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ABSTRACT 
 
Cholesterol is critical during the development of 
embryos, fetuses and neonates to support their growth 
and development. Cholesterol is a structural 
component of membranes in every cell, it is involved 
with numerous signaling events, and it is the precursor 
for key steroid hormones.  All individuals, either in 
utero or post-partum, have two sources of cholesterol, 
endogenous and exogenous. In the embryo and fetus, 
endogenous cholesterol comes from de novo 
synthesis and exogenous sources originate in the 
maternal circulation; maternal cholesterol-carrying 
lipoproteins are taken up from the maternal circulation 
by the placenta or yolk sac, processed, and 
transported across cells to the embryo or fetus. In the 
neonate, endogenous cholesterol is also synthesized 
de novo whereas exogenous cholesterol is derived 
from the diet. Changes in maternal metabolism 
(diabetes or obesity) or adverse pregnancy outcomes 
(preterm births or preeclampsia) could lead to altered 
fetal sterol metabolism. In this review, we will examine 
fetal and neonatal cholesterol metabolism in 
complicated and uncomplicated pregnancies. Early 
identification of neonatal cholesterol abnormalities 
could identify infants in need of immediate treatments, 
mostly due to genetic disorders, and infants that could 
be at long-term risk of metabolic diseases. 
 
 

SOURCES OF FETAL CHOLESTEROL   
 
A significant amount of cholesterol is accrued during 
gestation.  A newborn that weighs ≈4.5 kg requires 
≈12 g of cholesterol with concentrations ranging from 
≈2.2 mg cholesterol/g liver and peripheral tissues and 
≈8 mg cholesterol/g neuronal tissues [reviewed in 
(1,2)].  Cholesterol is not only needed to maintain 
structural integrity but is also required for a variety of 
signaling events and as precursor of steroid 
hormones. Signaling that depends on cholesterol is 
varied, and includes the presence of cholesterol in 
specific regions of the membranes (lipid rafts) to allow 
signaling proteins to aggregate and bind specific 
scaffold proteins and to form endosomes (3-7), the 
formation of unique covalent bonds between 
cholesterol and Hedgehog (HH) and Smoothened 
(8,9), and the conversion of cholesterol to active 
oxysterols (10,11). The fetus has two sources of 
cholesterol, that synthesized de novo and that 
obtained from the maternal circulation.   
 
Sterol Synthesis   
 
Sterol synthesis rates are much greater in the fetus 
than in the adult in several species (2,12-16), including 
humans (2).  Rates are high enough to account for a 
significant proportion of the fetal cholesterol in rodents 
(12,17-19).  Synthesis rates vary between different 
fetal tissues and is greatest in the liver early in 
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gestation.  As gestation progresses, hepatic synthesis 
decreases to rates similar to other tissues by late in 
gestation (13).  While the brain has the greatest 
cholesterol concentration, synthesis rates are not 
extremely elevated as cholesterol is turned over at 
very low rates in the brain (1).   
 
Sterol biosynthesis is regulated at several different 
steps in the biosynthetic pathway primarily by the 
processing of transcription factor sterol regulatory 
element-binding protein-2 (SREBP-2) to the mature 
form. When cellular cholesterol concentrations are 
elevated in adult tissues, sterol synthesis rates and 
mature SREBP-2 levels are decreased (14,20). In 
contrast, when cellular cholesterol concentrations are 
elevated in the fetus, sterol synthesis rates are 
suppressed only marginally and mature SREBP-2 
levels do not decrease (14), suggesting constitutive 
processing of SREBP, and higher synthesis rates in 
the fetus. This same lack of regulation in fetal tissues 
was found when fetal hepatocytes were treated with 
lipoprotein-cholesterol (21) and when fetuses were 
exposed to polyunsaturated fatty acids in vivo (22). 
Interestingly, sterol synthesis rates can be stimulated 
in vitro by hormones synthesized by the placenta, 
including estrogens and progesterone, possibly to 
ensure that essential lipids are abundantly present 
(23).   
 
Maternally-Derived Cholesterol 
 
The second source of fetal cholesterol originates in the 
maternal circulation. Several lines of evidence support 
the presence of maternally-derived cholesterol in the 
fetal circulation. First, while there is no correlation 
between maternal and newborn cholesterol 
concentrations in term or late preterm infants, there is 
a direct relationship between maternal and fetal 
plasma cholesterol concentrations early in gestation 
(24).  Second, correlations between maternal and fetal 
concentrations occur when maternal plasma 

concentrations are correlated to fetal arterial and not 
fetal venous plasma concentrations (25). Third, 
fetuses of mothers with higher plasma cholesterol 
levels have increased intimal plaque (24).  Fourth, 
there are significant amounts of plant sterols in the 
newborn circulation, 40-50% of that found in the 
maternal circulation (26).  As these sterols are only 
obtained from the diet of the mother, they must cross 
the placental barrier. Fifth, fetuses lacking the ability to 
synthesize cholesterol due to a null/null mutation in 
one of the enzymes of the cholesterol biosynthetic 
pathway, such as dehydrocholesterol-7 reductase, 
have measurable, though low, amounts of cholesterol 
at birth (27,28).  Finally, using a 4-vessel sampling 
method in pregnant women, researchers measured 
substantial uptake of cholesterol by the fetus with 
more maternal HDL-C being taken up by the fetus vs 
maternal LDL-C (29).   
 
The route by which maternally-derived cholesterol is 
delivered to the fetus differs as the maternal-fetal 
interface changes during gestation (see Figure 1).  
Very early in gestation (≈first 5 weeks), endocrine 
gland secretions containing maternally-derived 
cholesterol as lipid droplets bathe the blastocyst as 
they invade the uterine wall and are the main source 
of maternally-derived lipids, and overall histotrophic 
nutrition (30).  As gestation progresses (≈5th to ≈10th 
week of gestation), the newly formed secondary yolk 
sac of the embryo floats in the nutrient-rich exocoleom 
cavity (31) (Fig. 1A).  Nutrition at this stage is still 
primarily histotrophic and consists primarily of lipid-
containing secretions from uterine glands and possibly 
some maternal lipoproteins from maternal blood which 
has seeped into the exocoleomic cavity (30). The 
human yolk sacs are not inverted, as they are in 
rodents, such that the highly absorptive apical side of 
the yolk sac faces inward (30-32), and the lipids would 
need to enter the yolk sac cavity via lipoprotein or 
endocytic receptors or other carriers (33-36).  Once 
taken up, the cholesterol from the lipids or lipoproteins 
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(37) are repackaged into nascent lipoproteins 
(34,38,39), which are secreted into the vitelline duct 
artery which is integrated into the midgut of the embryo 

(30,31,40).  In rodents, an inability to form lipoproteins 
in the yolk sac is lethal (41). 

 

 
Figure 1.  Scheme of the sources of cholesterol from different times of gestation.  A.  From about 5-10 
weeks of gestation, the primary source of nutrition for the embryo/fetus is from uterine gland secretions 
in the form of lipid droplets (dark blue circles).  There is a small amount of maternal lipoproteins (green 
and orange circles) that is also present in the exocoleum cavity from leakage from spiral arteries.  The 
lipids diffuse into the yolk sac cavity and are taken up by the apical side of the yolk sac’s endoderm cells 
via receptor- and receptor-independent mechanisms.  The cholesterol is released from other 
components in lysosomes and repackaged into APOB-containing lipoproteins (and perhaps other 
lipoproteins) and secreted into the vitteline vessels which combine with the fetal circulation in the mid-
gut.  B.  From 10 weeks of gestation to parturition, the fetus obtains its cholesterol from the maternal 
circulation in the placenta.  The maternal cholesterol-carrying lipoproteins are taken up by the apical 
side of multi-nucleated syncytialized trophoblasts, is released from other components of the 
lipoproteins in lysosomes, and transported to the basolateral side of the trophoblasts.  The cholesterol 
exits the trophoblasts to the stroma or cells within the stroma, is taken up by the fetal endothelial cells, 
is processed or transported to the opposite side where the cholesterol exits the cells.  The routes of exit 
from the trophoblasts or endothelial cells are discussed in Figure 2. 
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As gestation progresses to the second and third 
trimesters, nutrition becomes hemotrophic meaning 
nutrition is obtained from maternal blood.  Early in 
gestation, the placenta does not transport nutrients as 
the spiral arteries that supply the placenta with 
maternal lipoprotein-containing blood are “plugged” by 
extravillous trophoblasts, blocking maternal blood 
from entering placental spaces that surround the 
trophoblasts (reviewed in (42,43)).  At about 10 weeks 
of gestation, the “plugs” disintegrate, allowing 
maternal blood to enter the intervillous spaces of the 
placenta, directly bathing the syncytialized 
trophoblasts (Fig. 1B); the syncytiotrophoblasts of the 
placenta are polarized and take up nutrients from the 
maternal circulation from its apical side. The maternal 
blood within the intervillous space that bathes the 
trophoblasts exchanges 3-4 times each minute, 
making this an excellent source of nutrients.  The 
maternally-derived lipoproteins are taken up via 
receptor-independent and receptor-dependent 
processes, including the LDL receptor, the VLDL 
receptor, the class A scavenger receptor, the LDL 
receptor-related protein (LRP), the APOE receptor 2, 
megalin, cubilin, and the scavenger receptor class B 
type I (SR-BI) (35,42).  The sterol-containing 
lipoproteins are then transported to lysosomes where 
the sterol is released from lipoproteins via numerous 
lysosomal hydrolases and transported to the 
basolateral side of the trophoblasts by carrier and 
transport proteins (37).  On the basolateral (fetal-
facing) side of trophoblasts, the sterols exit the 
trophoblasts into the stroma, are subsequently taken 
up by and cross fetal endothelial cells, and ultimately 
exit these cells and enter the fetal circulation. It also is 
possible that the LDL or HDL are transcytosed across 
trophoblasts and endothelial cells as whole particles 
(44,45).    
 
There are several routes by which cholesterol can exit 
the basolateral side of trophoblasts and fetal 

endothelial cells (Figure 2), including secretion of 
particles and efflux of sterol to acceptors.  Both 
processes can be regulated at several points.  First, 
human placentas and cultured cells secrete newly 
synthesized APOB-containing lipoproteins (46,47) 
and APOA1 and APOE (48).  As in other cells that 
secrete lipoproteins (hepatocytes and enterocytes), 
cellular cholesterol can drive lipoprotein-cholesterol 
secretion from trophoblasts (49).  It is likely that other 
substrates would increase lipoprotein secretion from 
these cells.  Estradiol, which is elevated during 
pregnancy, also increases secretion of nascent 
APOB-containing lipoproteins from cultured 
trophoblasts (47).  Second, cholesterol can be effluxed 
from cells by either aqueous diffusion or by ATP 
binding cassette subfamily A member 1 (ABCA1), 
ABCG1, or SR-BI, all proteins which are expressed in 
trophoblasts (42,50).  Regulation of efflux occurs at 
the level of cellular proteins that mediate efflux, 
including SR-BI, ABCA1, and ABCG1 (50-54), and by 
the level and type of acceptor in the circulation (55).  
The regulatory protein, liver X receptor (LXR), is a key 
mediator of ABCA1 and ABCG1 (56) (57).  The levels 
of LXR are enhanced by oxysterols (58).  Thus, 
changes in cellular oxysterols can enhance efflux via 
ABCA1/G1 (see Adverse pregnancy outcomes).  The 
movement of cholesterol by SR-BI is regulated by 
cholesterol concentrations and phospholipids in the 
cells and in the accepting HDL (59).  The expression 
of SR-BI also is regulated by a number of factors, 
including cellular sterol levels (60).  Efflux is not only 
regulated by the proteins that enhance efflux, but also 
by the type and concentration of acceptors in 
endothelial spaces and circulation, with the amount of 
lipid-poor APOE or APOA1 and the composition of 
HDL being important.  For example, we found that 
lipid-poor HDL from a fetus with the Smith-Lemli-Opitz 
Syndrome (SLOS) that is unable to synthesize 
cholesterol is a better acceptor of trophoblast 
cholesterol than a non-SLOS fetal HDL (61).  
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Likewise, when HDL was changed to a better sterol-
accepting particle by the phospholipid transfer protein, 
efflux from endothelial cells increased (62,63).  One 
other aspect of HDL which affects efflux is the 
proteome (64-66). Fetal HDL does contain more 
APOE than adult HDL, less cholesteryl ester transfer 

protein (CETP), and equal lecithin cholesteryl acyl 
transferase (LCAT),a combination of proteins which 
support a larger particle that can efflux more 
cholesterol via SR-BI and ABCG1 and can’t obtain 
cholesterol from other lipoproteins via CETP (67).   

 

 
Figure 2. Routes of exit of cholesterol from trophoblasts and fetal endothelial cells.  Cholesterol exits 
these cells by being effluxed out of cells to acceptors in the plasma or by being secreted. There are 
several routes for efflux to occur, and all proteins involved have been found in the cell types listed; 
aqueous diffusion to acceptors (with lipid-poor acceptors being most efficient), SR-BI mediated, ABCG1-
mediated, and ABCA1-mediated. In trophoblasts, studies have shown that cells can secrete lipoproteins 
and apolipoproteins which will carry sterols to the circulation as they exit the cell.  Finally, exosomes 
carry cholesterol as they exit cells. 
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FETAL LIPOPROTEIN CHOLESTEROL 
CONCENTRATIONS AND COMPOSITION   
 
The functions of lipoproteins are to transport lipids 
through the plasma since cholesterol, and other lipids, 
are lipophilic and therefore not water soluble. The two 
lipoproteins that carry most of the circulating 
cholesterol are low-density lipoprotein (LDL) and high-
density lipoprotein (HDL), with lower amounts being 
carried as very low-density lipoproteins (VLDL).  
According to the National Health and Nutrition 
Examination Survey (NHANES), adults with an 
average age of 49±18 years have an average total 
cholesterol concentration of 193±42 mg/dl.  A majority 
of the plasma cholesterol in adults is carried as LDL 
(115±35 mg/dl) with HDL carrying less cholesterol 
(53±15 mg/dl), making an average LDL-C/HDL-C ratio 
in adults of 2.17 (68).  In contrast, plasma total 
cholesterol concentrations range from 51.4-96.8 mg/dl 
in term infants (69-80).  A greater proportion of 
cholesterol is carried as HDL (22.1-44.9 mg/dl) versus 
LDL (22.0-44.9 mg/dl) in the fetus compared to the 
adult leading to a ratio of LDL-C/HDL-C of 0.56-1.55 
in the fetus/newborn, with an average ratio of 0.99 in 
term infants (69,71-76,79,81).   
 
Fetal plasma cholesterol concentrations are not 
constant throughout gestation, and most studies show 
concentrations to decrease as gestation progresses 
(75,82-84).  The biggest decreases appear to occur 
with LDL-C, possibly due to increased uptake of LDL 
by enhanced hepatic LDL receptor activity late in 
gestation (85).  Decreases are detected even when 
only term infants are compared by gestational ages, 
and decrease from ratios of 1.61 at 37-38 weeks of 
gestation to 1.27 at 41-42 weeks of gestation (83).  Not 
all studies measure a decrease in fetal plasma 
cholesterol with gestational age, such as a study in 
Korea (86), possibly due to the location of the study 

since most other studies were in resource-rich 
settings.   
 
Lipoproteins (HDL, LDL, VLDL) are not comprised of 
just one size and type of particle, but are comprised of 
a spectrum of sizes (subfractions) and subspecies that 
carry different proteins and have different functions 
(64-66).  This is especially true for HDL particles as 
over 250 distinct proteins have been associated with 
HDL with different combinations of protein leading to a 
myriad of functions (64-66,87).  Not surprisingly, fetal 
vs adult lipoproteins differ in composition and 
subfraction concentrations as well as total lipoprotein-
cholesterol concentrations.  For example, fetal HDL 
particles are larger than adult HDL particles (88-90) 
and, small-dense LDL particles are more abundant in 
fetal compared to adult circulations (91).  In adults, the 
proteins carried by HDL are involved in oxidation, 
inflammation, hemostasis, vitamin transport, 
immunity, energy balance, and lipid transport (66,92).  
In contrast, fetal HDL particles are enriched in proteins 
involved in coagulation and transport, and is lacking in 
proteins involved in anti-oxidative processes, such as 
paraoxonase I (PON1) (90).  The lack of PON1 on fetal 
HDL suggests that these particles do not have the 
same anti-oxidative capacity as that found in adults 
(90).  In addition, fetal HDL is enriched in APOE.  The 
excess APOE could enhance the uptake of fetal HDL 
into fetal tissues by members of the LDL receptor 
family, enhance efflux of cholesterol out of endothelial 
cells, and affect genes related to sterol metabolism 
and oxidation in fetal endothelial cells (93).  Unlike 
HDL, fetal VLDL and LDL compositions have not been 
studied in any detail as of yet. 
 
REGULATION OF FETAL LIPOPROTEIN 
CHOLESTEROL CONCENTRATIONS  
 
In the fetus as in the adult, plasma lipoprotein-
cholesterol levels are regulated by the amount of 
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cholesterol entering versus that exiting the circulation.  
Adults in steady state have an equal amount of 
cholesterol entering and exiting the plasma unlike the 
fetus where the amount of cholesterol entering vs that 
exiting is not equal.  The lower levels of cholesterol in 
fetal plasma suggests less cholesterol entering the 
plasma or more exiting the plasma.   
 
Low-Density Lipoprotein (LDL)   
 
LDL-C originally enters the plasma after the liver 
synthesizes and secretes VLDL which is converted to 
LDL in the circulation.  Since the liver is not functionally 
developed in utero (94,95), lipoprotein production and 
secretion could be low, being at least part of the cause 
of the low fetal LDL-C levels.  The lower levels of 
circulating fetal cholesterol levels could also be due to 
an increase in uptake of lipoprotein cholesterol from 
the circulation by LDL receptors.  Using the in vivo 
catheterized pregnant sheep model, it was found that 
uptake of cholesterol by tissues is greater in utero than 
in the post-partum neonatal lamb (96).  This is not 
unexpected as fetal tissues require significant 
amounts of cholesterol for membrane formation and 
for steroid hormone synthesis (97-99).   
 
High-Density Lipoprotein (HDL)   
 
Interestingly, HDL-C levels are relatively elevated in 
the fetus.  Unlike VLDL and LDL, HDL is produced in 
the circulation and as such is not dependent upon the 
fetal liver for lipoprotein production. To produce HDL, 
cholesterol is effluxed from cells by lipid-poor APOA1 
or APOE, followed by esterification of the cholesterol 
by lecithin cholesterol acyl transferase (LCAT), all of 
which are present in the fetal circulation (90). 
 
 
 

ABNORMAL FETAL STEROL METABOLISM; 
IMPACT OF GENETIC ALTERATIONS AND 
ADVERSE PREGNANCY OUTCOMES    
 
Abnormal fetal sterol metabolism can come about by 
genetic alterations in the fetus and by influences of 
maternal factors (maternal obesity, diabetes, 
dyslipidemia, preeclampsia) on fetal metabolism.   
 
Genetic   
 
Even though two sources of cholesterol exist for the 
fetus, a majority of fetal cholesterol is likely derived 
from de novo synthesis.  Thus, changes in sterol 
synthesis could lead to unfavorable development.  
There are several known genetic defects in the post-
squalene cholesterol biosynthetic pathway that result 
in altered fetal phenotypes [reviewed in (50,100-102)]; 
one pre-squalene defect occurs (103).  Of these 
metabolic disorders, the most common is the SLOS.  
Individuals with SLOS have affected midline facial 
features, multiple organ and limb malformations, and 
intellectual disability.  As sonic hedgehog (SHH) is 
expressed as early as 3 weeks after fertilization, and 
SHH is essential in a number of key developmental 
processes (104,105), changes in activation could have 
very early and significant effects.  Indeed, lower SHH 
signaling has been associated with altered signaling 
that occurs in individuals with SLOS (106).  Lower 
sterol synthesis rates in individuals with SLOS could 
also lead to reduced growth rates and intrauterine 
growth retardation (IUGR) (107).  Though it was 
originally thought that the syndrome was due to a lack 
of cholesterol, the accumulation of 7-
dehydrocholesterol (DHC) likely plays a role in the 
progression of the disease as well (108). Interestingly, 
a large percentage of individuals with SLOS are 
autistic (109) and some individuals with autism have 
been shown to have altered cholesterol metabolism 
(110) and dyslipidemia (111,112).  Disruption of 
enzymes that occur pre-mevalonate in the sterol 
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biosynthesis pathway has not been documented in live 
newborns, and are associated with embryonic lethality 
in murine deletion models [reviewed in (50)].   
 
Adverse Pregnancy Outcomes   
 
Pregnancies complicated with diabetes, obesity, or 
preeclampsia often have adverse outcomes, including 
preterm births, altered growth rates, and in the most 
severe cases, stillbirths and infant mortality. The link 
between the altered metabolism in the pregnant 
females and the fetuses are often unknown but are 
hypothesized to be related to inflammation or oxidative 
stress within the placenta or fetus. Oxidative stress 
increases in pregnancy, and especially in pregnancies 
associated with diabetes, obesity, and preeclampsia 
(113,114).  There is an increase in oxygen species 
during oxidative stress which are involved in the 
conversion of cholesterol to oxysterols (115,116).   
 
Placenta and Fetal Endothelial Cells 
 
Oxysterols are detrimental during development as 
these cholesterol derivatives affect a number of 
signaling pathways including activation of the liver X 
receptor (LXR) (117) and inhibition of hedgehog 
signaling (118).  The oxysterol-induced increase in 
LXR activation enhances cholesterol and oxysterol 
efflux from these cell types.  Indeed, fetal endothelial 
cells of women with gestational diabetes had 
increases in LXR target genes, ABCA1 and ABCG1, 
and increased cholesterol efflux (119).  Likewise, 
HDL-mediated cholesterol efflux and placental 27-
hydroxycholesterol were increased in women with 
preeclampsia (120).   
 
Studies have shown reduced HDL-C and elevated 
LDL-C levels in preeclamptic infants (121) and 
increased oxidative modifications of LDL and HDL 
associated with decreased PON1 activity (122).  
Changes in the subfraction concentrations have been 

detected, as well, and infants of women with type I 
diabetes had greater HDL2-C and -phospholipid 
concentrations vs women without diabetes (123).   
 
These changes in sterol metabolism in the placenta, 
endothelial cells and fetus can lead to a variety of 
outcomes ranging from beneficial to adverse.  First, an 
increase in efflux due to increased placental oxysterol 
levels would increase fetal cholesterol and oxysterol 
levels, which could be deleterious to the fetus as 
oxysterols can inhibit hedgehog signaling (118).  In 
contrast, this same increase in efflux from cells with 
increased oxysterol could reduce the sterol 
concentrations in the placenta, possibly protecting the 
cells from a build-up of oxysterols, which could be 
improve placental metabolism.   
 
NEONATAL LIPOPROTEIN CHOLESTEROL 
CONCENTRATIONS AND CHOLESTEROL 
METABOLISM  
 
The three major sources of nutrition in the United 
States during neonatal and early infancy are human 
milk, cow milk-based formulas, and soy milk-based 
formulas. The composition of these types of diet differs 
in several factors that may theoretically influence 
cholesterol homeostasis including cholesterol content, 
polyunsaturated/saturated fatty acid ratio (P/S ratio), 
protein composition, phytoestrogen content, and the 
presence of hormones specific to breast milk.  More 
recent components of milk which also can affect 
metabolism include miRNAs, prebiotics, and 
extracellular vesicles (124-126).   
 
As with the fetus, neonates are in a rapid growth phase 
and require significant cholesterol for growth, energy, 
and normal cellular function. Infants fed human milk 
receive much greater quantities of cholesterol than 
those fed commercial formulas. Human milk contains 
between 10-15 mg/dl of cholesterol, cow milk-based 
formulas contain 1-4 mg/dl of cholesterol, and soy -
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based formulas contain no cholesterol. The soy-based 
formulas contain phytosterols (plant sterols), which 
actually inhibit cholesterol absorption (127).  Not 
unexpectedly, breast-fed infants have higher serum 
cholesterol concentrations compared to formula-fed 
infants (128,129). In contrast to the fetus which does 
not suppress sterol synthesis rates, rapidly-growing 
neonates do suppress sterol synthesis (130-132).   
 
LONG-TERM IMPACT OF ALTERED FETAL AND 
NEONATAL STEROL METABOLISM      
 
In the early 1990s, Dr. David Barker discovered that 
persons growing up in less affluent areas of England 
and Wales were at an increased risk for infant mortality 
and long-term ischemic heart disease compared to 
persons in more affluent areas (133).  Specifically, the 
adverse long-term consequences of heart disease 
were related to low birthweights. This relationship was 
confirmed by others [reviewed in (134,135)], and was 
expanded to also include infants who are born large 
for gestational age (LGA), forming a U-shaped curve.  
Because of his early seminal work in this area, the 
“programming” of metabolism by early life 
environment has been coined the “Barker hypothesis” 
or DOHaD (Developmental Origins of Health and 
Disease). The importance of early nutrition has been 
labeled “1000 days” as that is the time from conception 
to the second birthday when much growth and 
development (and programming) (136).  
 
It is difficult to identify any long-term effects that are 
specific to cholesterol as changes in cholesterol levels 
in the newborn or in utero are often associated with 
the oxidative stress which accompanies the adverse 
outcomes it is associated with.  For example, some 
studies have shown infants of preeclamptic mothers or 
preterm infants to be at an increased risk of heart 
disease later in life (137-143).  The long-term changes 
in metabolism that lead to programming in adulthood 
are likely epigenetic changes in genes controlling 

metabolism [reviewed in (144)].  Indeed, the greatest 
epigenetic activity occurs in the first 1000 days of life 
(145).  There are some recent treatments that are 
directed at changing the epigenome postnatally (not 
for newborns or neonates), including statins which are 
proposed to modify histones and various dietary 
regimes which can affect methylation status (146), and 
prenatally, including anti-oxidant compounds to 
reverse programming (147). 
 
It is not only the in utero environment which has the 
potential to lead to programming of metabolic disease 
or heart disease, but also the type of diet fed to the 
newborn (148).  Since breast milk and formulas vary 
more than just in their cholesterol content, it is almost 
impossible to determine if early life cholesterol due to 
consumption of breast milk vs soy-based formulas 
affects age-related development of heart disease due 
to so many other non-sterol-based factors.  However, 
if one were to focus solely on cholesterol, one 
hypothesis would be that Infants fed cholesterol-
containing human milk could be protective.  Support 
for this is that adult men and women who were breast-
fed in infancy had lower serum cholesterol 
concentrations (149) or higher HDL-C levels (150) 
compared to adults who were not fed breastfed; BMI 
was also lower in adults that had been breast-fed 
(150).  Likewise, plasma total cholesterol was 
significantly higher in adult males that were breast fed 
for the shortest period of time when compared to those 
who were breast fed for longer times (151).  In 
contrast, plasma cholesterol concentrations in children 
and baboons fed either breast milk or formula had 
either no difference in plasma cholesterol levels or 
lower plasma cholesterol levels after being fed formula 
(152).  A review of the literature suggests that the 
differences in studies were due to studies using 
exclusive breastmilk versus those using both breast 
milk and formula (153), plus other outcomes could be 
important, including intellect and BMI (154).  Future 
studies are needed to better characterize the long-
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term effects of early cholesterol exposure on 
cholesterol metabolism in later childhood and 
adulthood.  
 
CLINICAL SIGNIFICANCE OF FTAL AND 
NEWBORN PLASMA CHOLESTEROL 
CONCENTRATIONS  
 
There are a few definitive clinical identifications that 
can be diagnosed with early life plasma cholesterol 
concentrations.  As discussed earlier, plasma 
cholesterol levels are lower in the newborn and quite 
variable, making it difficult to identify infants at risk of 
becoming hypercholesterolemic, even newborns that 
are heterozygous for familial hypercholesterolemia 
(155).  By one year of age, however, plasma levels are 
more stable and hypercholesterolemia becomes more 
obvious (155), taking into account the consumption of 
cholesterol-containing breastmilk at that time. This 
might be especially important in infants of women with 

altered metabolic conditions associated with oxidative 
stress.  The problem is that these cholesterol levels 
are either not routinely measured or not reported. 
 
The plasma sterol concentrations, however, can be 
used to define various genetic disorders.  As 
discussed previously, there are known defects in the 
post-squalene cholesterol biosynthetic pathway that 
result in altered fetal phenotypes [reviewed in (50,100-
102)], each with unique sterol compositions depending 
on where the defect in the sterol biosynthetic pathway 
occurs.  Thus, these syndromes can be identified by 
assaying for the specific sterols (see Table 1).  This is 
especially useful in the milder phenotypes that might 
be missed, especially SLOS due to its mild form and 
higher prevalence. Assays for these 
dehydrocholesterols must be done by gas 
chromatography to measure non-cholesterol sterol 
levels, not the commonly used enzymatic assay which 
measures sterol levels and not type.   

 
Table 1. Disorders of Cholesterol Biosynthesis* 
Disease Inheritance Gene Defect Laboratory 

Findings 
Phenotype 

Smith-Lemli-Optiz 
syndrome 

AR 7-
dehydrocholesterol 
reductase gene 
(DHCR7) 

Elevated 7- 
dehydrocholesterol 
(DHC) and 8-DHC 
levels  
 

Characteristic 
craniofacial 
appearance (i.e., 
ptosis, small upturned 
nose, and 
micrognathia, cleft 
palate); microcephaly; 
limb anomalies 
(proximally placed 
thumbs, polydactyly, 
and 2–3 toe 
syndactyly); slow 
growth and poor 
weight gain; potential 
cardiac and 
gastrointestinal 
anomalies and 
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intellectual disability; 
severity depends on 
mutation (null to leaky) 

Sterol-4-
demethylase 
complex 

AR SC4MOL gene 
defect 

Elevated 4,4’-
demethyl- & 4-
monomethyl-sterols 

Microcephaly; 
cataracts; slow grow; 
dermatitis (scaling, 
erythroderma) 

Desmosterolosis AR DHCR24 
Very rare with only 
a few patients 
reported.  

Elevated 
desmosterol 

Craniofacial 
(dysmorphic features, 
i.e., 
micro/macrocephaly, 
cleft palate), 
ambiguous genitalia; 
short limbs and 
osteosclerosis; slow 
growth 

Lathosterolosis AR Lathosterol 5-
desaturase (SC5D)  
Very rare with only 
a few patients 
reported.  

Elevated lathosterol 
 

SLOS like phenotype; 
craniofacial (subtle 
dysmorphic features, 
i.e., microcephaly, 
upturned nose); 
micrognathia; ptosis; 
cataracts; 
polysyndactyly or 
syndactyly; 
hypospadius 

Chondrodysplasia 
punctata (Conradi-
Hȕnermann 
syndrome; CDPX2) 

X linked Emopamil binding 
protein (EBP) 

Elevated 8-DHC and 
8(9)-cholestanol  
 

Lethal in males 
Females: craniofacial 
(asymmetric 
dysmorphic features); 
skin (generalized 
congenital ichthyosis 
on erythrothematous 
base), skeletal 
(stippling, rhizomelic 
limb shortening, 
scoliosis); ocular 
(cataracts); occasional 
malformations (cleft 
palate, hearing loss)  
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Congenital 
hemidysplasia with 
ichthyosiform 
erythroderma and 
limb defects 
(CHILD syndrome) 

X linked NADH steroid 
dehydrogenase-like 
(NSDHL) or EBP 

Elevated 4-dimetyl, 
4,4-dimethyl, and 4-
carboxysterol 
intermediates (i.e., 
4,4-
dimethylcholesta-8, 
24 dien-3β-ol) 
 

Similar defects to 
CDPX2 but unilateral 
defects and no 
cataracts; lethal in 
males. 
Females: striking 
unilateral distribution of 
anomalies. 
Generalized congenital 
ichthyosiform 
erythroderma and limb 
deformities (right >left). 
Internal malformations 
including CNS, renal 
and cardiac.  

Hydrops-ectopic 
calcification-“moth 
eaten” skeletal 
dysplasia (HEM 
skeletal dysplasia, 
Greenberg 
dysplasia) 

AR or AD Lamin B receptor 
(LBR) with 
DHCR14 defect 

Elevated 8(9), 14-
dien- 3β-ol and 
cholesta-8(9),14,24-
ien-3β-ol 

Dysmorphic facial 
features, hydrops 
fetalis, cystic hydroma, 
lung abnormalities, 
severe short-limbed 
dwarfism with 
markedly disorganized 
cartilaginous and bony 
architecture (Moth 
eaten appearance of 
long bones) 

Antley-Bixler 
syndrome 

AR CYP51A1-
associated P450 
cytochrome 
oxidoreductase 
(POR) gene  

elevated levels of 
lanosterol and 
dihydrolanosterol 

Craniosynostosis; 
choanal atresia; limb 
abnormalities (i.e., 
radio humeral 
synostosis, and 
femoral bowing); 
ambiguous genitalia 
 

  *The disorders listed are post-squalene.  There is one defect in the pre-squalene pathway for cholesterol 
biosynthesis, Mevalonic Aciduria. 
 
Though cholesterol levels are not often measured until 
9-11 years of age per current recommendations for 
universal lipid screening per the American Academy of 
Pediatrics, earlier screening is appropriate if there is a 

strong family history of high cholesterol or early 
cardiovascular events. It should be noted infants 
associated with pregnancies complicated with adverse 
outcomes are at a higher risk to develop heart disease 
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later in life (137-143,156-159).  Knowing this, 
interventions directed at improving cardiovascular risk, 
including maintaining a normal BMI, ideal blood 
pressure, ideal LDL-C etc., could be started earlier to 
prevent diseases from developing.   
 
SUMMARY  
 
Cholesterol is essential for normal growth and 
development from the blastocyst through infancy. The 
cholesterol originates from an endogenous source (de 
novo synthesis) and an exogenous source (maternal 
lipoproteins and diet).  Due to its critical role in 
development, sterol synthesis rates are regulated less 
in the fetus than neonates.  If synthesis is reduced, 
possibly due to a genetic defect in the sterol 
biosynthetic pathway, abnormal development can 
occur.  Fetal cholesterol levels can be altered, 

including oxysterols, in pregnant women with various 
metabolic disorders, mostly those linked to oxidative 
stress.  The consequences of these changes are 
unknown because even though these infants are at an 
increased risk to develop age-related diseases later in 
life (130-136, 149-152), it is not known if the long-term 
effects are mediated by an early exposure to 
cholesterol/oxysterol or other factors associated with 
oxidative stress.  Regardless, offspring of mothers 
with hypercholesterolemia, preeclampsia, diabetes, 
obesity, or are born preterm should be monitored for 
future cardiovascular disease.       
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