscan and the formation of long-acting analogs cable of restricting 
cell growth and proliferation. Further refinements have seen the evolution of peptide receptor 
radiotherapy (PRRT) and more potent Gallium DOTATOC and TATE scanning. This age has 
been referred to as Theranostics by Baum to reflect on the diagnostic capabilities as well as 
the therapeutic potential.  The original recognition of Karzinoid as a tumor of the GI tract in 
1907 led to the description by Feyrter of the cell type as Helle Zellen or transparent cells 
because of their characteristics gave birth to the recognition of the LC cell which is the 
grandfather of a far-reaching neuroendocrine tumor potential and expanded the role of the gut 
from pancreas and intestinal tract to a gut brain axis from which a number of disorders have 
blossomed. This theranostic era has witnessed the implications of tyrosine kinase inhibitors, 
MTOR involvement in tumor growth and therapy and these last few years have been party to a 
plethora of new discoveries of old hormones. New discoveries of new hormones and new 
discoveries of new functions for older peptides and new discoveries of actions outside of the GI 
tract for established GI hormones.  
 
Figure 1. History of GI Hormones 

 
 
Endocrine tumors of the gastroenteropancreatic (GEP) axis consist of cells that are capable of  
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amine precursor uptake and decarboxylation and therefore have been named APUDomas  (1). 
The morphologic similarity of the APUD cells suggested a common embryologic origin, which 
was believed to be the neural crest but was later revised to include the neuroectoderm or, in 
the case of endocrine cells, the dorsal placoderm. However, most investigators agree that 
these tumors should be classified according to their secretory products (i.e., carcinoid, 
gastrinoma, insulinoma, somatostatinomas, glucagonoma, vasoactive intestinal peptide 
[VIPoma] and pancreatic polypeptide [PPoma]  (2) (3) (4). Before presenting their clinical 
characteristics we will briefly review the currently held views on the embryologic origin of these 
cells and the factors regulating their growth, differentiation and apoptosis, that serve to 
maintain homeostatic balance. We will also indicate the derangements that result in tumor 
formation. 
 
DEVELOPMENTAL ORIGIN OF GEP CELLS DURING EMBRYOGENESIS 
 
The pancreas is composed of exocrine tissue that produces enzymes for digestion, and an 
endocrine system designed to maintain glucose homeostasis within narrow confines. The adult 
endocrine pancreas contains four different cell types which produce insulin (b cells), glucagon 
(α cells) somatostatin (δ cells) and pancreatic polypeptide (PP cells). These are contained 
within a highly organized structure with beta cells in the interior and the remainder as a 
surrounding mantle. The vascular supply is elegantly organized to deliver blood to the central 
core of the islet and to perfuse the outer layers in a centrifugal manner form beta to alpha to δ 
(synonym B (b) A (a) D (δ). The adult pancreas also has a sophisticated ductal drainage 
system that ostensibly is present as a conduit for enzymes to reach the gastrointestinal tract 
but appears to retain cells capable of trans-differentiation into exocrine or endocrine 
components upon appropriate activation. A crucial question has arisen as to whether or not the 
adult pancreas retains these precursor cells and if they can be identified. In recent years a 
molecular fingerprint of embryonic islet precursors has begun to emerge (5)  and precursor 
cells within embryos and postnatal mice are found in the ducts (4). These ductal precursor cells 
can be identified by their expression of Glut 2 (6). Recently cells expressing the neuronal 
antigen, an intermediary filament protein, were located in pancreatic ducts of adult rats and 
were found to differentiate into insulin expressing cells in vitro (7), further suggesting that the 
study of the characteristics of embryonic development might be able to assist in the capture of 
the elusive precursor in the adult pancreas. 
 
Inductive signals important in the initiation of growth and development of the pancreas to a 
large extent have their signals enacted or amplified by genes targeted within the embryonic 
stem cells or cells committed to developing into a variety of pancreatic endocrine, exocrine or 
ductal cells. 
 
Pancreatic islet-specific gene expression is mostly controlled at the transcriptional level by the 
binding of islet enriched transcription factors to sequences in islet genes (Figure 2). 
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Figure 2. 

 
These transcription factors are involved in the temporal expression of genes that direct 
pancreatic development. Cell specific and extrinsic factors present in the endoderm act in a 
permissive or restrictive manner to direct the formation of the islets and the various cells and 
structures that comprise the adult islet (8). The PDX-1 encoded homeodomain protein in 
mammals (STF-1, IDF-1, IDX-1) was isolated as a transcriptional regulator of insulin and 
somatostatin (9) (10) (11). It binds and trans-activates the insulin promoter (12). PDX was first 
detected in embryonic pancreatic and duodenal endoderm. It is detected in all embryonic proto-
differentiated epithelial cells during pancreatic development (13). In the pancreas it becomes 
progressively restricted to the islets, where it is produced in >90% of beta cells, 15% delta cells 
and 3% alpha cells. PDX-1 defines pancreatic gene expression pattern and cell lineage 
differentiation (14). Mice heterozygous for PDX-1 develop normally but in homozygous PDX 
mice the normal branching outgrowth of the pancreas is arrested at an early stage (12) (15). 
Maturity onset diabetes occurred in patients heterozygous for the gene (16) (17). Diabetes 
develops in aging transgenic mice following suppression of PDX-1 (18). The regulation of the 
PDX-1 gene appears to be central to the development of the pancreatic anlage during 
embryonic development as well as maintaining islet mass in the adult and contributing to the 
regulation of insulin secretion from the adult pancreas  (19). The PDX-1 gene is initially 
expressed in exocrine and endocrine pancreatic precursors but later becomes restricted to the 
beta cells in the islets. Transgenic models leading to loss of PDX-expression, either via double 
knockouts, dominant negative control or elimination of the target binding protein leads to 
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pancreatic agenesis in the case of the double knockout and with haplo-insufficiency, to defects 
in glucose-stimulated insulin secretion in mice and in humans (12) (17).  Abolition of PDX-1 in 
differentiated b cells in mice results in loss of the b cell phenotype, and impaired expression of 
Glut 2, glucokinase required for b cell production of insulin in response to glucose (12). PDX-1 
is also found where b cell neogenesis is occurring as in duct ligation  model of neogenesis  
(20), partial pancreatectomy (21), overexpression of TGF alpha (22), or interferon gamma  
(23). In all instances the formation of new b cells is preceded by expression of PDX-1. It has 
been reported that stimulation of the initiation of trans-differentiation of adult stem cells with 
INGAP is associated with increased expression of PDX-1 in both ducts and subsequently 
newly formed islets  (24)  (25). This endorses the notion that cell differentiation in the adult can 
recapitulate normal fetal ontogeny. Further support for this notion derives from the observation 
that trans-differentiated cells stained positive for the neuronal antigen PGP 9.5. PGP 9.5 is an 
isoform of ubiquitin carboxy-terminal hydrolase (UCTH-LI)  and is a marker for neurons and 
neuroendocrine cells in the skin (26-28) as well as the pancreas (29). It was also found in 
ductal cells during embryonic islet morphogenesis and in our studies on duct ligation of the 
hamster pancreas  (30) (25).  Thus, the combination of PDX-1 and PGP 9.5 suggest evolution 
from the ductal phenotype to a cell precursor en route to neoislet formation. 
 
Various studies have shown that the hepatic nuclear transcription factors (HNFs) form a 
hierarchy of transcription factors that exert positive and negative influences on pancreatic islet 
growth and development  (31) (32). Of particular relevance to islet development is the 
interpolation of HNF 3 b, a member of the forkhead/winged helix family of transcription factors, 
between inductive signals for b cell development and the expression of PDX-1 (33). Similarly, 
HNF1 a binds to a regulatory domain of PDX-1 and knockouts have reduced expression of 
PDX-1 (33). Cell specific and extrinsic factors are expressed during fetal development that 
determine the region of the endoderm destined to form the pancreatic bud (34-37). The 
initiation of the pancreatic program requires that signals specify the pancreatic region within the 
developing endoderm. Sonic hedgehog and Indian hedgehog genes dictate an intestinal 
differentiation, and for pancreatic development to occur these genes must be excluded. 
Candidate factors for excluding these genes are Activin–b and fibroblast growth factor (38). 
The dorsal and ventral buds may develop differently and the LIM homeodomain protein Isl-1 
may be an important determinant of pancreatic development (39). Lateral specification of 
pancreatic development is mediated by Notch signaling by specifying a particular pathway in a 
field of initially equivalent cells. Notch signaling controls the choice between differentiated 
endocrine and progenitor cell fates in the developing pancreas and a block in activation of the 
Notch receptor resulting in high Neurogenin 3 expression and promotes an endocrine fate. 
These cells upon differentiation migrate into the adjacent mesenchyme where they cluster and 
upon receiving an inductive signal, for example INGAP; generate distinct endocrine cell types 
depending on the inductive milieu. This in turn activates PDX-1 which appears to act upstream 
of fibroblast growth factor (FGF) signaling (12) and induces the FGF1-5 ligands. This is 
necessary for full maturation of the glucose sensing mechanism of the b cell including 
expression of the low affinity glucose transporter, Glut 2, and the proinsulin processing 
machinery, the proinsulin convertase PCI/3 and PC2 responsible for converting proinsulin to 
insulin. This appears to be conserved between mice and men (34) (35) (37). HNF3 b is a 
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candidate for initiating the positive response to the inductive signal and is expressed in the 
mouse fetus prior to the expression of PDX-1 at embryonic day 8 (E8.0) in the dorsal 
endoderm of the fore/midgut before the appearance of the insulin and /or the glucagon 
expressing cells (19). These primordial cells lack b cell specific markers. Around E13 the 
number of endocrine cells starts to increase and develop the characteristics of endocrine 
clusters destined to develop into the organ of Langerhans (4). The primordial cells not yet 
committed to develop into pancreatic islet cells express a number of neuronal markers 
including Neurogenin 3, (40), PGP 9.5 , and of Nestin (41). Cells destined to become islet cells 
appear to express the glut 2 transporter prior to development of hormone secretory capacity 
and this has been used as a marker for these committed cells in the pancreatic ductal system 
(6). The organization into individual α, b, δ and PP islet cells is dependent upon appropriately 
timed expression of a number of other genes including PAX 4, PAX 6 and PDX-1 (for a detailed 
review see (42) (25) and is complete by day 18, but further refinements and development of 
glucose sensing occurs in the 2 week postnatal period in mice (4). Although HNF-3 b may be 
necessary for the response to inductive factors in embryonic development, it appears that 
HNF-1α is necessary to maintain the islet specific expression pattern and is required 
throughout adult life (43).  
 
Preliminary data suggest that embryonic stem cells can be differentiated into insulin secreting 
cells ex vivo, but these cells do not achieve terminal differentiation and have a low insulin 
content and poor response to glucose. Their growth is unbridled and despite production of b 
cells, they fail to cure diabetic mice (44). Israeli scientists found insulin-producing cells in 
embryoid bodies formed spontaneously from embryonic stem cells (ESCs) when they stop 
growing, but these too do not make sufficient insulin (45). Soria and colleagues used gene-
trapping techniques to isolate insulin-producing cells and transfected an antibiotic resistant 
gene adjoined to the insulin promoter. When these cells formed three-dimensional structures 
the cells increased insulin to therapeutic levels but this of course remained unregulated (46). 
Others have created long-lived cell lines from b cells (47), while others have engineered beta 
cells from non-b cells (48). These have lacked the necessary ingredients of expandability, and 
physiologic regulation including glucose sensing and an off mechanism in the absence of 
glucose. 
 
Rather than struggle with the propensity of non-pancreatic stem cells with their reversion to 
their former state and the difficulties of identifying the necessary control mechanisms for 
transitioning ESCs into pancreatic stem cells, some researchers have looked to the pancreas 
as a source of more mature stem cells. Peck and colleagues in a multi-step process, identified 
islet producing stem cells and transformed these into islet progenitor cells. These grew into 
islet like structures which increased pancreatic mass 10,000 fold but the cells never fully 
matured (7). Bonner–Weir and colleagues have applied growth promoting substances to ductal 
cells in culture and stimulated these to grow and express the IPF-1/PDX-1 protein, the 
transcription factor necessary for endocrine cell development. At this stage a switch to 
differentiation factors induces the cells to form cultivated human islet buds which produce a 
small amount of insulin in response to glucose. The single biggest limiting factor of course was 
the limited capacity for forming the number of cells required to reverse diabetes (49). Starting 
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with adult human b cells, Levine and colleagues immortalize them by transfection with the 
SV40 T antigen and the K-ras oncogene to stimulate growth. Cells are induced to 
transdifferentiate by transfection with PDX-1 and formation of the three dimensional complexes 
with cell-to-cell contact conducive to insulin production. With the appropriate application of a 
growth- inducing stimulus these constructs are now capable of secreting insulin in response to 
glucose. However, these structures are not stable. When implanted they metastasize like 
tumors and lose their insulin secretory capacity (50) (51). 
 
Others and we have elected to utilize the factors resident in the pancreas to stimulate islet cell 
growth and proliferation as an alternate to the above approaches (42) (52). It has been known 
for years that factors present in the pancreas mesenchyme may have an important role in islet 
integrity (4). More recently the close association between islets and their ducts of origin has 
been established by electron microscopy of pancreases using cytokeratin 20 markers of duct 
cells and islet hormone marker(53). The close contact between the islets and duct system has 
raised interesting possibilities. For example, the open nature of insulin and somatostatin cells 
allows secretion of hormones into the intestinal lumen, a feature we named “Lumone” many 
years ago (54) and indeed insulin, serotonin, gastrin, somatostatin and members of the Reg 
family of peptides have been found in the intestinal lumen and pancreatic juice (55-59). 
Receptors for insulin have also been found on the luminal surface of duct cells (60-62). The 
reciprocal relationship may have greater consequence for b cell function. Acinar cell proteins 
such as Reg are found in pancreatic juice  (63-67)  and their target may be the stimulation of 
growth and proliferation of duct cell proliferation and differentiation (63-67). Okamoto and 
colleagues established a model for islet regeneration in 90% depancreatectomized rats by the 
islets underwent considerable hypertrophy. They screened the islet derived cDNA library and 
found the novel regenerating gene and named it Reg. The rat Reg cDNA encoded a 165 amino 
acid protein with a 22 amino acid signal peptide. Subsequently they isolated the human 
counterpart which is 165 amino acids, with 68% homology to that of the rat Reg protein. The 
recombinant forms of Reg have been shown to expand b cell mass by inducing hypertrophy of 
existing islets and limited replication (68). They then isolated several Reg and Reg-related 
genes from human rat and mouse and grouped members of the family into three subclasses. 
Group I encodes a b cell growth factor and some of the type 111 (a, b,and g ) targets neuronal 
cells and cells of the epithelial alimentary tract where it is found extensively. In the process of 
ordering these genes (69) a novel form of Reg, Reg III δ, was found with 6 exons, spanning 
about 3Kb, encoding a 175 amino acid protein with 40-52% of homology to other Reg proteins. 
Unlike Reg I and Reg II which are expressed in hyperplastic islets, Reg III delta was expressed 
predominantly in the exocrine pancreas. This mouse form of Reg may be the counterpart of 
hamster and human INGAP gene that is found almost uniquely in the exocrine pancreas, 
appearing with islet neogenesis and responsible for stimulating proto-differentiated cells in the 
ductal system to proliferate, differentiate into islets and function physiologically to reverse 
diabetes  (70). However, Sasahara and colleagues  (71) cloned a novel cDNA from mouse 
pancreas having a 72% homology to hamster INGAP cDNA and 47-52% homology to other 
members of the Reg family including the different forms of Reg and pancreatitis associated 
protein (PAP) and pancreatic thread protein of rat, mouse and man. They refer to this protein 
as INGAP related protein (INGAPrP). In contrast to INGAP, which is expressed during 
neogenesis, INGAPrP was abundantly expressed in the normal mouse pancreas. Roman and 
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colleagues (72) to determine whether islet angiogenesis and VEGFA production/release 
participate in the mechanism by which INGAP-PP enhances β-cell function and mass used two 
models: a) in vivo (normal rats injected with INGAP-PP for 10 days) and b) in vitro (normal 
islets cultured for 4 days with INGAP-PP, VEGFA, Rapamycin, and the specific VEGF-
Receptor inhibitor, SU5416). INGAP-PP administration enhanced insulin secretion, b-cell 
mass, islet vascularization, and angiogenesis without affecting glucose homeostasis. Normal 
islets cultured with INGAP-PP and VEGFA increased insulin and VEGFA secretion while 
apoptosis decreased. INGAP-PP-induced effects were prevented by both Rapamycin and 
SU5416. INGAP-PP effects on b-cell mass and function were significantly associated with a 
positive effect on islet angiogenesis and VEGFA production/release. VEGF-A possibly 
potentiates INGAP-PP effect through mTORC pathway. 
 
Figure 3. 

 
 
 
The developing pancreas appears as a protrusion from the dorsal surface of the embryonic gut 
(4). Figure 3 shows the normal anatomy of the pancreas and duodenum in the adult. What is 
shown is the capability of proliferation duct glandular structures (PDGs)                                                                                                                             
(73) with the capability of transformation to endocrine cells. 
 
The different islet-cell types appear sequentially during development in vivo. Therefore, it 
seems reasonable to propose that coordinated growth depends on the specificity of growth 
factors. 
 
Rosenberg and Vinik (74) used a model for new islet formation (i.e., nesidioblastosis) and 
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showed that pancreatic ductal cells are capable of differentiating on stimulation into adult 
endocrine cells that are capable of secreting insulin in a fully regulated manner. This has led to 
the notion that endocrine tumors derive from a toti-potential stem cell in the gut that is capable 
of differentiating into any one of a variety of cells that may be responsible for the clinical 
syndromes. In HIP rats treated with Sitagliptin, a dipeptidyl peptidase 1V inhibitor prevents the 
catalytic breakdown of glucagon like peptide 1(GLP-1) thereby increasing endogenous GLP-1 
inducing ductal metaplasia. 
 
Human GLP-1 receptor is expressed in the ductal system in humans and upon stimulation with 
incretins like Exenatide or other GLP-1R agonists markedly increase the expression of GLP-1 
receptor (Figure 3) leading to the formation of intraductal neoplasms called PanINs. Butler et al 
(75) showed expansion of exocrine and endocrine pancreas with Incretin therapy in humans 
with increased exocrine pancreas dysplasia and the potential for glucagon producing tumors. 
Pancreases from Type 2 Diabetes organ donors on Incretin therapy (n=8), other therapies 
(n=12) and Diabetic Controls (n=14) were examined. In diabetic patients beta cell mass was 
reduced 60%. Incretin treatment increased islet mass by 40%. However, 3/8 developed 
glucagon microadenomas and 1 developed an alpha cell NET accompanied by exocrine cell 
proliferation and pancreatic intraepithelial neoplasia (PanIn) (Figure 3). Co-staining for insulin 
and glucagon increased in DM, and was even greater in Incretin treated patients. They 
concluded that Incretins expand exocrine and endocrine pancreas with proliferation, dysplasia 
and a cell hyperplasia with possible adenoma formation. While this data was found in 
postmortem specimens and there is little clinical evidence in thousands of patients treated with 
incretins, it raises an interesting possibility on the formation of adenomas and the role that 
GLP-1 may play (76). Figure 4 demonstrates the appearance of glucagon cells in the ducts of a 
patient who had been treated with an incretin (77). The suggestion is that, with the correct 
genetic predisposition, use of incretins may have the capacity to induce malignant 
transformation of cells with formation of neuroendocrine tumors. 
 
A great deal of interest is now being focused on the factors responsible for the initiation of 
growth proliferation and differentiation into adult endocrine cells, and, in neuronal systems, for 
growth cessation and cell maintenance. Several models of pancreatic regeneration and tumor 
formation have been established  (63) (78-87). 
 
GROWTH FACTORS AND THE DEVELOPMENT OF NEOPLASMS OF THE 
GASTROENTEROPANCREATIC AXIS (GEP-NETS)  
 
Multiple growth factors and receptors are frequently expressed in GEP tumors. These growth 
factors may include insulin-like growth factor-1, platelet-derived growth factor, transforming 
growth factors (TGF) -α and b, basic fibroblast growth factors, nerve growth factor  (88) (89) 
and GLP-1 (77). The frequent co-expression of TGF-b and its corresponding receptor, the 
epidermal growth factor receptor, suggests the presence of autocrine regulatory mechanisms 
in these tumors  (89). TGF-b has been implicated in the desmoplastic reaction associated with 
carcinoid tumors  (89) (90). Overall, the precise role of these growth factors and their 
importance in the growth and progression of GEP tumors is unknown. 
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Apoptosis (i.e., programmed cell death) has been shown to be an important process that may 
occur under normal physiologic conditions, including embryonic growth and development, the 
differentiation of  b-cell populations, and the involution of cells deprived of necessary growth 
factors (91). Apoptosis may be induced by a variety of chemotherapeutic drugs and cytokines 
(92). Several growth factors and substances that are secreted by neuroendocrine tumors, 
including TGF-b  (93), glucocorticoids, and somatostatin  (94), have been shown in other model 
systems to induce apoptosis. The importance of apoptosis in the normal growth and 
differentiation of neuroendocrine tissues, however, and the importance of apoptosis in the 
response of GEP tumors to chemotherapy remain unknown. 
 
GENETIC FACTORS PREDISPOSING TO DEVELOPMENT OF NETs  
 
The genetics of neuroendocrine tumorigenesis have yet to be elucidated.  Although small 
familial clusters of midgut carcinoids have been described, there are no known genetic cancer 
syndromes associated with them. Tumors have clustered in several small families without MEN 
I, and multiplicity of tumors is a feature on one quarter of isolated cases. Among sporadic 
midgut carcinoids, several studies using comparative genomic hybridization or microsatellite 
markers have shown frequent allelic deletion of chromosome 18  (95) (96). On an epigenetic 
level, midgut NETs have been found to have global hypomethylation  (97). There is little data 
about genetic aspects in NETs of the appendix or cecum. Tumor multiplicity is much less 
frequent in the appendix and cecum than the ileum. 
 
The multiple endocrine neoplasia (MEN) characterized by the combined occurrence of tumors 
of the pituitary, pancreas, and parathyroid glands is associated with the loss of a tumor 
suppressor gene on chromosome 11q13  (98) (99). This is the same chromosome on which the 
insulin gene has been located  (100). It has been linked to nesidioblastosis in certain families 
and parathyroid mitogenic activity can be identified in the plasma of patients with MEN-1  (101) 
(102). All of this suggests a genetic predisposition to tumor formation based on elaboration of a 
growth factor. Data from cell lineage analysis of pancreatic islet cells suggest that progenitor 
cells, which contain catecholamines, are present in pancreatic ducts and give rise to the 
glucagon and insulin cells of adult islets  (103). These can be stimulated to grow by plasma 
from patients with MEN-1. Patients with MEN-1 also might elaborate into their plasma 
mitogenic circulating growth factor, involved in the initiation of GEP tumor growth  (104). It has 
been suggested, but not proven, that allelic loses in the MEN-1 tumor suppressor gene located 
in the 11q13 region also might be responsible for sporadic parathyroid, pituitary, and 
neuroendocrine tumors of the stomach, pancreas, and intestine  (105).The few cases of 
carcinoid tumors studied have not shown losses in this region. 
 
In addition, MEN-2a  (106) (107), MEN-2b, (108) (109)  and familial medullary thyroid 
carcinoma are associated with mutations of the RET proto-oncogene, which is a conventional 
dominant oncogene located on 10q11.2.  Although mutations in this region have been 
associated with sporadic medullary thyroid carcinoma, the role, if any, of this gene in sporadic 
GEP tumors is not known. 
 
New molecular profiles of gastrointestinal (GI-NETs) and pancreatic neuroendocrine tumors 
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(pNETs) have now been reported  (110) (111). Frequent chromosomal gains occur on 
chromosomes 7 and 20, former also associated with metastases, together with losses on 
chromosomes 2, 6q, 21q, and Y in pNETs. Comparative genomic hybridization studies of GI-
NETs show frequent gains on chromosomes 17 and 19, while frequent loss has been detected 
on chromosome 18. These findings indicate different molecular genetic background of these 
two tumors (112)  (113). Therefore, molecular profiling of GEP-NETs demonstrates that pNET 
and GI-NET tumors display different genetic changes and should be considered different tumor 
entities; thereby, also differently managed clinically (114) (115). 
 
Of great interest is the demonstration of the possible utility of the genomic information for 
treatment. In 68 pNETS  (116) (117) reported mutations of genes involved in chromatin 
assembly were reported, as well as MEN-1 gene in > 44%, DAXX 25%, ATRX 17.6%, and 
MTOR pathway >14%, suggesting that these mutations may predict, for e.g., responses to the 
newly developed MTOR inhibitors and possibly others. More importantly these mutations have 
survival prediction. Mutations survive 10y while in patients without mutations > 60% died in 5 
years. 
 
THE ROLE OF INFLAMMATORY CYTOKINES IN NETs  
 
Several pro-inflammatory cytokines have been implicated in the development of carcinoid 
tumors (61-66) and may be prognostic in metastatic carcinoid  (67) as well as host anti-tumor 
immunity (68) (69). TNF-α and IL-2 are associated with GEP-NET development  (118) (119). 
Proinflammatory cytokines have been found in pNET tissue  (120)  (121) (122). IL-6 and IL-1ß 
may be involved in pNET development. According to SNP analyses, IL-6-174 CG and GG 
genotypes carriers and IL-1ß- 511/ + 3954 CTCC carriers were at risk of developing non-
functional pNETs  (118) (119), while IL-1-ß -511/ +3954 CTCT carriers were prone to 
development of functional pNETs (123) (84). Moreover, IL-6 GG genotype correlated with IL-6 
serum levels that were significantly higher in patients with non-functioning pNETs. It now 
appears that cytokines may be important modifying factors in development, progression and 
prognosis of malignant tumors. In addition, many new antineoplastic drugs have been 
developed to target these specific genetic mutations. 
 
CHARACTERISTICS OF NEUROENDOCRINE CELLS  
 
A number of peptides originally isolated from gut endocrine tissues have been shown to occur 
in nerves. These include gastrin, cholecystokinin, vasoactive intestinal polypeptide (VIP), and 
substance P (SP). As a corollary, peptides that have been found primarily in nervous tissues 
have now been identified in gut endocrine cells and include somatostatin, enkephalins, SP, 
neurotensin, and thyrotropin-releasing hormone (TRH)  (124-126). Because many of these 
peptides occur both in endocrine cells and nerves, “endocrine” tumors of the gut may, in fact, 
be endocrine or neurocrine. Unique to the GEP axis is the ability of the endocrine cell to 
secrete a variety of peptides and amines. Hormonal peptides not only have been found within 
the same cell (e.g., motilin and serotonin in the enterochromaffin [EC] cell), but they have also 
been localized to the same secretory granule. Whether these act within the secretory granule in 
a paracrine manner or are co-regulated in some way is not clear. At any one point in time 
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several hormones and amines are co-secreted and the symptom complex derives from one or 
more of the peptides and amines produced and cannot simply be ascribed to a single factor. 
Thus, a tumor may secrete one peptide, recur, and secrete yet another, and its metastases 
may secrete still other peptides. In the British National Supra-Regional Survey of National 
Health Service Hospitals, 58% of 353 patients with neuroendocrine tumors had increased 
serum levels of two or more hormones at diagnosis. Nine percent of patients had clinical 
symptoms related to different hormones, and four patients developed new symptoms from 
secretion of a second hormone after diagnosis (127). 
 
Rick Lloyd has recently reviewed the use of various markers to identify neuroendocrine 
characteristics (128). Although there are many broad-spectrum neuroendocrine markers, 
chromogranin and synaptophysin are the principal ones used in diagnostic pathology. He has 
added to the armamentarium different keratins in the differential diagnosis and particularly the 
low molecular weight keratins such as CAM 5.2 to avoid false negative results in the workup of 
some neuroendocrine tumors. For low levels of expression he emphasizes the need for in situ 
hybridization to establish the presence of the message if not the protein. 
 
The chromogranin/secreotogranin (Cg/Sg) family is composed of several acidic proteins 
present in secretory granules of neuroendocrine cells. The three major Cg/Sg proteins are 
currently designated as chromogranin (Cg) A and B and secretogranin 11 (Sg11). Others 
include Sg111, Sg1V and Sg V. The distribution of CgA has now been studied extensively. It is 
present in most neuroendocrine cells and neoplasms. A few neoplasms with only a few 
endocrine secretory granules such as the small cell carcinoma of the lung and Merkel cell 
carcinomas do not react strongly with CgA. The widespread distribution and high degree of 
specificity of Cg/Sg make these excellent markers for endocrine cells and their neoplasms. Cg 
A is endocrine specific but has limited sensitivity; for example, in hindgut carcinoids it is only 
positive for 25-50% of carcinoids, and adding CgB will increase the sensitivity for these tumors. 
 
Synaptophysin, a 38kDa protein molecule is a component of the membrane presynaptic 
vesicles. It is widely distributed in neurons, neuroendocrine cells and their neoplasms and is a 
good broad spectrum neuroendocrine marker. Synaptophysin can be examined in formalin 
fixed tissues, which allows tumors to be revisited if initially not thought to be neuroendocrine. 
Although present in synaptic vesicles in tumors, it is found diffusely in the cytoplasm of the cell. 
It has however been found in adrenal cortical adenomas and carcinomas so, although 
sensitive, is not very specific. It therefore should always be used in conjunction with CgA. 
Synaptophysin belongs to a family of synaptic proteins that include synaptoganin (p65), SNAP-
25, SNAP receptor (SNARE), Syntaxin and Rab3A. However, the utility of these proteins in 
routine diagnostic pathology has not been established to date. 
 
The pro-convertases (PC) are enzymes that process pro-peptides into active peptides within 
cells. Some of these including PC1/PC3 and PC2 are highly specific for neuroendocrine cells 
and tumors and can be used as specific markers. Other such as PC4 is present in the tests 
whereas PC5/6 is more prevalent in the gastrointestinal tract. 
 
Neuron Specific Enolase (NSE) is a very sensitive, but not very specific marker for 
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neuroendocrine cells and tumors. It is commonly found in nerves, and neuroendocrine cells, 
but some non-neuroendocrine cells react with antisera to NSE. Therefore, NSE should only be 
used as a broad spectrum marker in the diagnosis of these tumors. 
 
Bombesin, which is a tetrapeptide originally isolated from amphibian skin, is present in many 
endocrine cells as well as neurons. Gastrin releasing peptide (GRP), the mammalian analog of 
Bombesin, is found in many lung tumors and gastrointestinal endocrine tumors and can also be 
used as a broad-spectrum marker. 
 
PGP-9.5 is a soluble protein that was originally isolated from the brain. It has now been shown 
to be a general marker for neuronal and neuroendocrine tissues. Interestingly about 50% of 
melanomas stain for PGP9.5 whereas these are negative for Cg/Sg. 
 
Peptidylglycine Amidating Monooxygene (PAM): Amidation is an important step in the 
maturation of neuropeptides. PAM catalyzes the post-translational modification of many 
neuropeptides. The PAM proteins are usually released along with other peptides during 
exocytosis whereas membrane bound PAM remains in association with the cell. PAM 
expression is found in all neuroendocrine cell types (128-131). Scopsi found a close correlation 
between PAM expression and at least one of the three principal Cg/Sg proteins (CgA, CgB or 
Sg11). It is not clear that this protein provides additional information (132). 
 
Pancreatic endocrine tumors are usually positive for cytokeratins in more than 90% of cases 
(133). The low molecular weight keratins such as CAM 5.2 are more sensitive for 
neuroendocrine tumors than the keratin cocktails such as AE1/AE3 and thus should be added 
to any regime that routinely examines pancreatic neoplasms to preclude misdiagnosis of an 
adenocarcinoma a for a neuroendocrine tumor. The latter has a much more benign prognosis. 
 
Pulmonary tumors include typical and atypical carcinoids and large and small-cell carcinomas. 
About 85% are reactive with cytokeratins. Chromogranins are usually positive in carcinoids, 
atypical carcinoids and large-cell neuroendocrine carcinomas, while only about 50% of small 
cell carcinomas are positive. However other broad spectrum markers of neuroendocrine cells 
are positive in these tumors  (134). While this may be helpful in delineating endocrine function 
of these tumors it is not clear that this alters treatment strategies or dictates a different 
prognostic value. 
 
CHARACTERISTICS OF NETS 
 
Neuroendocrine tumors (NETs) are rare, slow growing neoplasms characterized by their  ability 
to store and secrete different peptides and neuroamines (121). Some of these substances 
cause specific clinical syndromes  (135) while others are not associated with specific 
syndromes or symptom complexes.  There is no “ideal neuroendocrine tumor marker, (136)” 
but according to the presentation, the sensitivity and specificity of each marker varies and it is 
possible to choose those of greatest value for each clinical syndrome. 
 
DEFINITION OF NETS:  
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• Neuroendocrine tumors (NETs) are neoplasms that arise from cells of the endocrine 

(hormonal) and nervous systems. Many are benign, while some are malignant 
• They share common features, such as looking similar, having special secretory granules, 

and often producing biogenic amines and polypeptide hormones (121) 
• They arise from various neuroendocrine cells whose normal function is to serve at the  

neuroendocrine interface. Neuroendocrine cells are present not only in endocrine glands 
throughout the body that produce hormones, but also diffusely in all body tissues (135). 

• Enterochromaffin cells, give rise to carcinoid tumors, were identified in 1897 by Kulchitsky 
(136) and their secretion of serotonin established in 1953 

• NETs show amine precursor (L-DOPA and 5-hydroxytryptophan) uptake and 
decarboxylation to produce biogenic amines such as catecholamines and serotonin. 

 
The current view of NETs has changed somewhat, 
 
Ø Neuroendorine cells reside throughout the body in all tissues and can de-differentiate into 

tumor cells. 
Ø NETs include: 
 
• tumors of the gastrointestinal tract 
• the pancreatic islet cells (121) 
• thymus and lung tumors 
• medullary carcinoma of the parafollicular cells of the thyroid (121) 
• tumors in the pituitary, parathyroid, and adrenomedullary glands and paraganglion cells 

(137) 
• NETs may be functioning or nonfunctioning but there is now a newly recognized entity of 

secretory tumors which are asymptomatic for a variety of reasons and may represent the 
largest category of NETs (138)  

 
The annual incidence of neuroendocrine tumors (NETs) has risen to 40-50 cases per million; 
due to better diagnostic tools including the availability of highly specific and sensitive ways to 
measure tumor products and improved immunohistochemistry techniques for tumor detection. 
The perceived increase in incidence may be a false positive one. In a review of the SEERS 
database it has now been shown that the prevalence of NETS in the USA is about >100,000 
cases which is twice the prevalence of gastric and pancreatic cancer combined. The great 
majority (56%) of these tumors are carcinoids and the remainder are pancreatic 
neuroendocrine (pNETS) 
 
ANATOMIC DISTRIBUTION  
 
More than 50% of neuroendocrine tumors in clinical practice are of the so-called carcinoid 
variety and are found incidentally at operation, after metastasis has occurred, in the small 
intestine (especially the appendix). The remaining fraction comprises approximately 50% 
gastrinomas, 30% insulinomas, 13% VIPomas, 5 to 10% glucagonomas, and, rarely, less than 
5% neurotensinomas, somatostatinomas, and ectopic hormone-secreting tumors. 
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Nonsecretory tumors were thought to make up the bulk of pancreatic tumors. However, with 
better immunohistochemical stains for endocrine cells, especially for neuron-specific enclose 
(NSE), chromogranin, synaptophysin, and receptors for somatostatin (139) there is increasing 
recognition that tumors masquerading as carcinomas of liver, small cell carcinoma of the lung, 
and others, are in reality neuroendocrine tumors. Most of these nonsecretory tumors actually 
store and secrete pancreatic polypeptide (PP), but because it has so little, if any, in the way of 
biologic activity, the tumor often remains silent until it is quite large. 
 
Approximately 60% of pancreatic gastrinomas are concentrated in Pasarro’s Triangle, an area 
subtended by the head of pancreas, gastric antrum, and first portion of the duodenum. Other 
neuroendocrine tumors may be distributed more evenly across the pancreas or in ectopic sites 
such as the adrenal medulla, whereas carcinoid tumors most frequently occur in the appendix 
and small intestine. 
 
The tumors are proliferative in nature and may take the form of hyperplasia or neoplasia 
(adenoma, adenomatous hyperplasia, microadenomatosis, nesidioblastosis, or carcinoma). 
Hyperplasia is relatively uncommon in benign sporadic tumors, but it is the rule in MEN-1 
syndrome and often is present in the area of the pancreas surrounding a benign tumor. 
 
Figure 4. 

 
 
 
The tumors may be further subdivided into (a) orthoendocrine, when they secrete the normal 
product of the cell type (e.g., alpha cell glucagon), and (b) paraendocrine, when they secrete a 
peptide or amine that is foreign to the organ or cell of origin. Paraendocrine tumors are found in 
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the adrenal medulla, kidney, lymph nodes, or liver and as a part of MEN-1 when a variety of 
peptides or amines are secreted. When tumors metastasize, they do so to local lymph nodes, 
liver, peritoneum, and, rarely, to bone, but this seems to be increasing in frequency as the 
natural history of these tumors changes with aggressive treatment. Metastases are notoriously 
highly vascular, which is a telltale sign of a GEP tumor. The occurrence of MEN-1 syndrome 
may be as frequent as one-third of the cases of GEP tumors, depending on the endemic area. 
In high-risk areas, measurements of ionized calcium, prolactin, and PP are important. 
Nonetheless these tumors are rare and slow growing. As Moertel once said, the study of 
neuroendocrine tumors of the gut is like an Odyssey in the land of slow growing tumors. Their 
characteristics are shown in Table 1. 
 
Table 1. Characteristics of Neuroendocrine Tumors 
 
• Rare 
• Usually small, <1 cm 
• Slow growing, months to years, “cancer in slow motion” 
• Usually metastasize before becoming symptomatic, often when tumor is >2 cm 
• Expression is episodic, may be silent for years 
• Symptoms mimic commonplace conditions and often are misdiagnosed 
• Complex diagnosis, rarely made clinically, requiring sophisticated laboratory and  
  scanning techniques 
 
 
Table 2 lists the common clinical syndrome, the tumor types, the sites and the hormones or 
peptides/amines that are produced. The sections that follow focus on the specific syndromes 
that are ascribed to GEP hyperfunction.
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Table 2. The Clinical Presentations, Syndromes, Tumor Types, Sites and Hormones (139). 
 

Clinical Presentation Syndrome Tumor Type Sites Hormones 

 
 
 
 

Flushing 

 
Carcinoid 

 
Medullary 

Carcinoma of 
Thyroid 

 
Pheochromocytoma 

 
Carcinoid C 

cell tumor 

Tumor of Chromaffin 
cells 

 
 
 
 
 

Mid/ foregut Adrenal 
medulla Gastric 

 
Thyroid C cells 

 
Adrenal and 

Sympathetic Nervous 
system 

Serotonin 

GCRP 

Calcitonin 
 
Metanephrine and 
Normetanephrine 

 
Diarrhea, abdominal pain 

and dyspepsia 

 
Carcinoid, WDHHA, 

ZE, PP, MCT 

Carcinoid, VIPoma, 
Gastrinoma, PPoma, 
Medullary carcinoma 
thyroid, mastocytoma 

As above 

Pancreas, mast cells, 

Thyroid 

 
As above, VIP, 

gastrin, PP, 
calcitonin 

Diarrhea/ 
Steatorrhea 

Somatostatin 
Bleeding GI tract 

Somatostatinoma, 
neurofibromatosis 

Pancreas 
Duodenum 

 
Somatostatin 

Wheezing Carcinoid Carcinoid Gut/pancreas/lung SP, CGRP, 
serotonin 

 
Ulcer /dyspepsia 

 
Zollinger Ellison, 

 
Gastrinoma Pancreas/ 

Duodenum 

 
Gastrin 

 
Hypoglycemia 

 
Whipple’s triad Insulinoma, sarcoma, 

hepatoma 

Pancreas, 
retroperitoneum 

Liver 

Insulin, IGF1, 
IGF2. 

 
Dermatitis Sweet Syndrome 

Pellagra 
Glucagonoma 

Carcinoid 
Pancreas 

Midgut 
Glucagon 
Serotonin 

 
Dementia 

 
Sweet syndrome 

 
Glucagonoma 

 
Pancreas 

 
Glucagon 

 
Diabetes Glucagonoma 

Somatostatin 
Glucagonoma 

Somatostatinoma 
Pancreas 
Pancreas 

Glucagon 
Somatostatin 

DVT, Steatorrhea, 
Cholelithiasis 

Neurofibromatosis 

 
Somatostatin 

 
Somatostatinoma Pancreas 

Duodenum 

 
Somatostatin 

 
Silent, liver metastases 

 
Silent 

 
PPOMA 

 
Pancreas 

 
PP 

 
Table 2 summarizes the approach to diagnose a NET based upon the clinical presentation, the tumor type, 
their sites of origin and the possible means of diagnosis and the biochemical markers that should be 
measured. Abbreviations:  CGRP: Calcitonin gene-related peptide.   
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Table 3. Clinical presentation, syndrome, tumor type, sites and the hormones 
produced. 

Clinical Presentation Syndrome Tumor Type Sites Hormones 
Acromegaly Acromegal, 

Gigantism 
NET, PNET, 
Pheo Pancreas islet GHRH 

Cushings Cushings NET, PNET, 
Pheo 

Pancreas islet, 
LUNG, PHEO, 
MTC 

CRH, ACTH 
Pigmentation Pigmentation NET Pancreas islet MSH 

 

Anorexia, nausea, 
vomiting, abdominal 
pain 

 
 

Hypercalcemia 

 
 
NET, PNET, 
Pheo 

 
 
Pancreas islet, 
Pheo 

PthRP, 
Pth,TGFb, IL, 25 
0HD, 1,25 OHD 
– bone alk phos, 
NTx b = b 

 
Hypoglycemia 

Autonomic and 
CNS symptoms 
of hypoglycemia 

 
NET, PNET Pancreas 

Carcinoid 

IGF, IGF2 and 
proIGF, GLP-1, 
GLP-2 

Weakness, lethargy, 
apathy 

Hyponatremia, 
SIADH 

NET, PNET, 
Pheo 

Lung, pancreas, 
pheo ADH, ANP 

Hyperandrogenism, 
gynecomastia, 
hyperthyroidism 

  
PET 

 
Pancreas LH, FSH, 

Prolactin, TSH 

Hypertension Malignant 
hypertension 

PET, Pheo, 
Paraganglioma 

Paraganglioma, 
NET 

Renin, pro-renin, 
aldosterone 

 
Abbreviations: 
PET = pancreatic NET 
NET = neuroendocrine tumor 
SIADH = syndrome of inappropriate secretion of antidiuretic hormone  
Pheo = pheochromocytoma 
MTC = medullary thyroid carcinoma 
GHRH = growth hormone releasing hormone  
CRH = corticotrophin releasing hormone  
ACTH = adrenocorticotrophin 
PthRP = parathyroid hormone related peptide  
25 OHD = 25 hydroxy vitamin D 
1,25 OHD = 1, 25 dihydroxy vitamin D 
IGF = insulin like growth factor  
ADH = antidiuretic hormone    
ANP = atrial naturetic peptide  
Alks phos = alkaline phosphatase  
NTx = N telopeptide, 
TSH = Thyrotropic stimulating hormone  
LH – luteinizing hormone 
FSH = follicle stimulating hormone 
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Table 4. Specific Biochemical Markers for each Tumor Type (140) 
Site Tumor Type Marker Specificity 

 

All 

 CgA and B 
PP, NSE, Neurokinin, 
Neurotensin 
HCG α and ß 

High 
Intermediate 
Low 

Thymus Foregut Carcinoid ACTH Intermediate 

 
Bronchus 

Foregut Carcinoid, 
Small Cell Lung 
Carcinoma. 

ACTH, ADH, Serotonin, 5- 
HIAA, Histamine, GRP, 
GHRH, VIP, PTHrp 

Intermediate 
 
Low 

 
Stomach 

Foregut Carcinoid, 
Gastrinoma, 
Ghrelinoma. 

Histamine, Gastrin 
Ghrelin 

Intermediate 
Low 

 
 
Pancreas 

Gastrinoma, 
Insulinoma, 
Glucagonoma, 
Somatostatinoma, 
PPoma, VIPoma. 

Gastrin, Insulin, Proinsulin, 
Glucagon, Somatostatin 
C-peptide, Neurotensin, 
VIP, PTHrp, Calcitonin 

 
High 

Low 

Duodenum Gastrinoma, 
Somatostatinoma. Somatostatin, Gastrin High 

 

Ileum 

 

Midgut Carcinoid 

Serotonin, 5-HIAA Neurokinin A,  
Neuropeptide K, Substance P 

 
High 
Intermediate 

Colon and 
Rectum Hindgut Carcinoid Peptide YY, Somatostatin Intermediate 

 
 

Bone 

 
 

Metastasis 

Bone Alkaline 
Phosphatase, N- 
Telopeptide 

 
PTHrp 

High (blastic 
lesions), 
Modest (lytic 
lesions) 

 
Intermediate 

Cardiac 
Involvement Carcinoid BNP Intermediate 

 
Table 4 shows the specific biochemical markers used for each tumor and their specificity.  CgA 
and B:  Chromagranin A and B; PP: pancreatic polypeptide; NSE: neuron-specific Enolase; 
HCG: human chorionic gonadotropin; ACTH: adrenocorticotropic hormone; ADH: anti diuretic 
hormone; 5-HIAA: 5 hydroxyindoleacetic acid; GRP: gastrin releasing peptide; GHRH: growth 
hormone releasing hormone; VIP: vasointestinal peptide; PTHrp: parathyroid hormone related 
peptide; BNP: brain natriuretic peptide 
 
Figure 5. 
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The great majority of the symptomatic tumors are carcinoid tumors accounting for more than half 
of those presenting each year (Figure 5). Insulinomas, gastrinomas and PPomas account for 
17,15 and 9%, while the remainder are around the 1% mark. These tumors are what is known in 
common parlance as “Zebras” because of their rarity, but physicians are fascinated by their 
complexity and the unusual nature of their presentations. For the most part the endocrinologist 
makes his living not by diagnosing one of these and treating it, but by excluding conditions that 
masquerade as a neuroendocrine tumor. For this reason it is probably more appropriate to 
consider the clinical presentations rather than the tumor types. By far the most frequent clinical 
manifestations found in practice are flushing and diarrhea (Table 3), which are the cardinal 
presentations of the most common tumor syndrome, carcinoid, and this will therefore be 
discussed first in the next Chapter. However, a new era is dawning wherein it has become 
increasingly recognized that tumors may be secretory but do not produce a clinical syndrome as 
indicated in Figure 6. 
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Figure 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
There have been major strides in the therapeutic options for patients with NETS. Studies that 
have come to fruition in the last decade include the CLARINET  trial which evaluated lanreotide 
on tumor progression free survival in patients with non-functioning NETs; the ELECT trial (140) 
which showed that lanreotide was capable of controlling the major symptoms of flushing and 
diarrhea; The RADIANT-2 and RADIANT-4 studies which evaluated the MTOR inhibitor 
Everolimus in functioning and non-functioning =NETS of the gastrointestinal tract and  lungs 
alone and in combination with somatostatin, the Telestar study which evaluated telotristat ethyl 
for control of symptoms of flushing and diarrhea by blocking serotonin synthesis and the tyrosine 
kinase inhibitor Sunitinib on secretory midgut NETS which demonstrated improvement in PFS 
(141)  (142)  in addition to improving quality of life (142) and most recently the 177 Lu-
DOTOTATE in NETs of the small intestine and proximal colon (midgut) showing remarkable 
impact on PFS and to some extent overall survival (143). Perhaps as shown by Vinik and 
colleagues  (144) quality of life was improved  and the improvement was shown to be dependent 
on a change in the bulk of the tumor, progression free survival and the biomarkers secreted. In 
the earlier Vinik studies (144) the surprising findings were the intimate link of quality of life on the 
secretory product, the tumor bulk and the peptide or amine secreted. These remarkable 
advances amongst others have instigated NANETS to develop a Consensus statement on the 
current recommendations for the management of NETs (see the position statement  and 
consensus guidelines)  (145). In the ensuing pages we will entertain the reader to the many 
advances that have occurred in the neuroendocrine tumor world particularly the new syndromes, 
recognition of the importance an value of biomarkers in diagnosis, prediction of tumor behavior 
and the ramifications for patient survival and quality of life and mortality and welcome addition of 
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new biologic agents, better and more powerful means of tumor identification and peptide 
targeted therapies including the scope for peptide radioactive receptor targeting (PRRT).   
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