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INTRODUCTION 
 
Vitamin D derived from endogenous production in the skin or absorbed from the gut is transformed into 
its active form by two successive steps: hydroxylation in the liver to 25-hydroxyvitamin D [25(OH)D] 
followed by 1α-hydroxylation in the renal proximal tubule to 1,25-dihydroxyvitamin D (1,25(OH)2D-
calcitriol). Some other cells exhibit 1α-hydroxylase activity: placental decidual cells, keratinocytes, 
macrophages from various origins and some tumor cells. The role of the extrarenal production of 
1,25(OH)2D is unknown and under normal conditions it does not significantly contribute to the circulating 
levels of the hormone. Hydroxylation at carbon 24 to produce 24,25-dihydroxyvitamin D [24,25(OH)2D] or 
1,24,25-trihydroxyvitamin D, is performed in a wide range of normal tissues and is believed to be 
important in the removal of vitamin D metabolites. All these enzymes are mitochondrial mixed function 
oxidases containing cytochrome P450 with ferredoxin and heme-binding domains. Cloning of cDNA for 
porcine 25-hydroxylase and the mouse, rat and human 24- and 1-hydroxylase, as well as the genes for 
the latter two enzymes, has been reported (1-9). 
 
25-hydroxylation of vitamin D in the liver is not tightly regulated; the principal determinant of its rate is the 
circulating level of vitamin D. The renal 1α-hydroxylase enzyme is stringently regulated by: PTH through 
a cAMP mediated pathway; calcitonin in a different region of the proximal tubule, apparently not via a rise 
in cAMP; 1,25(OH)2D through its receptor; calcium by unknown mechanisms and by phosphorus mainly 
via Fibroblast Growth Factor 23 (FGF-23) production in osteocytes and osteoblasts. The 24-hydroxylase 
enzyme is modulated by cAMP and the receptors for 1,25(OH)2D similar to the 1α-hydroxylase enzyme, 
but in opposing directions. All calciferols are fat soluble and circulate principally bound to an a-globulin-
transcalciferin. Most of the body pool of vitamin D is in the body fat while only a small fraction of the 
pools of 25(OH)D or 1,25(OH)2D are in fat. Normal daily turnover of vitamin D and 25(OH)D are 
approximately 30 and 15 mg per day respectively with 1,25(OH)2D daily production about 1 mg. The 
fractional conversion of vitamin D to calcitriol is much higher in vitamin D deficient states. It is difficult to 
measure vitamin D in blood. Circulating vitamin D metabolites measured in clinical practice are 25(OH)D 
and 1,25(OH)2D. As 25(OH)D synthesis is substrate i.e. vitamin D dependent, serum levels of this 
metabolite are being taken as a measure of vitamin D status (for detailed discussion of the topics of this 
paragraph and the preceding one, see Chapter 3 of this section). 
 
Calcitriol effects are mediated via a high-affinity intracellular vitamin D receptor (VDR). VDR acts as a 
ligand-modulated transcription factor that belongs to the steroid, thyroid, and retinoic acid receptors gene 
family (10-13). VDRs were demonstrated in many tissues, leading to the increased recognition of multiple 
target organs and actions of the hormone. However, it seems that most calcitriol effects of clinical 
importance are associated with mineral homeostasis, though effects on muscle function and 
coordination, as well as on additional systems, may have clinical relevance. 
 
1,25(OH)2D is the most powerful physiological agent that stimulates active transport of calcium, and to a 
lesser degree phosphorus and magnesium, across the small intestine (14,15). Thus, disorders in vitamin 



D action will lead to a decrease in the net flux of mineral to the extracellular compartment causing 
hypocalcemia and secondary hyperparathyroidism. Hypophosphatemia will ensue, as a result of both 
increased renal phosphate clearance due to secondary hyperparathyroidism and reduced absorption of 
phosphorus due to deficient calcitriol action on the gut. Low concentrations of calcium and phosphorus in 
the extracellular fluid will lead to defective mineralization of organic bone matrix. Defective bone matrix 
mineralization of the newly formed bone and growth plate cartilage will produce the characteristic 
morphological and clinical signs of rickets, while at sites of bone remodeling, it will cause osteomalacia. 
Disorders in vitamin D action may impair the differentiation of osteoblasts and thus their functional 
capacity to mineralize bone matrix; this may be an additional mechanism of minor importance that 
contributes to rickets and osteomalacia (16,17). Continuous bone remodeling takes place in the growing 
skeleton, thus children with rickets will have osteomalacia as well. The clinical term used in this chapter 
to describe defective bone matrix mineralization in general will be rickets and/or osteomalacia. 
 
Mineralization of the newly formed organic matrix of bone is a complex and highly ordered process. The 
essential components for normal mineralization include appropriate extracellular concentrations of 
calcium, phosphorous and normal functions of the bone forming cells. Disturbances in any of these 
components will lead to a stereotypic response of disturbed mineralization. The histological, radiological 
and most of the clinical feature characteristics of rickets and/or osteomalacia will be the same 
independent of the primary disorder. Thus, defective bone matrix mineralization can be caused by: a) 
calcium deficiency (e.g. a rare nutritional deficiency of the element or the more common form of calcium 
deficiency secondary to disorders of vitamin D metabolism) – i.e. hypocalcemic rickets and/or 
osteomalacia; b) phosphorous deficiency (e.g. increased renal phosphate clearance as inX-linked 
hypophosphatemia (for detailed discussion see Chapter 10 of this section) – i.e. hypophosphatemic rickets 
and/or osteomalacia; c) primary defects in local bone processes (e.g. hypophosphatasia) i.e. rickets and/or 
osteomalacia with normal mineral homeostasis. 
 
Serum concentrations of calcium, phosphorous, iPTH, biochemical markers of bone turnover and 24 
hour urinary calcium excretion will differentiate among the different primary disturbances leading to 
defective bone matrix mineralization (Table 1). 
 
Table 1. Biochemical parameters of mineral and bone metabolism in patients with rickets and/or 
osteomalacia, by etiology 
 
  

 SERUM LEVELS 

24H 
URINARY 
CALCIUM 

EXCRETION 

Etiology Calcium Phosphorous iPTH Bone specific 
alk.phos* 

 

Hypocalcemic e.g. vitamin D deficiency Low to low 
normal 

Low Elevated Elevated Low 

Hypophosphatemice.g. X-linked 
hypophosphatemia 

Normal Low Normal to  
low normal 

Elevated Low to 
elevated 

No abnormality in mineral homeostasis 
e.g. hypophosphatasia 

Normal Normal Normal Low Normal 

* Alk. phos. alkaline phosphatase activity 
 
This chapter will deal with hypocalcemic rickets and/or osteomalacia. A primary calcium deficiency state 
due to extremely low calcium intake was reported in growing children (19) but is very uncommon. Thus, 
the discussion will concentrate on calcium deficiency secondary to disorders in vitamin D action. Such 
disorders can be due to disturbances along the cascade of 1,25(OH)2D synthesis leading to a deficiency 



of the hormonal form of the vitamin (vitamin D deficiency states) or defects in the interaction of calcitriol 
and its target tissues (resistance to 1,25(OH)2D). 
 
As all disorders in vitamin D action will lead to the same clinical, radiological, histological, and most of the 
biochemical aberrations, those common features will be discussed first. 
 
CLINICAL AND RADIOLOGICAL FEATURES OF RICKETS AND 
OSTEOMALACIA 
 
The clinical features of rickets due to disorders in vitamin D action are weakness, bone pain, bone 
deformity and fracture. The most rapidly growing bones show the most striking abnormalities. Thus, the 
localization and severity of the clinical features will depend on the age of onset. In children with acquired 
disorders in vitamin D action, signs and symptoms of rickets will vary with the age in which the deficiency 
is being manifested. Children with hereditary disorders of vitamin D action will appear normal at birth as 
calcium and phosphorous levels in fetal plasma are sustained by placental transport from maternal 
plasma that is not regulated by the fetal vitamin D system. These children usually develop the 
characteristic features of rickets within the first 2 years of life. Defects in bone mineralization are 
particularly evident in regions of rapid bone growth, including, during the first year of life, the cranium, 
wrist, and ribs. Rickets at this time will lead to widened cranial sutures, frontal bossing, posterior 
flattening of the skull (craniotabes), widening of the wrists, bulging of costochondral junction (rachitic 
rosary), and indentation of the ribs at the diaphragmatic insertion (Harrison’s groove). The rib cage may 
be so deformed that it contributes to respiratory failure. Dental eruption is delayed, and teeth show 
enamel hypoplasia. Muscle weakness and hypotonia are severe and result in a protuberantabdomen, 
thatmay contribute to respiratory failure, and may cause inability to walk without support. After the first 
year of life with the acquisition of erect posture and rapid linear growth, the deformities are most severe 
in the legs. Bow legs (genu varum) or knock-knee (genu valgum) deformities of various severity develop 
as well as widening of the end of long bones. If not treated, rickets may cause severe lasting deformities, 
compromise adult height, and increase susceptibility to pathological fractures (Figure 1). 



 
Figure 1. A teenage male with rickets. Note deformities of legs (bow legs) and compromised height. 
 
The specific radiographic features of rickets reflect the failure of cartilage calcification and endochondral 
ossification and therefore are best seen in the metaphysis of rapidly growing bones (Figures 2 and 3). 
The metaphyses are widened, uneven, concave, or cupped and because of the delay in or absence of 
calcification, the metaphyses could become partially or totally invisible. In more severe forms or in 
patients untreated for prolonged periods, rarefaction and thinning of the cortex of the entire shaft, sparse 
bone trabecularization and bone deformities will become evident. Greenstick fractures may appear as 
well. 



 
Figure 2. Radiograph of distal femur and proximal tibia and fibula of a patient with rickets. Note widening 
of epiphysis, resorption of provisional zone of calcification, flaring of metaphysis and bone deformity. 
 



 
Figure 3. Radiograph of the wrist and hand of a patient with rickets. Note scalloping, widening and 
irregularity of metaphyseal end of the ulna; apparent widening of the joint space as a result of absence of 
epiphyseal provisional calcification. 
 
The clinical features of osteomalacia are subtle and could be manifested as bone pain or low back pain 
of varying severity in some cases. Severe muscle weakness and hypotonia may be a prominent feature 
in adults with vitamin D deficiency. Improvement of myopathy occurs after very low doses of calcitriol and 
independently of changes in serum mineral levels. 
 
The first clinical presentation could be an acute fracture of the long bones, pubic ramii, ribs, or spine. The 
radiographic manifestations could be mild, e.g., generalized, nonspecific osteopenia or more specific, 
such as pseudofractures, commonly seen at the medial edges of long bones shaft (Figure 4). 
 



 
Figure 4. A young male with osteomalacia. Note a pseudofracture in the medial edge of the upper 
femoral shaft (arrow). 
 
In hypocalcemic rickets and/or osteomalacia, as is the case in disorders in vitamin D action, there may 
exist radiographic features of secondary hyperparathyroidism such as subperiosteal resorption and cysts 
of the long bones. 
 
HISTOLOGICAL FEATURES OF RICKETS AND OSTEOMALACIA 
 
The characteristic histological feature of rickets and osteomalacia is deficiency or lack of mineralization 
of the organic matrix of bone. Because in clinical practice bone specimen could only be obtained from 
the iliac crest, the histological picture is osteomalacia. Osteomalacia is defined as excess osteoid 
(hyperosteoidosis) and a quantitative dynamic proof of defective bone matrix mineralization obtained by 
analysis of time-spaced tetracycline labeling (20,21). 
 
Bone Biopsy and Bone Histomorphometry 
 
General 
 
Transiliac bone biopsy is taken at a standard location: 2cm behind the antero-superior iliac spine and just 
below the crest, with a terpine 7.5mm inner diameter or 5mm for children. The biopsy should contain the 
inner and outer cortex and intact trabecular bone in between. Double tetracycline labeling is performed 
by giving the drug: e.g. dimethyl-chlortetracycline 1g/day in two divided doses, for 2 days, followed by a 
second administration after 10 to 14 days of drug free interval. The bone biopsy is performed 5 to 7 days 
following the last dose of tetracycline. The biopsy is sectioned undecalcified and is being used unstained 
or with different stains and techniques to obtain qualitative and quantitative histomorphometric 
parameters (Figure 5). The following are the commonly used quantitative histomorphometric parameters 
(22): trabecular bone volume (BV/TV), osteoid volume (OV/BV), osteoid surface (OS/BS), osteoid 
thickness (O. Th), osteoblast surface (Ob.s/BS), osteoclast surface (Oc.S/BS), osteoclast number 
(N.Oc/TA), double labeled surface (dLS/BS), single labeled surface (sLS/BS), mineral appositional rate 
(MAR), bone formation rate (BFR/BS), and mineralization lag time (MLT). 



 
Figure 5. Photomicrographs of transilial bone biopsies of patients with rickets and osteomalacia (A,C and 
E) and siblings without bone disease (B,D and F) (Courtesy of Drs. D. Gazit and I.A. Bab).A and B: 
Modified Mason stain; magnification x130. Note in A: broad osteoid seams (arrow), osteoid trabeculae 
(heavy arrow) and irregular mineralization front (rectangular arrow).C and D: Polarized light; Von Kossa 
toluidine blue stain; magnification x360. Note in C: increased number of osteoid lamellae (arrows).E and 
F: Fluorescent photomicrograph, unstained; magnification x200. Note in E wide fluorescent bands 
(arrows), no double or single tetracycline labels and ground glass appearance. 
 
Osteomalacia 
 
Histologically patients with osteomalacia with or without rickets will represent an abundance of 
unmineralized matrix, sometimes to the extent that whole trabeculae appeared to be composed of only 
osteoid (Figure 5A). This will be depicted by quantitative histomorphometry as increases in osteoid 
volume, surface and thickness (OV/BV, OS/BS and O.TH). However, hyperosteoidoisis could be 
observed in a number of bone diseases with a high turnover. The osteomalacic nature of the 
hyperosteoidosis is being demonstrated by defective mineralization; irregularity of mineralization fronts 
(Figure 5A); high number of osteoid lamellae (Figure 5C); broad single tetracycline fluorescent labels 
(Figure 5E) or no label at all, in contrast to the normal double tetracycline fluorescent labels (Figure5F). 
These qualitative observations have to be supported by the unequivocal changes in quantitative 
histomorphometry, i.e. decreases in a double and single tetracycline labeled surface (dLS/BS and 
sLS/BS) and in mineral apposition rate (MAR) as well as prolongation of mineralization lag time (MLT). 



 

BIOCHEMICAL FEATURES OF RICKETS AND OSTEOMALACIA 

 
The biochemical parameters characterizing disorders in vitamin D action can be divided into those 
associated with vitamin D status, the primary disturbance in mineral homeostasis and the respective 
compensatory mechanisms, and changes in bone metabolism. Changes in mineral and bone metabolism 
will be similar in all states of disorders in vitamin D action, while serum levels of vitamin D metabolites 
will characterize each of the classes delineated in the introduction (Table 2). 
 
Table 2. Serum levels of vitamin D metabolites in patients with disorders in vitamin D action, by 
etiology 
 
 SERUM LEVELS 

*ETIOLOGY 25(OH)D 1,25(OH)2D 

Vitamin D deficiency Low Low to normal 

1,25(OH)2D deficiency Normal to elevated Very low 

Resistance to 1,25(OH)2D Normal to elevated Markedly elevated 

* See section on Definitions and Terminology 
 
As previously discussed, disorders in vitamin D action will lead to hypocalcemia and secondary 
hyperparathyroidism. Thus, the characteristic biochemical features are low to low-normal concentrations 
of serum calcium (depending on compensatory parathyroid activity), low urinary calcium excretion, 
hypophosphatemia, increased serum immunoreactive parathyroid hormone (iPTH) levels, increased 
urinary cyclic AMP excretion, and decreased tubular reabsorption of phosphate (the last two measures 
reflecting the biological activity of elevated iPTH). Biochemical markers associated with increased 
osteoid production as bone specific alkaline phosphatase and osteocalcin will be elevated in states of 
rickets and osteomalacia (23). 
 
DEFINITIONS AND TERMINOLOGY 
 
Terminology applied to disorders in vitamin D action has led to much confusion. This is principally 
because the terms were coined prior to our detailed understanding of vitamin D metabolism and 
mechanism of action. The following will define and clarify the terms deficiency and resistant and point to 
the limitations and ambiguity of these terms as being currently used as well as additional widely used 
terms such as pseudodeficiency and dependency. 
 
Deficiency states 
 
It is important to specify the localization of a defect as precisely as possible. The description of a 
deficiency state should indicate the most proximal metabolite in the vitamin D biosynthetic pathway that 
is deficient, emphasizing, if possible, that the concentrations of the immediate precursor of the metabolite 
specified are normal. For example, low serum levels of 1,25(OH)2D could be the end result of vitamin D 
deficiency or defects in the activity of the renal tubular enzyme 25 (OH)D1α-hydroxylase. Only in thelater 
case it will be appropriate to define it as calcitriol deficiency. Based on our current understanding of 



vitamin D biosynthesis, three states of deficiency could be envisioned involving the major metabolites: 
vitamin D, 25 (OH) D and 1,25(OH)2D. As mentioned before it is difficult to measure vitamin D in blood. 
Thus, in clinical practice the diagnosis of vitamin D deficiency states is usually established by 
measurements of serum 25(OH)D levels. In strict terms, low serum levels of this metabolite imply 
deficiency of 25(OH)D. However, the use of serum 25(OH)D levels as a measure of vitamin D status, is 
not based just on technical necessity but is being supported by the following: a. the activity of the liver 
enzyme vitamin D 25-hydroxylase is not tightly regulated and is driven mainly by the substrate i.e. 
vitamin D concentrations; b. isolated 25(OH)D deficiency is an extremely rare autosomal recessive 
disorder, attributed but not proven to be caused by hereditary deficiency of the hepatic enzyme (24); c. 
the clearance of vitamin D and 25(OH)D is affected similarly by different pathophysiological mechanisms. 
 
Based on the commonly available measurement of only two vitamin D metabolites, two deficiency states 
could be defined in clinical practice: low serum 25(OH) levels implying vitamin D and/or 25(OH)D 
deficiency, but referred mainly to define a vitamin D deficiency with the limitations mentioned above; and 
calcitriol deficiency, based on low 1,25(OH)2D and normal or high 25(OH)D serum levels (Table 2). 
 
In theory, the pathogenic mechanism leading to deficiency of any of these metabolite could be 
categorized to either defective synthesis or increased clearance, with the exception of the parent vitamin 
D in which the additional possibility of deficient intake has to be taken into account. Each category: 
deficient synthesis or increased clearance could have a hereditary or acquired etiology and each 
subcategory could be further divided into simple (implying that the defect is localized only to vitamin D 
metabolism) or complex (implying that the defect is a part of a more generalized disturbance affecting 
other metabolic pathways). 
 
To demonstrate the practical use and usefulness of the terminology, the following are some examples. 
Calcitriol deficiency could be caused by hereditary or acquired defects of the renal tubular enzyme 
25(OH)D 1α-hydroxylase. If a hereditary defect involves only the vitamin D metabolic pathway it will be 
termed simple hereditary calcitriol deficiency. If the defect is a part of a more generalized hereditary 
disturbance, involving other metabolic pathways as well, e.g. Fanconi syndrome, renal tubular acidosis, 
X-linked hypophosphatemic rickets, or all states of increased FGF-23 secretion, etc, the disorder will be 
defined as a complex hereditary 1,25(OH)2D deficiency. Decreased calcitriol synthesis could be caused 
by acquired diseases that usually affect additional metabolic pathways, e.g. chronic renal failure, 
hypoparathyroidism, tumor induced osteomalacia, etc, thus the appropriate term will be complex 
acquired 1,25(OH)2D deficiency due to defective synthesis. Some drugs as barbiturates and the 
antiepileptic-hydantoin may affect the liver cytochrome P450 enzyme system and increase vitamin D 
catabolism. It may accelerate vitamin D deficiency usually in patients that have vitamin D insufficiency. 
Such disturbances will be termed complex acquired vitamin D deficiency due to increased clearance. 
Intestinal malabsorption either hereditary or acquired interferes with the absorption and enterohepatic 
recirculation of vitamin D and its metabolites and thus may lead to complex hereditary or acquired 
vitamin D deficiency due to decreased input. 
 
Resistant states 
 
Resistance to a factor may be defined as a state where normal levels of the factor are associated with 
subnormal bioeffects. This definition has two important determinants, the factor and the bioeffect. In the 
case of the vitamin D system, the factor can be the parent vitamin D, the 25-hydroxylated metabolite or 
calcitriol. Based on vitamin D metabolism and mechanism of action, the term resistance should only be 
used with the most distal metabolite or the active hormonal form of vitamin D, i.e. 1,25(OH)2D. For 
example, patients with a renal defect in calcitriol synthesis are resistant to vitamin D or 25(OH)D caused 
by defective calcitriol production, but have a complete normal response to physiological replacement 
doses of 1α-hydroxylated vitamin D metabolites. 
 
Several bioeffects in vivo have potential relevance in evaluating states of resistance to 1,25(OH)2D . 
These include the effects on bone matrix mineralization and the effect on calcium transport through the 



small intestine. However, as discussed before, rickets and/or osteomalacia are stereotypic responses of 
the mineralizing bone matrix to a variety of perturbations not all of which are correlated to disturbances in 
1,25(OH)2D action. Two clinical examples are presented to clarify this point: a. X-linked 
hypophosphatemic rickets (XLH) was and still is termed vitamin D resistant rickets. However, the 
unresponsiveness to vitamin D of the bone disease in XLH is due to the fact that the defective 
mineralization is caused mainly by phosphorus deficiency though there is some suppression of calcitriol 
synthesis caused by increased FGF-23 secretion; b. Hereditary hypophosphatemic rickets with 
hypercalciuria is a disease characterized by defective bone matrix mineralization, low serum phosphorus 
and elevated serum 1,25(OH)2D levels, taken together, it may look as a resistance to the hormone. 
However, these patients have increased intestinal absorption of calcium and hypercalciuria. The primary 
defect in this disease is an isolated defect in a renal phosphate transporter leading to increased renal 
phosphate clearance, hypophosphatemia, an increased 1,25(OH)2D production and the appropriate 
physiological response i.e. increased intestinal calcium absorption. The rickets and/or osteomalacia are 
the result of phosphorus deficiency rather than unresponsiveness to calcitriol (for details see section 10 
of this chapter). 
 
There is no doubt about the pivotal role of calcitriol on net calcium transport across the intestinal 
epithelium. Thus intestinal calcium absorption measured directly or assessed by secondary changes in 
serum and urine calcium and iPTH levels can be utilized as a bioeffect in evaluating states of resistance 
to 1,25(OH)2D. When the defect in bone matrix mineralization is caused by calcium deficiency, rickets 
and/or osteomalacia could be used as an additional bioeffect to define calcitriol resistance. 
 
Resistance to 1,25(OH)2D is defined here as a state in which normal or high levels of the hormone are 
associated with hypo-or normocalcemia, secondary hyperparathyroidism, rickets and/or osteomalacia 
caused by calcium deficiency. 
 
Pseudovitamin D deficiency and vitamin D dependency 
 
The term pseudovitamin D deficiency refers to a state with biochemical and tissue features of vitamin D 
deficiency (calcium deficiency, secondary hyperparathyroidism, impaired bone matrix mineralization) with 
no history of vitamin D or calcium deficiency or low serum levels of 25(OH)D. This is an ambiguous term 
as it includes two different diseases:1,25(OH)2D deficiency and resistance to 1,25(OH)2D, the so-called 
pseudovitamin D deficiency type I and II respectively, and does not include the known etiology and 
pathogenesis of these disturbances. 
 
The term vitamin D dependency has been used interchangeably with pseudovitamin D deficiency. It 
meant to describe patients capable or responding to, and thus dependent on, supraphysiological doses 
of vitamin D. This is the situation in patients with simple hereditary 1,25(OH)2D deficiency due to defects 
in the renal enzyme 25(OH)vitamin D 1α-hydroxylase. Patients with this disease have a complete clinical 
remission on physiological replacement doses of calcitriol. The term vitamin D dependency type II was 
applied to describe patients with simple hereditary resistance to 1,25(OH)2D, the majority of whom are 
unresponsive to any dose of vitamin D or its active metabolites, and therefore are not dependent on 
vitamin D. 
 
DISORDERS IN VITAMIN D ACTION 
 
Three disorders in vitamin D action will be discussed in this chapter: vitamin D deficiency, mainly simple 
acquired vitamin D deficiency (i.e. involving only the vitamin D metabolic pathway); simple hereditary 
1,25(OH)2D deficiency resulting from defects in calcitriol biosynthesis; simple hereditary resistance to 
1,25(OH)2D caused by defects in calcitriol receptor-effector system. While acquired vitamin D deficiency 
is the most common disorder, the other two rare inborn errors in vitamin D metabolism will be discussed 
because of its immense contribution to the understanding of vitamin D metabolism and mode of action in 
human beings. 



 
Vitamin D deficiency 
 
Pathogenesis 
 
Vitamin D deficiency can be caused by decreased input or increased clearance. Decreased input of 
vitamin D may be the end result of: a) defective intake due to dietary (nutritional) deficiency or intestinal 
malabsorption; b) deficient photosynthesis of vitamin D in the skin. Increased vitamin D clearance could 
result from increased catabolism, mainly in the liver, or increased loss via the kidneys or intestine. As 
discussed, each of these disturbance could be, at least in theory, hereditary or acquired, and further 
subcategorized as simple (involving only the vitamin D metabolic pathway) or complex (implying a more 
generalized disturbance). Thus, whenever the diagnosis of vitamin D deficiency is established, there is a 
need to define the etiology and pathophysiology of the disorder and categorize it accordingly. 
 
Vitamin D deficiency due to increased clearance is relatively uncommon in clinical practice and usually is 
part of more general diseases (i.e. complex disturbances) e.g. protein losing nephropathy, intestinal 
malabsorption and increased liver catabolism sometimes caused by certain drugs (e.g. barbiturates, 
antiepileptics, etc). The rest of this section will deal with vitamin D deficiency caused by decreased input. 
 
Vitamin D content of various unfortified food substances is very low with the exception of fatty fish such 
as herring, mackerel or cod liver oil. It is estimated that under normal unfortified food consumption, less 
than 20% of the total circulating 25(OH)D is contributed by nutritional vitamin D. In some countries the 
dietary content of vitamin D is higher due to vitamin D supplementation of some food products. In the 
United States, milk is being fortified by 400IU per quart. Increased vitamin D intake could result from 
habitual use of multivitamins that usually contain 400IU of vitamin D per tablet, or some calcium salt 
preparations that contain vitamin D as well. These supplements will of course increase the relative 
contribution of dietary vitamin D intake to the total body vitamin D pool in general, and when cutaneous 
production of vitamin D is limited, in particular. 
 
Gastrointestinal malabsorption will interfere with vitamin D input from the gut and it may affect the 
enterohepatic recirculation of vitamin D metabolites as well. Thus, intestinal malabsorption may 
contribute to vitamin D deficiency by decreasing the input and increasing the clearance of the vitamin 
and its metabolites. Vitamin D deficiency and its clinical and biochemical consequences may be the first 
sign of occult-malabsorption due, for example, to non-tropical sprue. 
 
Vitamin D synthesis in the skin is under the influence of UV light with a maximal effective wave length 
between 290-310 nm. Cutaneous vitamin D production is affected by the intensity of the UV light that 
reaches the body, the surface area of the skin exposed and intrinsic properties of the epidermis. In 
northern latitudes, during the winter, almost no UV reaches the ground. In the northern parts of the 
United States, Canada and Northwestern Europe, between October to March, very little or practically no 
vitamin D is produced in exposed skin. Clothingaffected by religious or cultural habits, glass, plastic and 
sunscreens that are widely used due to concerns of skin cancer effectively block UV radiation and 
prevent cutaneous vitamin D synthesis. Vitamin D production is much less effective in dark skin, melanin 
absorbs UV radiation, and in elderly relative to young people. However, even in the elderly, dermal 
vitamin D production remains very effective. It has been estimated that in summer, a 10 minute 
exposure, three times a week of the unprotected skin of the head and arms is adequate to prevent 
vitamin D deficiency in the elderly (for detailed discussion see Chapter 3 of this section and references 
25-27). 
 
  



Diagnosis 
 
The diagnosis of vitamin D deficiency is established by low serum concentrations of 25(OH)D. As 
discussed, circulating levels of 25(OH)D are a good and reliable measure of vitamin D status in almost all 
clinical relevant situations. All additional biochemical parameters as well as clinical signs and symptoms 
reflect the primary and secondary perturbations in mineral and bone metabolism caused by vitamin D 
deficiency and are common to all disorders in vitamin D action and calcium deficiency (Tables 1,2). 
Those parameters include low to low normal serum calcium levels, hypocalciuria, secondary 
hyperparathyroidism, hypophosphatemia, increased levels of biochemical markers of bone turnover, 
rickets and/or osteomalacia. Therefore, all these measures can be used to support but not to establish 
the diagnosis, and mainly to assess the relative severity of the vitamin D deficiency and the response to 
treatment. It is important to note that in vitamins D deficiency, circulating levels of 1,25(OH)2D could vary 
from low to elevated (Table 2) and thus are useless for the diagnosis. 
 
25(OH)D serum levels are currently being determined in clinical practice by methods that have become 
more accurate and reproducible, though still with some variability. Reference values of serum 
25(OH)Dthat were population based introduce uncertainty. These reference values differed according to 
geography, season, dress habits, bed or housebound situationsand age, all of which may affect sunshine 
exposure and thus vitamin D synthesis, as well as: eating habits, local regulation on food fortification and 
customs of vitamin supplementation, all of which will affect vitamin D intake. An alternative approach to 
obtain clinical meaningful reference values was to define health based parameters, i.e. values of serum 
25(OH)D levels below which adverse health outcome may occur. In actuality it is an intervention 
threshold reference value, below which therapy may prevent adverse effects on the musculoskeletal 
system (38). This approach is based on the current notion that though severe vitamin D deficiency will 
lead to rickets and/or osteomalacia, milder vitamin D deficiency states will not affect bone matrix 
mineralization, but via its effect on mineral homeostasis will cause secondary hyperparathyroidism, 
increased bone turnover and bone loss. These aberrations in mineral and bone metabolism will 
contribute to the development and acceleration of osteoporosis and together with the non-skeletal effects 
of vitamin D on physical function, will increase the risk of low impact skeletal fractures (for a detailed 
discussion see chapters 11 to 13 of this section and references 27,38). The relationship between serum 
concentrations of 25(OH) D and iPTH in various vitamin D states was analyzed in multiple studies (27-
30). The aim was to define serum 25(OH)D concentrations below which serum iPTH levels started to 
increase, or base line 25(OH)D levels above which vitamin D supplementation caused a significant 
decrease of iPTH serum concentrations. Both approaches yielded similar functional thresholds of serum 
25(OH)D levels that affect circulating iPTH concentrations. 
 
Based on these studies, a diagnostic staging of vitamin D deficiency states, based on serum 25(OH)D 
levels and secondary pertubation in mineral and bone metabolism has been proposed (27). Mild vitamin 
D deficiency (or vitamin D insufficiency) is diagnosed when serum 25(OH)D levels are below 
50 nmol/liter (20 ng/ml). This is associated with mild elevations of serum iPTH and biochemical markers 
of bone turnover. Moderate vitamin D deficiency is defined when serum 25(OH)D levels are below 
25 nmol/liter (10 ng/ml). Serum iPTH concentration is moderately increased with high bone turnover. 
Severe vitamin D deficiency occurs when serum 25(OH)D levels are lower than 12.5 nmol/liter (5 ng/ml), 
iPTH circulating concentration may be markedly increased and rickets and/or osteomalacia may occur. It 
is obvious that according to this scheme, vitamin D sufficiency is defined as serum 25(OH)D levels above 
50 nmol/liter (20 ng/ml). 
 
A somewhat similar definition was suggested recently by an expert panel for the Institute of Medicine 
(IOM) recommending that a level of 50 nmol/liter (20 ng/ml) of 25(OH)D was sufficient for 97.5% of the 
adult USA population, although up to 125 nmol/liter (50 ng/ml) was considered safe (31).  At the same 
time, another group of experts, from the American Endocrine Society, suggested that the most 
advantageous value of 25(OH)D for musculoskeletal health is 75 nmol/liter (30 ng/ml) (32). Thus vitamin 
D insufficiency will be defined as serum 25(OH)D levels below the above, and serum concentrations 
below 50 nmol/liter (20 ng/ml) will already be considered as vitamin D deficiency.  



 
Prevalence 
 
Serum 25(OH)D levels vary widely among different populations. On average serum 25(OH)D 
concentration are lower in European countries than in the USAand even lower in some countries in the 
Middle East and the Asia-Pacific region. A multinational study (with the exception of North America), in 
post-menopausal women treated for osteoporosis, revealed that 30-90% (depending on location and 
season), had serum levels of 25(OH)D below 75 nmol/liter (30 ng/ml), (the highest frequency of women 
below this level was observed in the Middle East and Asia (two countries in each region)). If the 
threshold is taken as 50 nmol/liter (20 ng/ml), 31% of the women fell below that threshold. Based on 
more than 40 studies from Europe, North America, the Middle East and the Asian-Pacific regions (27), it 
seems that a gradual decline in mean serum 25(OH)D levels is apparent starting from healthy adults to 
independent elderly, institutionalized elderly and the lowest value in patients with hip fracture. Several 
studies on patients hospitalized for non-traumatic fractures, revealed that few (about 5%) of these 
subjects had serum 25(OH)D levels above 50 nmol/liter (20 ng/ml), the majority of them had vitamin D 
deficiency of various severity. 
 
As discussed, vitamin D status will be determined by cutaneous photosynthesis and intake. The 
populations at risk to develop vitamin D deficiency are those who have limited sunshine exposure and no 
vitamin D supplementation. Thus, vitamin D insufficiency and deficiency will be more prevalent in 
populations that are not exposed to sunshine due to geography-latitude, cultural, religious and life-style 
habits, or are less efficient in cutaneous vitamin D synthesis due to age or pigmentation. The most 
vulnerable populations are those who are unable to move freely, bedridden or their mobility is severely 
diminished. This is more common at the beginning or the end of the life cycle, i.e. infants and the elderly, 
but of course it can happen at any age when free movement is limited due to physical or mental 
handicap. 
 
The prevalence of osteomalacia is much lower and will depend on the criteria used for diagnosis, i.e. 
clinical, biochemical, bone histology or quantitative bone histomorphometry. In a review by Paul Lips (27) 
of 19 publications describing bone histomorphometry of the femoral head or iliac crest biopsy in a total of 
about 1400 patients with hip fracture, the frequency of osteomalacia ranged from none to more than 
30%. This difference may reflect different populations but also the histological criteria used to define 
osteomalacia. The very high incidence of vitamin D deficiency recorded in patients with hip fractures 
supports the notion that increased fracture risk is not just the outcome of frank osteomalacia but may 
result from secondary hyperparathyroidism, increased bone turnover, bone loss and increased risk of low 
impact fractures caused by vitamin D deficiency. This is further supported by the positive relationship 
observed between serum 25(OH)D levels (below a certain threshold) and hip BMD (27,33,35), and the 
negative relationship observed between hip BMD and serum iPTH (27,33,35,36). Moreover, a daily dose 
of 700-800 IU and above of vitamin D and calcium supplementation caused a significant reduction in the 
incidence of hip and other nonvertebral fractures in women with post-menopausal osteoporosis, including 
nursing home residents (37,38,38a). 
 
Treatment 
 
Adequate intake of vitamin D was defined recently in the USA by two working groups (IOM and the 
American Endocrine Society) as discussed above.  Both reports agree on the recommended dose for 
infants (400 IU/day) and children (600 IU/day). There is a difference in the recommendations for adults 
(600 IU/day) until the age of 70 (including pregnant and lactating women) and 800 IU/day above this age 
(IOM report), while the American Endocrine Society recommendations are 1,500-2,000 IU/day for all of 
the adult population (31,32). In Europe, vitamin D intake recommendations are similar or somewhat 
lower than the IOM. The upper tolerable daily doses of vitamin D were suggested to be 4,000 IU, 
10,000 IU and 2,000 IU by the IOM, the American Endocrine Society guidelines and the European 
Commission, respectively. There is an unresolved debate on the equipotency of vitamin D2 versus D3, 
but as vitamin D3 is widely available, all recommendations are actually for vitamin D3. These 



recommended intakes of vitamin D are usually unachievable if widely consumed food substances are not 
fortified with vitamin D. Thus, the population at large and the elderly population in particular are 
dependent on adequate cutaneous vitamin D synthesis, i.e. sunshine exposure, or vitamin D 
supplementation. In the United States and a few additional countries, milk is fortified with vitamin D, 400 
IU per quart or liter, and the consumption of multivitamins containing vitamin D as well is relatively 
common, but not uniform or mandatory. Thus, in most countries and even in the USA, the elderly and 
especially the immobile, housebound elderly are prone to develop vitamin D deficiency. 
 
Treatment has to be targeted towards the population with the highest risk to develop vitamin D 
deficiency. For a long period, vitamin D supplementation for infants up to 1 year of age, is mandatory in 
many countries and the daily dose recommendations was increased from 200 IU/day to 400 IU/day 
(31,32). Unfortunately, this has not yet become common practice for the elderly population. As 
discussed, nursing home residents, institutionalized and hospitalized elderly and patients with hip and 
other non-traumatic fractures and neurological disorders are among the ones with the highest risk of 
having and developing vitamin D deficiency. Treatment with the recommended doses of vitamin D and 
calcium (see below) can be initiated even before biochemical screening of 25(OH)D serum levels and 
indices of mineral and bone metabolism is obtained. This is based on the very high incidence of vitamin 
D deficiency in this population of patients and on the fact that with the recommended vitamin D doses 
and the tight physiological control of 1.25(OH)2D production, no toxicity is likely to occur at doses of up to 
10,000 IU/day for a limited period. 
 
It is important to remember that in concordance with vitamin D treatment, the recommended daily 
calcium allowance must be achieved as well, usually by calcium salt supplementation (see also 
chapter 13). 
 
The usual recommended oral doses of vitamin D as discussed above are 600to 1,500 IU daily. In severe 
vitamin D deficiency, doses of 4,000 IU- to 6,000 IU per day (or the equivalent weekly or twice weekly 
dose) could be given for the first 4-6 weeks, followed by dose adjustment in accordance with the 
biochemical response, with the final aim to achieve the recommended maintenance dose. Because 
vitamin D is stored in fat and released slowly and the halflife of 25(OH)D is 2-3 weeks, the vitamin can be 
given orally once a week or once a month. Oral administration of vitamin D in megadoses once every 6 
or 12 months or once a year by injection (27,39-42) was tried as well but seems to be less efficient. A 
dose of 500,000 IU once a year seemed to even increase adverse events in the first three months 
following vitamin D administration (42a). This way of administration has the advantage of better 
compliance both in independent elderly and especially in dependent institutionalized patients, but the 
experience gathered with this mode of vitamin D administration is relatively limited. 
 
The response to treatment with vitamin D will depend on the degree and severity of vitamin D deficiency 
and the secondary changes in mineral and bone metabolism. In severe vitamin D deficiency with 
osteomalacia, a dramatic response in the signs, symptoms and laboratory parameters will be observed. 
Bone pain and muscle weakness will improve quickly, pseudofractures will show signs of healing on x-
ray, and serum calcium, iPTH and biochemical markers of bone turnover will return towards the normal 
range. In moderate or mild vitamin D deficiency or insufficiency, the response to treatment is more 
subtle. Muscle weakness and bone pain may improve, serum 25(OH)D levels will increase towards the 
normal, serum iPTH and biochemical markers of bone turnover will return towards normal (this will be a 
function of the severity of the initial vitamin D deficiency). In the long run, bone mineral density may 
increase somewhat and the incidence of fractures may decrease. These results are based on responses 
of groups of patients in clinical trials and not individuals (27). 
 
1,25 Dihydroxyvitamin D Deficiency 
 
As discussed, 1,25(OH)2D deficiency is defined as low circulating levels of this metabolite with normal or 
elevated (depending on preceding vitamin D therapy) serum concentrations of 25(OH)D. In theory, it 
could be the end result of decreased production or increased clearance. Increased clearance of 



1,25(OH)2D is uncommon and usually a part of increased clearance of additional vitamin D metabolites 
such as 25(OH)D, thus it would fit the definition of vitamin D deficiency. 
 
Decreased production of 1,25(OH)2D could be hereditary or acquired and each one can be 
subcategorized as simple or complex. Acquired 1,25(OH)2D deficiency due to defective synthesis is 
usually part of a more general disease (i.e. complex) as chronic renal failure, acquired Fanconi syndrome 
or hypoparathyroidism, etc., that will affect mineral and bone metabolism in a multiple and complex way 
that is beyond the scope of this chapter. Thus, the entity to be discussed here will be simple hereditary 
1,25(OH)2D deficiency caused by defective synthesis of calcitriol. 
 
Prader et al. (42b) were the first to describe two young children who showed all the usual clinical features 
of vitamin D deficiency despite adequate intake of the vitamin, thus coining the name “pseudovitamin D 
deficiency.” Complete remission was dependent on continuous therapy with high doses of vitamin D, 
thus the term “vitamin D-dependent rickets.” However, remission of the disease could be achieved by 
continuous therapy with physiological (microgram) doses of 1α-hydroxylated vitamin D metabolites 
(43,44) (Table 3). 
 
Table 3. Response to treatment of patients with disorders in vitamin D action, by etiology 
 

 VITAMIN D OR 25(OH)VITAMIN D* 1α-HYDROXYLATED  
VITAMIN D METABOLITES* 

ETIOLOGY PHYSIOLOGICAL PHARMACOLOGICAL PHYSIOLOGICAL PHARMACOLOGICAL 

Vitamin D deficiency + + + toxic 

1,25(OH)2D deficiency - + + toxic 

Resistance to 1,25(OH)2D - - or + - - or + 

* Note: physiological doses are those recommended or being used as replacement therapy.  Pharmacological doses are 10 
times and more of the physiological dose.*see section on Definitions and Terminology. §1α-hydroxylated vitamin D 
metabolites in clinical use are: 1,25(OH)2D3 (calcitriol) and 1α(OH)D3 (alphacalcidol) a synthetic analog.(+) means 
responsive, (-) nonresponsive 

 
Family studies have revealed it to be an autosomal recessive disease. Linkage analysis in a subset of 
French-Canadian families assigned the gene responsible for the disease to chromosome 12q13 (45,46). 
The gene encoding the 25(OH)D-1α-hydroxylase of mouse kidney, human keratinocyte and peripheral 
mononuclear cells was localized on chromosome 12q 13.1-13.3 which maps to the disease locus of 
simple hereditary 1,25(OH)2D deficiency (47-52). There are no direct measures of the renal enzyme 
proving defective 1α-hydroxylase activity. This is virtually impossible both because of the difficulty in 
obtaining tissue and low level of expression. There are several indirect observations to support this 
etiology. First, circulating levels of 25(OH)D are normal or elevated, depending on previous vitamin D 
treatment. Second, serum concentrations of 1,25(OH)2D are very low (Table 2). Third, while massive 
doses (100-300 times the daily recommended dose) of vitamin D or 25(OH)D are required to maintain 
remission of rickets, physiological replacement doses of calcitriol are sufficient to achieve the same effect 
(Table 3). Fourth, it was reported that cells isolated from the placenta of two women with this disease 
had deficient activity of the decidual enzyme 25(OH)D-1α-hydroxylase (53). It is noteworthy that human 
decidual cells do produce 1,25(OH)2D and that this enzyme was regulated by feedback mechanisms (54-
56). Finally, the 1α-hydroxylase gene from more than 25 families with simple hereditary 1,25(OH)2D 
deficiency and some of their first degree healthy relatives were analyzed by direct sequencing, site 
directed mutagenesis and cDNA expression in transfected cells (47-52). All patients had homozygous 
mutations while parents or other healthy siblings were heterozygous for the mutation. Most patients of 



French-Canadian origin had the same mutation causing a frameshifting and a premature stop codon in 
the putative heme-binding domain (49). The same mutation was observed in additional families of 
diverse origin (52). All other patients had either a base-pair deletion causing premature termination 
codon upstream from the putative ferredoxin and heme-binding domains, or missense mutations (47,49-
52). No 1α-hydroxylase activity was detected when the mutant enzyme was expressed in various cells. 
The sequence of the human 1α-hydroxylase gene from keratinocytes and peripheral blood mononuclear 
cells has been shown to be identical with the renal gene (47,49-52), thus supporting the use of these 
accessible cells as a proxy to study the renal tubular enzymatic defect. Taken together, these 
observations support the notion that the etiology of this hereditary disease is a defect in the renal tubular 
25(OH)D-1α-hydroxylase activity. 
 
The beneficial therapeutic effect of high serum concentrations of 25(OH)D in patients treated with 
massive doses of vitamin D, while 1,25(OH)2D levels remain low, may have several possible 
explanations. First, high levels of 25(OH)D may activate the VDR whose affinity for this metabolite is 
approximately two orders of magnitude lower than for 1,25(OH)2D. Second, a metabolite of 25(OH)D 
may act directly on target tissue, and finally, high levels of 25(OH)D may drive the local production of 
1,25(OH)2D via a paracrine-autocrine pathway, assuming that the tissue enzyme is controlled differently 
than the renal and decidual enzyme. 
 
The differential diagnosis of simple hereditary 1,25(OH)2D deficiency from other hereditary or acquired 
forms of hypocalcemic rickets and/or osteomalacia especially the one associated with defects in the 
vitamin D receptor-effector system is based on serum concentrations of calcitriol and the response to 
treatment with 1-alpha hydroxylated vitamin D metabolites (Tables 2 and 3). 
 
A similar syndrome has been described and studied in a mutant strain of pigs where the mode of 
inheritance as well as the clinical and biochemical features are similar to the human disease (56a, 56b). 
Piglets affected by the disease have rickets, elevated 25(OH)D with low or undetectable 1,25(OH)2D 
serum concentrations, normal specific tissue binding sites for tritiated 1,25(OH)2D, and no detectable 
activity of 25(OH)D-1α-hydroxylase in renal cortical homogenates. Thus, there is strong evidence that 
the disease state in the pig is caused solely by an inherited defect in the renal enzyme. An animal model 
in which the gene encoding 25(OH)D-1α-hydroxylase was knocked out by homologous recombination 
reproduced all the clinical and biochemical features of this disease including undetectable serum 
1,25(OH)2D levels (56c). 
 
Simple hereditary resistance to 1,25 dihydroxy-vitamin D 
 
This is a rare disorder and only about 60 patients have been reported (57-95c, and personal 
communications). Brooks et al. (57) described an adult patient with hypocalcemic osteomalacia and 
elevated serum concentration of 1,25(OH)2D. Treatment with vitamin D, causing a further increase in 
serum calcitriol levels, cured the patient. The term vitamin D-dependent rickets type II was suggested to 
describe this disorder. However, reports on additional patients, about half of whom did not respond to 
vitamin D therapy, as well as in vivo and in vitro studies to be discussed below, seem to prove that 
vitamin D dependency is a misnomer. The term simple hereditary resistance to 1,25(OH)2D caused by 
defects in the vitamin D receptor-effector system is therefore more appropriate to describe the etiology 
and pathogenesis of this syndrome. 
 
Clinical and Biochemical Features 
 
General Features 
 
The clinical, radiological, histological, and biochemical features (except serum levels of vitamin D 
metabolites) are typical of hypocalcemic rickets and/or osteomalacia as previously discussed. Notable 
exceptions are two unrelated patients with hyperphosphatemia, despite elevated serum levels of iPTH 



(60,85) which can be the end result of long-standing and severe hypocalcemia, that paradoxically may 
inhibit the phosphaturic response to PTH or represents an additional hereditary renal tubular defect. 
 
In these patients there is no history of vitamin D deficiency and no clinical or biochemical response to 
physiological doses of vitamin D or its 1α-hydroxylated active metabolites(Table 3). Serum levels of 
25(OH)D are normal or elevated (depending on preceding vitamin D therapy); 1,25(OH)2Dconcentrations 
are markedly elevated before or during therapy with vitamin D preparations (Table 2). 
 
The disease manifests itself as an active metabolic bone disease in early childhood. However, late onset 
at adolescence and adulthood was documented in several sporadic cases including the first report by 
Brooks et al. (57,61). These patients represented the mildest form of the disease and had a complete 
remission when treated with vitamin D or its active metabolites. It is unclear if the adult onset patients 
belonged to the same hereditary entity, as no further studies on their VDR status have been published. 
 
Ectodermal Anomalies 
 
A peculiar clinical feature of the patients, appearing in more than half of the subjects, is total alopecia or 
sparse hair (Figure 6). Alopecia usually appears during the first year of life and in one patient, at least, 
has been associated with additional ectodermal anomalies (60) (Figure 6). 
 



 
Figure 6. A patient with simple hereditary resistance to 1,25(OH)2D. Note total alopecia and oligodontia. 
 
It seems that alopecia is a marker of a more severe form of the disease as judged by the earlier onset, 
the severity of the clinical features, the proportion of patients who do not respond to treatment with high 
doses of vitamin D or its active metabolites, and the extremely elevated levels of serum 1,25(OH)2D 
recorded during therapy (74,96). Though some patients with alopecia could achieve clinical and 
biochemical remission of their bone disease, none have shown hair growth. The notion that total alopecia 
is probably a consequence of a defective vitamin D receptor-effector system is supported by the 
following: alopecia has only been associated with hereditary defects in the VDR system, i.e., with end-
organ resistance to the action of the hormone, and has not been recorded with hereditary deficiency in 
1,25(OH)2D synthesis, i.e., low circulating levels of the hormone; alopecia is present in kindreds with 
different defects in the VDRs; high-affinity uptake of tritiated 1,25(OH)2D3 in the nucleus of the outer root 
sheath of the hair follicle of rodents has been demonstrated by autoradiography (97); and the epidermis 
and hair follicle contain a calcium-binding protein that is partially vitamin D-dependent (74). Finally, 
alopecia developed in homozygote VDR knockout mice (98-100). Taken together, it could be 
hypothesized that an intact VDR-effector system is important for the differentiation of the hair follicle in 
the fetus, which is unrelated to mineral homeostasis. 
 
Vitamin D Metabolism 
 
Serum concentrations of 1,25(OH)2D range from upper normal values to markedly elevated before 
therapy, but on vitamin D treatment may reach the highest levels found in any living system (100 times 



and more than the upper normal range) (96). These values may represent the end results of four 
different mechanisms acting synergistically to stimulate strongly the renal 25(OH)D-1α-hydroxylase. 
Three of the mechanisms are hypocalcemia, secondary hyperparathyroidism, and hypophosphatemia. 
The fourth mechanism may be a failure of the negative feedback loop by which the hormone inhibits the 
renal enzyme activity caused by the basic defect in the VDR-effector system. This was demonstrated in a 
patient in remission (normal serum levels of calcium, phosphorus and PTH) in whom a load of 25(OH)D3 
had caused a marked increase in serum 1,25(OH)2D3 concentration (67,74). It was reported that the 1α-
hydroxylase gene expression was not suppressed by 1,25(OH)2D3 in renal tubular cells from VDR knock 
out mice while it was suppressed in cells with normal VDR or heterozygote for the null mutation (6,9). 
 
Mode of Inheritance 
 
In approximately half of the reported kindreds, parental consanguinity and multiple siblings with the same 
defect suggest autosomal recessive mode of inheritance (74). Parents or siblings of patients who are 
expected to be obligate heterozygotes have been reported to be normal, i.e., no bone disease or 
alopecia and normal blood biochemistry. However, studies on cells (cultured dermal fibroblasts, Epstein-
Barr transformed lymphoblasts, and mitogen-stimulated lymphocytes) obtained from parents or siblings 
of affected children revealed decreased bioresponses, decreased normal VDR protein and its mRNA, 
and a heterozygote genotype exhibiting both normal and mutant DNA alleles (101-104). There is a 
striking clustering of patients around the Mediterranean, including patients reported form Europe and 
America who originated from the same area. A notable exception is a cluster of some kindred from Japan 
(61,63,78-81,85). 
 
Cellular and Molecular Defects 
 
Methods 
 
The near ubiquity of a similar if not identical VDR-effector system among various cell types including 
cells originating from tissues easily accessible for sampling made feasible studies on the nature of the 
intracellular and molecular defects in patients with simple hereditary resistance to 1,25(OH)2D. The cells 
used were mainly fibroblasts derived from skin biopsies (65-72,74-77,80,92-95,101-103) and peripheral 
blood mononuclear (PBM) cells (78,85,103-105). PBM cells contain high-affinity receptors for 
1,25(OH)2D3 that are expressed constitutively in monocytes and are induced in mitogen-stimulated T-
lymphocytes and Epstein-Barr (EB) transformed lymphoblasts. All cells have been used to assess most 
of the steps in 1,25(OH)2D3 action from cellular and subcellular uptake of the hormone to bioresponse as 
well as to elucidate the molecular aberrations in the VDR protein, RNA, and DNA. 
 
The hormone-receptor interaction has been analyzed by several methods including binding 
characteristics of 3H 1,25(OH)2D3 to intact cells, nuclei or high salt cellular soluble extracts-so called 
cytosol (65-68. 70-77. 101-108); measurements of VDR protein content by monoclonal antibodies with 
radiological immunoassay or Western blot analysis (102,103); by immunocyto-chemical methods in 
whole cells (109); characterization of the hormone-receptor complex on continuous sucrose gradient and 
nonspecific DNA-cellulose columns (65-68, 70-75, 101,108,110). 
 
The cloning and nucleotide sequencing of the human VDR gene made feasible studies of the molecular 
defects in patients with this disease. The methods used included, among others, isolation, amplification 
and sequencing of genomic VDR DNA, as well as cloning and sequencing of VDR complementary DNA 
(cDNA). The mutant DNA was recreated in vitro and was transfected into cells that do not express 
endogenous VDR. Post-transcriptional action of 1,25(OH)2D was tested in cells originating from patients 
or in cells co-transfected with VDR (either mutant or wild type) fused to a promoter containing vitamin D 
response element (VDRE). 
 
Types of Defects 
 



Studies with the above mentioned methods in cells originating from a variety of patients revealed 
heterogeneity of the cellular and molecular defects in the VDR-effector system. Based on the known 
functional properties of the VDR, different classes of defects could be identified. 
 
Defect in the hormone binding region (including heterodimerization). 
 
Deficient Hormone Binding. There are three subgroups in this class: (i) No Hormone Binding. This is the 
most common abnormality observed and is characterized by unmeasurable specific binding of 3H 
1,25(OH)2D3 to either intact cells, nuclei, or cell extracts (66,67,70,72,74,88,89,91-
94,102,103,105,110,111). Studies in several kindreds with this defect (including an extended kindred 
with 8 patients studied) revealed undetectable levels of VDR by immunoblots on an immunoradiometric 
assay in most kindreds (94,102,103,111,112). DNA from these affected subjects exhibited a single base 
mutation that was different in each kindred resulting in a premature stop codon. The truncated VDRs 
produced, lacked hormone binding or both hormone and DNA binding domains (Figure 7) 
(88,89,91,112). The recreated mutant VDR cDNA was expressed in mammalian cells, and the resulting 
mutant VDR was demonstrated to be the truncated protein that exhibited no specific hormone binding. In 
cells cultured from parents of some patients, expected to be obligate heterozygotes, binding of 3H 
1,25(OH)2D3, VDR protein, and mRNA content of cells ranged from the lower limit of normal to about half 
the normal level. 
 

 
Figure 7. Schematic presentation of homozygous mutation in the VDR protein in simple hereditary 
resistance to 1,25(OH)2D. The asterisks depict sites of amino acid substitutions due to point mutation 
and codon changes, using the numbering system of Baker et (11); fs-frame shift. 
 
In one patient representing a kindred with no hormone binding, a missense mutation resulted in the 
substitution of the hydrophobic basic arginine 274 by the hydrophilic nonpolar leucine in the hormone 
binding region (111) (Figure 7). In this patient, normal transcription could be elicited by 1000-fold higher 
concentrations of calcitriol than needed for the wild-type receptor. However, no in vivo or in vitro 
stimulation of 25(OH)D-24-hydroxylase could be obtained by high concentrations of 1,25(OH)2D3 (see 
below). 
 
Two siblings without alopecia and no response to any dose of 1,25(OH)2D in vivo and in vitro had a 
missense mutation that caused a substitution of tryptophan by arginine at amino acid 286 of the VDR 
(94). This substitution in a normal size VDR abolished completely the binding of 1,25(OH)2D to its 
receptor. The tryptophan in this position is critical for the positioning of calcitriol in the VDR as was 



unveiled by the three dimensional arrangement of the VDR and its ligand based on its crystal structure 
(113). 
 
(ii) Defective Hormone Binding Capacity. In a patient representing one kindred, the number of binding 
sites in nuclei and soluble cell extracts was 10% of control, with an apparent normal affinity (67,70,110). 
Recently, a boy with total alopecia, severe rickets and growth retardation was found to have two 
heterozygote different molecular defects in the ligand binding domain (95c). The patient VDR had a low 
hormone binding capacity, 10% to 30% of controls, with normal affinity and a marked deficient 
stimulation of 25(OH)D3-24-hydroxylase. The recreated mutations, each one tested separately in vitro, 
showed also deficient heterodimerization as well as different transactivation of two gene promoters. This 
patient, similar to another one described more than 20 years ago, could be completely cured by very high 
doses of 25(OH) vitamin D, 250 μg a day initially, followed by 100 μg/day and then 75 μg/day as a 
maintenance dose for years, plus modest calcium supplementation. In both patients, it could be shown 
that during remission (normocalcemia, normophosphatemia, normal iPTH), 1,25(OH)2D production is 
driven by the substrate, i.e., 25(OH) vitamin D concentrations. 
 
An additional patient with hereditary resistance to 1,25(OH)2D and alopecia was found to have 
compound heterozygous mutations in the VDR (95d).  This girl’s cultured fibroblasts were found to have 
about 30% binding sites of 1,25(OH)2D in comparison to her parents or normal controls.  However, RXR 
heterodimerization, co-activators interaction and gene transactivation were completely abolished, and no 
response in vitro to high doses of 1,25(OH)2D3 was observed.  Treatment with 3,000mg of calcium 
carbonate orally per day and 3μg/kg of calcitriol caused some improvement in the clinical features and 
biochemical parameters. 
 
(iii) Defective Hormone Binding Affinity. Binding affinity of tritiated calcitriol was reduced 20- to 30-fold, 
with normal capacity, in soluble dermal fibroblast extracts from one kindred (76). An additional patient, 
representing a different kindred had a modest decrease of VDR affinity when measured at 0°C (90). 
 
Deficient Nuclear Uptake. The following features characterize the hormone-receptor-nuclear interaction 
in this defect: normal or near normal binding capacity and affinity of 3H 1,25(OH)2D3 to soluble cell 
extracts with low to unmeasurable hormone uptake into nuclei of intact cells (65,70,80,83,86). These 
features were demonstrated in skin-derived fibroblasts in all kindreds, in cells cultured from a bone 
biopsy of one patient (110a), and in EB-transformed lymphoblasts of one patient (83). Occupied VDR 
obtained from fibroblast extracts of two kindreds demonstrated normal binding to nonspecific DNA 
cellulose (100). Immuno-cytological studies in fibroblasts of a patient with this defect showed that 
immediately after 1,25(OH)2D3 treatment, VDR accumulated along the nuclear membrane with no 
nuclear translocation (115). Patients with this defect included a kindred with normal hair and several 
kindreds with total alopecia. Finally, almost all patients responded with a complete clinical remission to 
high doses of vitamin D and its active 1α-hydroxylated metabolites. 
 
Attempts to characterize the molecular defect were carried in six kindreds. In three of them, no mutation 
in the coding region of the VDR gene was observed (83, and personal communication). Studies in three 
kindreds, revealed a normal molecular mass and quantitative expression of the VDR (86). Complete 
sequencing of the VDR coding region revealed a different single nucleotide mutation in each kindred, in 
a region that is considered to play a role in heterodimerization of VDR with RXR (Figure 7) (86,91). Thus, 
it has been suggested that these patients’ receptors have defects that compromise RXR 
heterodimerization, which is essential for nuclear localization and probably for recognition of the vitamin 
D responsive element as well. The fact that no mutation in the VDR coding region was observed in three 
additional kindreds with the same phenotypical defect may suggest that the genetic defect affects 
another component of the receptor effector system that is essential for the VDR function as a nuclear 
transcription factor. It has been shown that coactivation complexes are essential for the ligand induced 
transactivation of VDR (116). 
 



Deficient coactivators of the calcitriol-VDR complex. A patient with simple hereditary resistance to 
1,25(OH)2D without alopecia was described (95). Sequencing of the VDR-DNA revealed a missense 
mutation in the ligand binding domain that caused a substitution of glutamic acid to lysine at amino acid 
120. This receptor exhibits many normal properties including calcitriol binding, dimerization and binding 
to vitamin D response elements in the DNA, but a marked impairment in binding coactivators that are 
essential for the transactivation of the hormone receptor complex and the initiation of the physiological 
response (95). 
 
Defects in DNA binding region 
 
Deficient Binding to DNA. Cell preparations derived from patients with this defect demonstrate normal or 
near normal binding capacity and affinity for 3H 1,25(OH)2D3 to nuclei of intact cells and soluble cell 
extracts, as well as normal molecular size. Hormone receptor complexes, however, have decreased 
affinity to nonspecific DNA (75,81,85,106,107). A single nucleotide missense mutation within exon 2 or 3, 
encoding the DNA binding domain of the VDR, was demonstrated in genomic DNA isolated from dermal 
fibroblasts and/or EB-transformed lymphoblasts from ten unrelated kindreds 
(71,81,85,87,89,101,108,114). Eight different single nucleotide mutations were found in the ten kindreds 
(Figure 7). Two apparently unrelated kindreds share the same mutation (81,108). All point mutations 
caused a single substitution of an amino acid that resides in the region of the two zinc fingers of the VDR 
protein that are essential for the functional interaction of the hormone-receptor complex with DNA. 
Interestingly, all these altered amino acids are highly conserved in the steroid receptor superfamily that 
includes the receptors for steroid hormones, thyroid hormones and retinoic acid. 
 
Studies on cells obtained from parents and some of the siblings of these patients revealed, as expected, 
a heterozygous state, i.e., expression of both normal and defective forms of VDR as well as normal and 
mutant gene sequences (94,101,107), but without any clinical and biochemical abnormalities. 
 
In vitro posttranscriptional and transcriptional effect of 1,25(OH)2D3 
 
In vitro bioeffects of the hormone on various cells in patients with simple hereditary resistance to 
1,25(OH)2D have been assayed mainly by two procedures, induction of25(OH)D-24-hydroxylase and 
inhibition of mitogen stimulated PBM cells. 
 
1,25(OH)2D3 induces 25(OH)D-24 hydroxylase activity in skin-derived fibroblasts (66-69,72,75-
77,83,85,92-95,102,103,107,108,114,117), mitogen-stimulated lymphocytes (104), and cells originating 
from bone (110a,118) in a dose-dependent manner. In cells from normal subjects, maximal and half-
maximal induction of the enzyme was achieved by 10-8and 10-9M concentrations of 1,25(OH)2D3, 
respectively. Dermal fibroblast or PBM cells from patients with no calcemic response to maximal doses 
of vitamin D or its metabolites in vivo did not show any 25(OH)D-24-hydroxylase response to very high 
concentration of 1,25(OH)2D3 in vitro, while dermal fibroblasts from patients with a calcemic response to 
high doses of vitamin D or its metabolites in vivo showed inducible 24-hydroxylase with 
supraphysiological concentrations of 1,25(OH)2D3in vitro. Physiological concentrations of 1,25(OH)2D3 
partially inhibit mitogen-induced DNA synthesis in peripheral lymphocytes with a half maximal inhibition 
achieved at 10-10M of the hormone (78,105). Mitogen stimulated lymphocytes from several kindreds with 
defects characterized as no hormone binding or deficient binding to DNA, with no calcemic response to 
high doses of vitamin D and its metabolites in vivo, showed no inhibition of lymphocyte proliferation in 
vitro with concentrations of up to 10-6M 1,25(OH)2D3. Additional methods to measure bioeffects of 
1,25(OH)2D3 on various cells in vitro were carried out only in few patients and included inhibition of 
dermal fibroblasts proliferation (69), induction of osteocalcin synthesis in cells derived from bone (118), a 
mitogenic effect on dermal fibroblasts (115), and stimulation of cGMP production in cultured skin 
fibroblasts (119). It is noteworthy that in all assays mentioned and without exception, each patient’s cell 
showed severely deficient responses. 
 



With the elucidation of the molecular defects in simple hereditary resistance to 1,25(OH)2D, the 
transactivation abilities of naturally occurring mutant or recreated mutant VDRs were evaluated in a 
transcriptional activation assay. In this assay a gene promoter responsive to VDR is fused to a gene 
reporter that its message is easily measured, and the plasmid is transfected into patients or normal cells 
(81,83,85,102,103,107,11). Treating normal transfected cells with 1,25(OH)2D3 caused a concentration-
dependent induction of transcription. No induction of transcription was observed in cells originating from 
patients with defects characterized as no hormone binding (102,103,111) or deficient binding to DNA 
(81,85,107,108). Moreover, in a cotransfection assay, the addition of a normal human VDR cDNA 
expression vector to the transfected plasmid that directed synthesis of a normal VDR, restored hormone 
responsiveness of resistant cells. Finally, in a patient characterized as deficient nuclear uptake defect, no 
mutation was identified within the coding region of the VDR gene; no induction of 25(OH)D-24-
hydroxylase activity by up to 10-6 1,25(OH)2D3 was observed in cultured skin fibroblasts, but there was 
normal transactivation by 1,25(OH)2D3 in the transcriptional activation assay (83). 
 
Cellular Defects and Clinical Features 
 
Normal hair was described with most phenotypes of the cellular defects the exception being patients with 
deficient hormone binding capacity and affinity, but this could be due to the fact that only one or two kindreds 
were described per subgroup. Normal hair is usually associated with a milder form of the disease, as judged 
by the age of onset, severity of the clinical features, and usually the complete clinical and biochemical 
remission on high doses of vitamin D or its metabolites. Notable exceptions are 3 kindreds (4 patients), two of 
them, without alopecia that displayed resistance both in vivo (no clinical remission on circulating calcitriol level 
up to 100 times the mean normal adult values) and in vitro (no induction of 25(OH)D-24-hydroxylase activity in 
dermal fibroblasts by up to 10-8 M 1,25(OH)2D3) (77,94,95). Only approximately half of the patients with 
alopecia have shown satisfactory clinical and biochemical remission to high doses of vitamin D or its active 
1α-hydroxylated metabolites, but the dose requirement is ~10-fold higher than in patients with normal hair 
(96). 
 
It seems that patients defects characterized as deficient hormone binding affinity and deficient nuclear 
uptake achieve complete clinical and biochemical remission on high doses of vitamin D or its active 1α-
hydroxylated metabolites. Most of the patients with other types of defects could not be cured with high 
doses of vitamin D or its metabolites. However, it should be emphasized that not all of the patients 
received treatment for a long enough period of time and with sufficiently high doses (see Treatment, 
below). 
 
Diagnosis 
 
Clinical features of early onset rickets with no history of vitamin D deficiency, total alopecia, parental 
consanguinity, additional siblings with the same disease, serum biochemistry of hypocalcemic rickets, 
elevated circulating levels of 1,25(OH)2D, and normal to high levels of 25(OH)D (Table 2) support the 
diagnosis of simple hereditary resistance to 1,25(OH)2D. The issue becomes more complicated when the 
clinical features are atypical, i.e., late onset of the disease, sporadic cases, and normal hair. Failure of a 
therapeutic trial with calcium and/or physiological replacement doses of vitamin D or its metabolites may 
support the diagnosis but the final direct proof requires the demonstration of a cellular, molecular, and 
functional defect in the VDR-effector system. 
 
Based on the clinical and biochemical features, the following additional disease states should be 
considered: (1) extreme calcium deficiency: a seemingly rare situation described in a group of children 
from a rural community in South Africa, who consumed an exceptionally low calcium diet of 125 mg/day 
(19). All had severe bone disease with histologically proven osteomalacia, biochemical features of 
hypocalcemic rickets with elevated serum levels of 1,25(OH)2D, and sufficient vitamin D. Calcium 
repletion caused complete clinical and biochemical remission. Nutritional history and the response to 
calcium supplementation support this diagnosis. (2) Severe vitamin D deficiency: during initial stages of 
vitamin D therapy in children with severe vitamin D-deficient rickets, the biochemical picture may 



resemble 1,25(OH)2D resistance, i.e., hypocalcemic rickets with elevated serum calcitriol levels. This 
may represent a “hungry bone syndrome,” i.e., high calcium demands of the abundant osteoid tissue 
becoming mineralized. This is a transient condition that may be differentiated from simple hereditary 
resistance to 1,25(OH)2D by a history of vitamin D deficiency and the final therapeutic response to 
replacement doses of vitamin D. 
 
Treatment 
 
In about half of the kindreds with simple hereditary resistance to 1,25(OH)2D, the bioeffects of 
1,25(OH)2D3 were measured in vitro (see above). An invariable correlation (with one exception) was 
documented between the in vitro effect and the therapeutic response in vivo; i.e., patients with no 
calcemic response to high levels of serum calcitriol showed no effects of 1,25(OH)2D3 on their cells in 
vitro (either induction of 25(OH))D-24-hydroxylase or inhibition of lymphocyte proliferation) and vice 
versa. If the predictive therapeutic value of the in vitro cellular response to 1,25(OH)2D3 could be 
substantiated convincingly, it may eliminate the need for time consuming and expensive therapeutic trials 
with massive doses of vitamin D or its active metabolites. In the meantime, it is mandatory to treat every 
patient with this disease irrespective of the type of receptor defect. 
 
An adequate therapeutic trial must include vitamin D at a dose that is sufficient to maintain high serum 
concentrations of 1,25(OH)2D3 as the patients can produce high hormone levels if supplied with enough 
substrate. If high serum calcitriol levels are not achieved, it is advisable to treat with 1α-hydroxylated 
vitamin D metabolites in daily doses of up to 6 µg/kg weight or a total of 30-60 µg and calcium 
supplementation of up to 3 g of elemental calcium daily; therapy must be maintained for a period 
sufficient to mineralize the abundant osteoid (usually 3-5 months). Therapy may be considered a failure if 
no change in the clinical, radiological, or biochemical parameters occurs during continuous and frequent 
follow up while serum 1,25(OH)2D concentrations are maintained at ~100 times the mean normal range. 
 
In some patients with no response to adequate therapeutic trials with vitamin D or its metabolites, a 
remarkable clinical and biochemical remission of their bone disease, including catch-up growth, was 
obtained by treatment with large amounts of calcium. This was achieved by long-term (months) 
intracaval infusions of up to 1000 mg of calcium daily (84,94, 118,120,121). Another way to increase 
calcium input into the extra cellular compartment is to increase net gut absorption, independent of 
vitamin D, by increasing calcium intake (122). This approach is limited by dose and patient tolerability 
and was actually used successfully in only very few patients. 
 
Several patients have shown unexplained fluctuations in response to therapy or in presentation of the 
disease. One patient after a prolonged remission became completely unresponsive to much higher 
doses of active 1α-hydroxylated vitamin D metabolites (67), and another patient seemed to show 
amelioration of resistance to 1,25(OH)2D3 after a brief therapeutic trial with 24,25(OH)2D (60). In several 
patients, spontaneous healing occurred in their teens (73) or rickets did not recur for 14 years after 
cessation of therapy (80). 
 
Animal Models 
 
Some New World primates (marmoset and tamarins) that develop osteomalacia in captivity are known to 
have high nutritional requirements for vitamin D and maintain high serum levels of 1,25(OH)2D, thus 
exhibiting a form of end-organ resistance to 1,25(OH)2D (123-126). Cultured dermal fibroblasts and EB-
virus transformed lymphoblast have shown deficient hormone binding capacity and affinity (123,124). It 
has been observed that marmoset lymphoblasts contain a soluble protein of 50-60 kDa that binds 
1,25(OH)2D3 with a low affinity but high capacity and thus may serve as a sink that interferes with the 
hormone binding and its cognate receptor (127). The same group described another protein present in 
the nuclear extract of these cells capable of inhibiting normal VDR-RXR binding to the vitamin D 
response element (128). 
 



It is of interest that these New World primates also exhibit a compensated hereditary end-organ 
resistance to the true steroid hormones including glucocorticoids, estrogens, and progestins (129). This 
of course raises the interesting possibility that the defect in the hormone-receptor-effector system 
involves an element shared by all the members of this superfamily of ligand modulated transcription 
factors. 
 
Recently, VDR knock out mice have been created by targeted ablation of the first or second zinc finger 
(98,99) Only the homozygote mice were affected. Though phenotypically normal at birth, after weaning 
however, they become hypocalcemic, develop secondary hyperparathyroidism, rickets, osteomalacia 
and progressive alopecia. The female mice with ablation of the first zinc finger are infertile and show 
uterine hypoplesia and impaired folliculogenesis. Otherwise, both VDR cell mutant mice show clinical, 
radiological, histological and biochemical features that are identical to the human disease. 
Supplementation with a calcium enriched diet can prevent or treat most of the disturbances in mineral 
and bone metabolism in these animal models except alopecia (100). 
 
It is of interest that targeting expression of the human VDR to keratinocytes of VDR null mice prevented 
alopecia (130). 
 
CONCLUDING REMARKS 
 
Acquired vitamin D deficiency, especially moderate or mild (the so called vitamin D insufficiency) are 
much more common than previously appreciated. It may affect more than 50% of populations with limited 
sunshine exposure and no vitamin D supplementation. In the less sever forms of vitamin D deficiency, 
there is no defective bone matrix mineralization, but an increased bone loss secondary to the 
perturbations in calcium homeostasis and secondary hyperparathyroidism, which accelerates the 
development of osteoporosis in post-menopausal women, the elderly population at large in general and 
some subgroups in particular. Osteomalacia, which marks severe vitamin D deficiency, may affect some 
of these patients as well. Based on these observations, it is highly recommended for anyone taking care 
of the elderly, especially the house or bed bound, institutionalized or patients with physical or mental 
deficiencies that limit their free movement, to consider and evaluate their vitamin D status. It seems to be 
good clinical practice and cost effective to recommend vitamin D supplementation for populations at risk, 
as a measure to prevent the deleterious effects of vitamin D deficiency on the musculoskeletal system. 
 
Hereditary deficiencies in vitamin D action are rare disorders. The importance of studying these 
diseases, stems from the fact that they represent a naturally occurring experimental model that helps to 
elucidate the function and importance of vitamin D and the VDR-effector system in human beings in vivo. 
 
VDRs are abundant and widely distributed among most tissues studied and multiple effects of calcitriol 
are observed on various cell functions in vitro. Yet, the clinical and biochemical features in patients with 
simple hereditary 1,25(OH)2D deficiency and resistance seems to demonstrate that the most important 
disturbances of clinical relevance are perturbations in mineral and bone metabolism. This emphasizes 
the pivotal role of 1,25(OH)2D in transepithelial net calcium fluxes. Moreover, the fact that in patients with 
extreme end-organ resistance to calcitriol, calcium infusions correct the disturbances in mineral 
homeostasis and cure the bone disease may support the notion that defective bone matrix mineralization 
is secondary to disturbances in mineral homeostasis. Characterization of the molecular, cellular, and 
functional defects of the different natural mutants of the human VDR in simple hereditary 1,25(OH)2D 
deficiency and resistance, demonstrates the essentiality of the VDR as the mediator of calcitriol action 
and the importance and function of its different domains, i.e. binding of the hormone, an RXR isoform, 
and binding to a specifically defined DNA region, as well as coactivators and corepressor complexes. 
Thus, studies in patients with hereditary deficiencies in vitamin D action are the essential link between 
molecular defects and physiological relevant effects in human beings. 
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