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ABSTRACT  
 
Cholesterol is essential for mammalian development.  It is a 
structural component in every cellular membrane, is 
involved with various signaling events, and is the precursor 
for key steroid hormones required for normal development. 
Fetuses have two sources of cholesterol, endogenous and 
exogenous, as do adults and children. An endogenous 
source of cholesterol comes from de novo synthesis. 
Cholesterol is synthesized in all tissues of all individuals, 
whether pre- or post-partum. In adults and children, diet is 
the exogenous source. In contrast, the fetus is protected 
from direct contact with external factors in the maternal 
circulation. As such, fetal exogenous cholesterol is obtained 
from the maternal circulation after being transported across 
the placenta and possibly the secondary yolk sac. In this 
review we will discuss fetal cholesterol metabolism and the 
potential impact of maternal cholesterol on fetal cholesterol. 
We will also cover the impact of diet on neonatal cholesterol 
metabolism.  Alterations in fetal and neonatal cholesterol 
metabolism are important not only during infancy, but for the 
long-term health of the individual as cardiovascular disease 
has been proposed to be linked to abnormal cholesterol 
metabolism in the fetus and newborn. 
 
FETAL CHOLESTEROL METABOLISM  
    
Fetal Lipoprotein Metabolism   
 
Plasma cholesterol concentrations in the newborn are 
markedly reduced compared to the adult.  There are two 
lipoproteins that carry most of the circulating cholesterol, 
low density lipoprotein (LDL) and high-density lipoprotein 
(HDL), with lower amounts of cholesterol being carried as 
very low-density lipoproteins (VLDL). According to the 
National Health and Nutrition Examination Survey 
(NHANES), in adults with an average age of 49±18 years 
and an average total cholesterol concentration of 193±42 
mg/dl, a majority of plasma cholesterol is carried as LDL 
(115±35 mg/dl) with HDL carrying less cholesterol (53±15 

mg/dl), making an average LDL-C/HDL-C ratio in adults of 
2.17 (1). In contrast, total plasma cholesterol levels are 
much lower in the fetus/newborn, with concentrations 
ranging from 51.4-96.8 mg/dl for term infants (2-13); for the 
sake of the review we will use the terms fetus and newborn 
interchangeably as blood samples for the newborn are often 
obtained from the umbilical vessels of the placenta at birth.  
In the fetus compared to the adult, a greater proportion of 
cholesterol is carried as HDL (22.1-44.9 mg/dl) versus LDL 
(22.0-44.9 mg/dl). Thus, the LDL-C/HDL-C ratio is much 
lower in a fetus/newborn compared to an adult. The ratio is 
0.56-1.55 in the fetus or newborn, with an average ratio of 
0.99 in term infants (2,4-9,12,14). 
   
Plasma cholesterol concentrations in fetuses are not 
constant throughout gestation, and concentrations often 
decrease as gestation progresses (8,15-17).  It appears that 
the biggest decreases occur in LDL-C such that LDL-
C/HDL-C ratios are elevated in most studies earlier in 
gestation (up to 1.8 at 25 weeks of gestation) and decrease 
as gestation progresses (8,15-17), possibly due to 
increased LDL receptor activity by the fetal liver late in 
gestation (18). This relationship has been found even in 
term infants (>37 weeks of gestation), depending on their 
gestational age (i.e. 37 vs 42 weeks of gestation) (16).  
While a negative correlation between gestational age and 
fetal cholesterol levels is found and preterm infants have 
higher plasma cholesterol levels than term infants in a 
number of studies, not all studies show this same 
relationship. Indeed, some studies have shown no effect of 
gestational age on fetal cholesterol levels or even an 
increase in plasma cholesterol level with gestational age 
(7,19).  The differences in results found in plasma collected 
from newborns born prematurely versus at term could relate 
to the design of the studies because some studies collect 
blood from the newborn infant while others collect cord 
blood from the placenta to analyze, which should be similar 
but may not be depending on the timing of sample 
collection. Also, gestational age may be defined differently 
depending on the method used to define gestational age 
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(ultrasound or the last menstrual cycle of the female). 
Finally, differences could be related to the preterm 
population studied as some preterm infants are thought to 
have other metabolic issues that affect their sterol 
metabolism, leading to unexpected differences in plasma 
cholesterol levels. Indeed, preterm infants are at an 
increased risk to develop heart disease later in life (20), 
possibly due to altered sterol metabolism. 
 
In addition to gestational age, other potential factors that 
could impact fetal plasma cholesterol levels are in utero 
growth rates. Slow intrauterine growth rates result in infants 
that are small-for-gestational age (SGA) or have intra-
uterine growth retardation (IUGR). Rapid intrauterine 
growth rates result in infants that are large-for-gestational 
age (LGA). Though several studies show fetal lipid 
concentrations are directly associated with fetal birthweight, 
the data are still quite variable with some studies showing 
reduced cholesterol in infants with LGA and some showing 
no effect (2,4,5,7,14). It has been proposed that it is actually 
the body type (body length, abdominal circumference, etc.) 
and not the birthweight which is important in plasma 
cholesterol levels of the fetus (6), making it difficult to 
interpret results. It may also be the type of lipoprotein 
particles that are present and not just the cholesterol 
concentration that changes with size of the newborn. A 
recent study showed that the large HDL particles of smaller 
infants contained increased amounts of apolipoprotein C-I 
(apoC-I).  These particles were shown to lead to apoptosis, 
thereby leading to a unique type of smaller infants with 
distinct metabolism (21). Interestingly, as with preterm 
infants, infants with abnormal intrauterine growth are at a 
greater risk for developing cardiovascular disease [see 
Developmental programming of adult cholesterol 
metabolism in the fetus and newborn]. It has been proposed 
that it may be metabolism in the mother that is responsible 
for the altered apolipoprotein-C and not the fetal growth 
(2,3,22,23). 
 
The composition of the lipoprotein particles also differs 
between adults and fetuses. The most well-known 
apolipoproteins, including apoE, apoA-I and apoB, are all 
present in the fetal circulation. Most of the apolipoproteins 
are lower in the fetal versus adult circulation as well (10), 
which is expected when lipid levels are so much lower in the 
fetus. One exception, however, is apoE, which is similar in 
adults and fetuses. The excess apoE is found on fetal HDL 
particles which are large in size (24-26). The presence of 
apoE on HDL increases the functions of HDL.  The most 
commonly described function of HDL is to enhance 
cholesterol efflux from cholesterol-laden cells. The effluxed 
cholesterol is transported to the liver where the cholesterol 
can be removed from the body as biliary cholesterol or bile 
acids. ApoE can enhance the efflux out of cells. More 
importantly, apoE is a ligand for a number of receptors of 

the LDL receptor family allowing for uptake of HDL-C by a 
greater number of tissues and potentially for increased 
transport of cholesterol between tissues. The apoE-
containing HDL can also affect genes related to sterol 
metabolism and oxidation in fetal endothelial cells (cells 
separating the fetal circulation from the trophoblasts of the 
placenta) (27).  HDL is an interesting lipoprotein since it 
carries over 90 proteins that mediate a myriad of functions 
(28).  In adults, the proteins carried by HDL are involved in 
oxidation, inflammation, hemostasis, vitamin transport, 
immunity, and energy balance as well as lipid transport. 
Interestingly, fetal HDL is enriched in proteins involved in 
coagulation and transport, including apoE, and is lacking in 
proteins involved in anti-oxidative processes, such as 
paroxonase I (PON1) (26).  The lack of PON1 on fetal HDL 
suggests that these particles do not have the same anti-
oxidative capacity as that found in adults, but they have 
enhanced ability to transport cholesterol between tissues 
(26).  Unlike HDL, changes in VLDL and LDL composition 
between the adult and fetal circulations are poorly defined. 
Results from a single study, however, suggest that there are 
more small-dense LDL particles in the newborn compared 
to adults (29). 
 
What is the significance of or newborn plasma cholesterol 
concentrations or composition to the clinician? Is it possible 
that plasma cholesterol may define individuals at risk to be 
hypercholesterolemic due to familial hypercholesterolemia? 
Plasma cholesterol levels at birth are not useful in this 
respect because concentrations are quite variable and they 
are dependent upon fetal growth rate and gestational age. 
To determine if an individual is at risk of high plasma 
cholesterol levels later in life, concentrations at one year of 
age are more representative of hypercholesterolemia than 
those at birth (30), taking into account if infants are fed 
cholesterol-containing breast milk or formula. Interestingly, 
infants that are at risk of high plasma cholesterol levels later 
in life and/or at an increased risk of heart disease are not 
apparent at birth because the hypercholesterolemia does 
not evolve until exposed to various factors in the 
environment or to aging. Regardless, infants that are 
premature or have abnormal fetal growth rates are at an 
increased risk to develop cardiovascular diseases, even if 
plasma cholesterol levels are not elevated at birth.  The 
plasma cholesterol levels at birth also can be used to define 
various genetic disorders. One such rare disease, which 
can actually occur in up to 1 in 10,000 to 40,000 live births, 
is the Smith-Lemli-Opitz syndrome (SLOS) (reviewed in 31-
34) and is defined by low plasma cholesterol. Individuals 
with this disorder have increased (7- and 8-fold) 
dehydrocholesterol concentrations. Assays for these 
dehydrocholesterols must be done by gas chromatography, 
not the commonly used enzymatic assay which will 
measure the dehydrocholesterols along with cholesterol. 
Thus, if SLOS is suspected due to facial features or family 
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history, plasma cholesterol should be measured using the 
appropriate assay. 
 
Regulation of Fetal Lipoprotein Metabolism   
 
In the fetus as in the adult, plasma cholesterol levels are 
regulated by the amount of cholesterol entering versus that 
exiting the circulation. In adults that are in steady state, the 
amount of cholesterol entering the plasma is equal to that 
exiting the plasma. This does not apply to individuals that 
are not in steady state, as happens with rapid growth in 
utero. Cholesterol enters the circulation as lipoproteins and 
leaves the circulation after being taken up by lipoprotein 
receptors on a number of tissues. The liver synthesizes and 
secretes VLDL which is converted to LDL in the circulation. 
Since the liver is not functionally developed in utero (35,36), 
lipoprotein production and secretion could be low, being at 
least part of the cause of the low fetal LDL-C levels. The 
reduced lipoprotein production is not due to a lack of 
cholesterol, however, because sterol synthesis rates, based 
upon markers in amniotic fluid, indicate that while fetal sterol 
synthesis rates are very low early in gestation, they increase 
markedly by mid gestation (37).  The lower levels of fetal 
cholesterol in the circulation are also likely due to an 
increase in uptake of lipoprotein-C from the circulation. 
Using the in vivo catheterized pregnant sheep model, it was 
found that uptake of cholesterol by tissues is greater in utero 
than later in the neonatal lamb (38).  This is not unexpected 
as tissues require significant amounts of cholesterol for 
membrane formation and for steroid hormone synthesis and 
lipoprotein receptors are expressed on fetal tissues (39-41). 
Why then are HDL-C levels relatively elevated in the fetus 
versus LDL-C levels? Unlike VLDL and subsequently LDL, 
HDL is produced in the circulation and as such is not 
dependent upon the fetal liver for lipoprotein production. To 
produce HDL, first cholesterol is effluxed from tissues onto 
lipid-poor apoA-I or apoE, followed by esterification of the 
cholesterol by lecithin cholesterol acyl transferase (LCAT), 
all of which are present in the fetal circulation (26). 
 
Sources of Fetal Cholesterol   
 
Because massive amounts of cholesterol are needed for 
growth, the question remains-where does the fetal 
cholesterol originate? Every membrane requires cholesterol 
with especially high amounts in neuronal cells. Thus, for a 
baby that weighs 4.5 kg, almost 15 g of cholesterol is 
required by the body as the peripheral tissues and liver 
contain ≈2.2 mg cholesterol/g wet weight tissue and the 
brain contains ≈8 mg cholesterol/g tissue at birth (reviewed 
in 42,43).  As the fetus is not in steady state, more 
cholesterol is accrued by the fetal body as compared to that 
being removed. In fact, very little cholesterol is lost from the 
fetus as bile acid production is poorly developed in the fetal 
liver and little would be expected to be lost through the GI 

tract in utero. The only net loss of cholesterol is in the form 
of steroid hormone synthesis, which does indeed occur in 
the adrenal glands during gestation (44), though in very 
small quantities.   
 
The fetus has two sources of cholesterol.  One source is 
that synthesized de novo.  The rates of sterol synthesis are 
much greater in the fetus than in the adult in several species 
(38,43,45-48), including humans (43). In fact, a significant 
proportion of the fetal cholesterol can be accounted for by 
de novo synthesis (45,49-51). Cholesterol synthesis rates 
appear to be regulated less rigidly than in adults (46), 
possibly reflecting the massive tissue requirements of the 
fetus.  Whereas sterol synthesis rates are markedly 
suppressed in adult tissues with elevated cholesterol 
concentrations, sterol synthesis rates are suppressed only 
marginally in fetal tissues with similar elevations of 
cholesterol concentrations as that in adult tissues. One of 
the key regulators of cholesterol biosynthesis is sterol 
regulatory element-binding protein-2 (SREBP2) 52. 
Processing of SREBP-2 from the inactive form to the mature 
active form enhances cholesterol synthesis. In adult tissues, 
increases in cellular cholesterol levels will reduce the 
processing of the SREBP-2 to the mature active form 
through a number of proteins present in the Golgi apparatus 
and endoplasmic reticulum. In the fetus, we found what 
appeared to be constitutive processing of the SREBPs, 
leading to a fully active sterol biosynthetic pathway, 
regardless of cholesterol levels within the tissues. This 
same lack of regulation in fetal tissues was found when fetal 
hepatocytes were treated with lipoprotein-cholesterol (53) 
and when fetuses were exposed to polyunsaturated fatty 
acids in vivo (54). Regulation still occurs, however, as 
estrogens, glucocorticoids, and progesterone all lead to 
increased fetal sterol synthesis rates (55). 
 
The other potential source of cholesterol originates from 
maternal plasma.   There has been much debate about the 
potential for maternal cholesterol to be transported to the 
fetus. The dogma for years was that maternal cholesterol is 
not actively transported to the fetus because there is no 
correlation between maternal and fetal cholesterol levels in 
term infants (11,12) and the fact that protein-labeled 
lipoproteins do not appear in the fetal circulation and fetal 
sterol synthesis rates can account for a significant amount 
of the cholesterol required by the fetus (43,49).  It was also 
thought that if active transport occurred, fetal cholesterol 
levels would not be so much lower than maternal 
cholesterol levels, as seen with active transport of maternal 
long chain fatty acids (56,57). Conversely, several direct 
and indirect lines of evidence suggest that cholesterol can 
be transported from the maternal to fetal circulation. First, 
while there is no correlation between maternal and newborn 
cholesterol concentrations in term or late preterm infants, 
there is a direct relationship between maternal and fetal 
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plasma cholesterol concentrations early in gestation (58). 
Thus, cholesterol might be transported early in gestation but 
not late in gestation. However, the caveat is that it might 
depend on the source of fetal blood (cord blood) as one 
recent paper did show a correlation between maternal total 
cholesterol levels and fetal total and LDL cholesterol in 
arterial versus venous fetal blood (59). Interestingly, though 
there is not a direct correlation between maternal and fetal 
cholesterol, some studies have shown a direct correlation 
between maternal cholesterol levels and birthweight (60-
62).  Second, fetuses of mothers with higher plasma 
cholesterol levels have increased intimal plaque (58).  Third, 
there are significant amounts of plant sterols in the newborn 
circulation, 40-50% of that found in the maternal circulation 
(30). As these sterols are only obtained from the diet of the 
mother, they must cross the placental barrier. Fourth, 
fetuses that are lacking the ability to synthesize cholesterol 
due to a defect in one of the enzymes of cholesterol 
biosynthetic pathway, such as those with the Smith-Lemli-
Opitz syndrome, have measurable amounts of cholesterol 
in their body. Finally, a recent study used a 4-vessel 
sampling method to determine the uptake of sterols by the 
uteroplacental unit and uptake of sterols by the fetus (63). 
They found that there was substantial uptake (difference in 
the arterial-venous concentrations) by the fetus. While there 
was not a direct correlation of transport/uptake of 
cholesterol by the fetus with maternal total cholesterol 
concentration, there was a direct correlation of 
transport/uptake of LDL-cholesterol by the fetus with uptake 
of total and LDL-cholesterol by the placenta. More HDL 
versus LDL related cholesterol was secreted by the 
placenta (taken up by the fetus), though the origin of the 
cholesterol was unknown and could originate from the 
maternal circulation or the placenta (newly synthesized or 
stored). The important take-home message was that there 
was a net movement of cholesterol to the fetus.   
    
There are two different tissues that isolate the embryo or 
fetus from the maternal circulation (reviewed in 31,64,65). 
Early in gestation and prior to a functional placenta (first 
trimester), the secondary yolk sac would be responsible for 
any transport of cholesterol from the maternal to fetal 
circulation. Briefly, maternal lipoproteins can be taken up by 
the yolk sac through receptor-independent processes and 
receptor processes as the yolk sac contains a number of 
lipoprotein receptors, including SR-BI, cubilin, and megalin. 
The yolk sac also synthesizes apolipoproteins and secretes 
newly formed lipoproteins which can be regulated by lipid 
availability. Because the yolk sac vasculature is integrated 
into that of the embryo, the maternally-derived lipids can 
enter the fetal circulation as newly secreted lipoproteins. At 
about 8 weeks of gestation, the spiral arteries of the 
placenta begin to flow, making the placenta functional. 
Once the placenta is functional and the secondary yolk sac 
regresses, the placenta takes over transport of maternal 

components to the fetus. The placenta is unique in that 
maternal blood enters the intervillous spaces of the 
placenta, directly bathing the placental trophoblasts. As with 
the yolk sac, trophoblasts take up maternally-derived 
lipoproteins via receptor-independent and receptor-
dependent processes; the placenta can take up lipoproteins 
through a number of receptors, including the LDL receptor, 
the VLDL receptor, the class A scavenger receptor, the LDL 
receptor-related protein (LRP), the apoE receptor 2, 
megalin, cubilin, and the scavenger receptor class B type I 
(SR-BI).  Since the maternal blood within the intervillous 
space exchanges 3-4 times each minute, it is potentially an 
excellent source of maternal cholesterol for the fetus. Once 
taken up, sterol transport proteins would assist in 
channeling cholesterol across the cells to the fetal-facing 
basolateral membrane. The LDL or HDL could potentially 
be transcytosed across the cells after interaction with SR-BI 
as shown previously in other endothelial cells (66,67). The 
route by which cholesterol exits the basolateral membranes 
and enters the fetal circulation remains a mystery as lipids 
likely need to pass through the fetal endothelial cells as well. 
Cholesterol exits the trophoblasts and endothelial cells after 
being effluxed to acceptors or after being secreted as newly 
formed lipoproteins. Two different groups did show that both 
the human placenta and polarized trophoblast-derived 
cultured cells can secrete apoB-containing lipoproteins 
(68,69). Another group showed that placentas and isolated 
primary trophoblasts also secrete apoA-I and apoE, mostly 
to the maternal side, but also the fetal side. It is unknown if 
the apolipoproteins were secreted with lipids or were 
secreted as anti-inflammatory proteins in the pregnancy-
induced inflammatory state (70). 
 
The proteins expressed on the fetal-facing membranes of 
endothelial cells and trophoblasts that can assist in efflux of 
cholesterol include SR-BI, ABCA1, and ABCG1 
(31,64,65,71,72). When the expressions of these proteins 
are altered, either genetically or pharmacologically, efflux 
changes in parallel with the protein changes made. 
Acceptors of the effluxed cholesterol that are present in the 
fetal circulation include lipid-poor apoE or apoA-I and HDL. 
Fetal HDL encompasses the size range and can be small 
and discoidal as well as large and spherical (26,73-75); both 
types can efflux cholesterol, though through different 
mechanisms (ABCA1 vs ABCG1). A change in the amount 
or composition of acceptors will also affect efflux capacity.  
For example, we found that lipid-poor fetal HDL from an 
SLOS fetus is a better acceptor of trophoblast cholesterol 
than a typical fetal HDL particle (73).  A newer player in this 
arena is the phospholipid transfer protein. This protein is 
located on the fetal side of fetal endothelial cells.  When 
added to media with fetal HDL, efflux from endothelial cells 
increased (76,77). Thus, while it is apparent that cholesterol 
can potentially be transported across cells of the yolk sac 
and the placenta and enter the fetal circulation, it is still not 
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known how much cholesterol is transported and when 
during gestation this occurs. While the efflux is assumed to 
be a route by which exogenous cholesterol is secreted from 
the apical side of maternal trophoblasts to the fetal 
circulation as a secondary source of sterol, cholesterol 
could also be effluxed to the maternal circulation as a route 
by which to removed excess placental cholesterol (78). One 
of the regulators of efflux, and specifically of ABCA1 and 
ABCG1, is liver X receptor (LXR) (79 80), and oxysterols 
can enhance the expression of LXR (81). Thus, a change in 
oxysterol concentration in the placenta, due to any number 
of oxidative stress situations, including gestational diabetes, 
could enhance LXR activation and cholesterol efflux from 
the placenta, which could thereby increase maternal and/or 
fetal cholesterol and maintain placental sterol levels at 
relatively normal levels. Indeed, there is an increase in LXR 
targets ABCA1 and ABCG1 and cholesterol efflux in fetal 
endothelial cells of women with gestational diabetes (82). 
 
Roles of Fetal Cholesterol   
 
As stated earlier, cholesterol is essential for normal growth 
and development. It is an integral component of every 
membrane and is necessary to maintain structural integrity 
and for signaling. Though all membranes contain 
cholesterol for structural purposes, cholesterol is enriched 
in specific regions of the membranes, lipid rafts, where 
many phosphorylated proteins reside. Changing lipid raft 
composition can often lead to a change in various signaling 
events with significant downstream metabolic 
consequences (83-85). Cholesterol is also required to 
activate hedgehog signaling through unique covalent bonds 
(86), including sonic hedgehog (SHH), a protein involved 
with patterning of various organs, mid-line brain structures, 
and others. As SHH is expressed as early as 3 weeks after 
fertilization, changes in activation could have very early and 
significant effects. Indeed, lower SHH signaling has been 
associated with altered signaling that occurs in individuals 
with SLOS (87). Cholesterol is also a precursor of steroid 
hormones, which are synthesized at elevated rates in utero, 
and oxysterols, regulators of metabolism through various 
pathways. Oxysterols can affect a number of pathways from 
activation of the liver X receptor (LXR) (88) to inhibition of 
SHH signaling (89). 
 
ABNORMAL FETAL STEROL METABOLISM    
 
Even though two sources of cholesterol exist for the fetus, 
a majority of fetal cholesterol is likely derived from 
synthesis, making fetal de novo cholesterol synthesis 
essential. An indication of the importance of fetal cholesterol 
is that individuals lacking the ability to synthesize 
cholesterol have mild to severe metabolic diseases and 
congenital defects. There are 7 known defects in the 
cholesterol biosynthetic pathway that result in altered fetal 

phenotypes (reviewed in 31-34).  Most of the defects found 
in humans are post-squalene. Disruption of enzymes early 
in the sterol biosynthesis pathway leads to embryonic 
lethality in various murine models (reviewed in 31).   
 
The most well-known disorder due to altered sterol 
synthesis is the SLOS, though a recent study showed that 
lower sterol synthesis rates could also lead to reduced 
growth rates and IUGR (90). This disorder is also the most 
common of this group of rare diseases. Individuals with 
SLOS have affected midline facial features, multiple organ 
and limb malformations, and intellectual disability. 
Cholesterol synthesis is halted at the last step when 7-
dehydrocholesterol (7DHC) is converted to cholesterol by a 
defect in the 3β-hydroxysterol-Δ7-reductase gene 
(DHCR7). Though it was thought that the syndrome was 
due to a lack of cholesterol (and some of the defects could 
be due to a lack of cholesterol), recent studies suggest that 
the accumulation of 7DHC plays a role in the progression of 
the disease as well (91).   
 
NEONATAL CHOLESTEROL METABOLISM  
 
The three major sources of nutrition in the United States 
during neonatal and early infancy are human milk, cow milk-
based formulas, and soy milk-based formulas. The 
composition of these types of diet differs in several factors 
that may theoretically influence cholesterol homeostasis 
including cholesterol content, polyunsaturated/saturated 
fatty acid ratio (P/S ratio), protein composition, 
phytoestrogen content, and the presence of hormones 
specific to breast milk.  More recent components of milk 
include miRNAs and prebiotics, both of which can affect 
metabolism (92,93). 
 
As with the fetus, neonatal mammalian cells also require 
significant cholesterol for normal cellular function. Infants 
fed human milk receive much greater quantities of 
cholesterol than those fed commercial formulas. Human 
milk contains between 10-15 mg/dl of cholesterol, providing 
an average daily cholesterol intake of ≈75 mg per day for a 
breastfed 4 kg newborn. Cow milk-based formulas contain 
1-4 mg/dl of cholesterol, giving an average daily cholesterol 
intake of approximately 9 mg per day. Soy milk-based 
formulas contain no cholesterol. Not unexpectedly, breast-
fed infants have higher serum cholesterol concentrations 
compared to formula-fed infants (94,95). These differences 
have generally been attributed to the cholesterol content of 
human milk and commercial formula. Whether the low 
cholesterol content in commercial formulas poses any 
physiologic or pathophysiologic effects other than the 
difference in serum cholesterol concentration and synthesis 
rates remains to be understood.  
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The impact that dietary cholesterol has on sterol 
metabolism has also been studied.  As discussed previously 
in this review, the fetus appears to be somewhat protected 
from down regulation of sterol biosynthesis. In contrast, 
neonates, like adults, can suppress sterol synthesis rates 
(96).  In one study, infants were fed breast milk versus cow 
milk-based formula.  After 4 months of diets with different 
cholesterol concentrations, total-C and LDL-C levels are 
higher in infants consuming more dietary cholesterol.  
Unlike fetal tissues, the fractional synthetic rate (FSR) of 
cholesterol was lower in infants consuming more 
cholesterol demonstrating the ability to regulate sterol 
biosynthesis in the neonate. The long-term consequences 
of these changes are currently unknown (see below).  
   
DEVELOPMENTAL PROGRAMMING OF ADULT 
CHOLESTEROL METABOLISM IN THE FETUS AND 
NEWBORN 
 
In the early 1990s, Dr. David Barker unexpectedly 
discovered that persons growing up in less affluent areas of 
England and Wales were at an increased risk for ischemic 
heart disease and infant mortality compared to those 
growing up in more affluent areas (97). Dr. Barker and 
colleagues determined that the association was between 
heart disease and low birthweight. A similar relationship 
between SGA and age-related heart disease has been 
confirmed by other researchers in other populations 
(reviewed in 98,99). An association with birthweight has 
expanded to include infants who are born LGA as well, 
forming a U-shaped curve. Thus, heart disease is now 
thought to be associated with abnormal in utero growth. 
Because of his early seminal work in this area that is ever 
expanding, the “programming” of metabolism by early life 
environment has been coined the “Barker hypothesis” or 
DOHaD (Developmental Origins of Health and Disease). 
Various mouse models have been used to study 
programming of adult diseases, though the number used to 
study programming of heart disease are not as prevalent as 
those for obesity and diabetes as mice do not routinely 
develop cardiovascular disease, though they will become 
hypertensive (100,101). One novel study did use mice often 
used for atherosclerotic studies, the apoE-deficient mouse 
(102). Dams without apoE had about 10-fold more 
cholesterol in the circulation compared to wild-type dams. 
Heterozygous offspring (apoE+/-) developed plaque only 
when the mothers were apoE-/- demonstrating the 
importance of maternal lipids in heart disease likely due to 
the ability to raise plasma cholesterol with diet in apoE-
deficient mice.   
 
The long-term changes in metabolism that persist into 
adulthood due to programming are likely epigenetic 
changes in genes controlling metabolism (reviewed in 103).  
Several genes related to lipid metabolism have been found 

to be epigenetically altered in utero, including regulatory 
genes LXR and PPARα and the transporter GLUT4 (104).  
There are some recent treatments that are directed at 
changing the epigenome postnatally, including statins 
which are proposed to modify histones and various dietary 
regimes which can affect methylation status (105), and 
prenatally, including anti-oxidant compounds to reverse 
programming (106). 
 
It is not only the in-utero environment which has the 
potential to lead to programming of metabolic disease or 
heart disease. The type of diet fed to the newborn may also 
lead to profound and long-lasting effects on metabolism and 
heart disease (107). Since breast milk and formulas vary in 
more than just in their cholesterol content, it is almost 
impossible to determine if early life cholesterol affects age-
related development of heart disease. The effect of the type 
of nutrition during infancy has additional confounders 
besides the composition of the diet, such as the amount of 
food consumed via the bottle versus breast (especially if 
milk production by the female is low), the way the infants 
are held, how much weight is gained, etc. However, if one 
were to focus solely on cholesterol, one hypothesis would 
be that Infants fed a cholesterol-containing diet are 
"programmed" to down-regulate their cholesterol synthetic 
rate to a greater extent than infants who had not been 
exposed to dietary cholesterol early in life. In this context, 
human milk with its higher cholesterol content compared to 
standard cow’s milk- or soy-based formulas could be 
protective. Even though the effect of the type of nutrition 
during infancy on later cholesterol metabolism in adulthood 
is difficult to demonstrate because of many uncontrolled 
variables in a free-living population, some studies do show 
a possible epigenetic effect. Current work in humans, which 
is largely inferential, is based upon plasma cholesterol 
concentrations. Adult men and women who were breast-fed 
in infancy had lower serum cholesterol concentrations 
compared to adults who were previously formula-fed (108) 
or higher HDL-C levels (109). Likewise, plasma total 
cholesterol was significantly higher in adult males that were 
breast fed for the shortest period when compared to those 
who were breast fed for longer times (110). In contrast, 
plasma cholesterol concentrations in children and baboons 
fed either breast milk or formula had either no difference in 
plasma cholesterol levels or lower plasma cholesterol levels 
after being fed formula (111).  A review of the literature 
suggests that the differences in studies were due to studies 
using exclusive breastmilk versus those using both breast 
milk and formula (112). Additionally, the discrepancy 
between studies could also be due to the fact that some 
were completed in children so it is possible that age-related 
stressors have not been introduced to lead to an effect and 
some used different types of formula, i.e. cow- versus soy-
based. It has also been suggested that some of the effects 
are mediated by the impact that breast milk has on BMI 
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(113) or on food preferences in adulthood (114). Future 
studies are needed to better characterize the long-term 
effects of early cholesterol exposure on cholesterol 
metabolism in later childhood and adulthood, and which 
genes may be affected by post-partum dietary cholesterol.   
 
SUMMARY 
 
Cholesterol is essential for normal growth and development. 
In the fetus, most cholesterol is derived from de novo 
synthesis, with a second source of cholesterol derived from 
the maternal circulation. The amount that is transported 
from the mother to the fetus is currently unknown. Due to its 
critical role in development, sterol synthesis rates are 
regulated less in the fetus and if synthesis is reduced due 
to genetic defects, abnormal development often occurs. The 
neonate also requires cholesterol for continued growth and 
development. The neonate obtains cholesterol from de 
novo synthesis as well as dietary cholesterol, with breast 
milk being the largest contributor of exogenous cholesterol. 
Unlike the fetus, sterol synthesis in neonates can be 
regulated.  
  

In the future, a better understanding of how lipid metabolism 
in utero relates to lipid metabolism in adults is needed. This 
would be expanded to linking how lipid metabolism changes 
in the fetus result in cardiovascular disease later in life. One 
aspect would be to define how sterol metabolism is altered 
in utero when growth rates are abnormal and what 
epigenetic changes occur simultaneously. The same can be 
true for infants that are born prematurely. In fact, knowing 
which metabolic pathways are altered during times of 
abnormal growth could allow one to devise potential 
interventions aimed at maternal and/or neonatal nutrition to 
reduce the occurrence of heart disease later in life. Possible 
targets would be anti-inflammatory factors in maternal diets 
or various factors in breast milk shown to be beneficial to 
long term health, i.e. certain microbes. In addition to targets 
developed for the young, interventions could be targeted for 
specific pathways known to be affected in the adult at a time 
when other risk factors arise.  We hope that one day we can 
reach a point where modifications to the fetal environment 
or post-natal supplementation regimens can be used to 
reduce the long-term incidence of cardiovascular and heart 
disease and other metabolic disorders.      
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