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ABSTRACT 
 
Pediatric primary or monogenic dyslipidemias are a 
heterogeneous group of disorders, characterized by 
severe elevation of cholesterol, triglycerides, or rarely 
a combination of the two. Monogenic 
hypercholesterolemias have elevated low-density 
lipoprotein-cholesterol (LDL-C) levels and very high 
risk of premature atherosclerotic disease. They are 
caused by mutations in genes involved in the receptor-
mediated uptake of LDL by the LDL receptor (LDLR) 
in hepatocytes. Autosomal dominant familial 
hypercholesterolemia results from mutations in LDLR, 
apolipoprotein B-100 (APOB), or proprotein 
convertase subtilisin-like kexin type 9 (PCSK9). 
Autosomal recessive hypercholesterolemia is caused 
by mutations in the LDLR adaptor protein 1 
(LDLRAP1) gene. Type 1 hyperlipoproteinemia 
(Familial Chylomicronemia Syndrome) have severe 
fasting hypertriglyceridemia secondary to 
accumulation of triglyceride (TG)-rich lipoproteins, 
especially chylomicrons. It results from mutations in 
one or more genes that compromise chylomicron 
lipolysis and clearance. It has autosomal recessive 
inheritance caused by mutations in lipoprotein lipase 
(LPL), Apolipoprotein C-II(APOCII), Lipase maturation 
factor 1(LMF-1), Apolipoprotein A-V(APOAV), 

Glycosylphosphatidylinositolanchored high-density 
lipoprotein-binding protein 1(GPIHBP1). Familial 
combined hypercholesterolemia is a complex genetic 
disease and primarily a disorder of adults. There is 
strong evidence demonstrating a log-linear 
relationship between total cholesterol levels and 
coronary heart disease risk. Severe 
hypertriglyceridemia has an increased risk of acute 
pancreatitis. Universal lipid screening with 
measurement of non-fasting non-HDL cholesterol 
should be performed in all children ages 9 –11 years 
and 17–21 years. Advanced genetic testing and 
counseling play very important role in patients with 
genetic dyslipidemia. 
 
INTRODUCTION 
 
Dyslipidemias are heterogeneous group of disorders 
characterized by abnormal levels of circulating lipids 
and lipoproteins.  These abnormalities include 
elevations in cholesterol (hypercholesterolemia, 
Fredrickson Class IIa), triglycerides 
(hypertriglyceridemia, Frederickson Classes I, IV and 
V), or a combination of the two (Fredrickson Classes 
III or IIb). Genetic disorders of high-density lipoprotein 
or hypocholesterolemias are extremely rare and 
discussed in other Endotext chapters.  
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The etiology of genetic disorders are very complex, 
and can encompass from rare monogenic disorders 
due to single gene defects to complex polygenic basis 
(1). Meta-analysis of genome-wide association study 
identified 95 loci associated with abnormal total 
cholesterol (TC), low-density lipoprotein cholesterol 
(LDL-C), high-density lipoprotein cholesterol (HDL-C), 
and triglycerides (TG) (2). Recent studies have shown 
that most patients with HTG have a complex genetic 
etiology consisting of multiple genetic variants ranging 
in both frequency and effect. Patients with TG 
concentration of 200-1000 mgl/dL typically have 
polygenic or multigenic HTG. The genome-wide 
association (GWA) studies re-discovered associations 
known from prior genetic studies: that of HDL-C with 
CETP, and of LDL-C with APOE, and eventually 
identified more than 30 chromosomal loci with 
common variants associated with lipid levels.  Thus 
polygenic TG results from complex interplay of rare 
heterozygous variants with relatively large effects in 
APOA5, GCKR, LPL, APOB, APOE, CREBH, 

GPIHBP1 and rare variants in more than 30 genes 
together with secondary factors (3).  Polygenic risk 
scores use weighted summations of single nucleotide 
variants and are proposed as tools to improve the 
prediction of cardiovascular disease events 
independent of LDL-C, and their usefulness in clinical 
applications requires further studies (4).  
 
Secondary dyslipidemias are multifactorial – 
combining underlying genetic predispositions with 
disease states such as diabetes, thyroid disease, or 
drug-related changes in lipid metabolism. Only 
monogenic disorders are discussed in this chapter.  
 
MONOGENIC HYPERCHOLESTEROLEMIA 
 
Monogenic hypercholesterolemias are a group of 
single gene defects with Mendelian transmission  
characterized by elevated low-density lipoprotein-
cholesterol (LDL-C) levels and very high risk of 
premature atherosclerotic disease (5) (Table 1).  

 
Table 1. Monogenic Causes of Hypercholesterolemia (5) 

Inheritance Disease Gene Prevalence Mechanism 

Autosomal 
Dominant 

    

 Familial 
Hypercholesterolemia 
(FH)  

LDLR (6,7) 1 in 270 (8) 
(heterozygous) 

1 in 1.6 to 3 X 105 

(9-12) 
(homozygous) 

↓LDL Clearance 

 Familial defective apo 
B-100 

APOB (13) 1:1000 (10) 
(heterozygous) 

1 in 4 X 106 

(homozygous) 

↓LDL Clearance 

 FH3 PCSK9(14) <1 in 10,000 ↑Degradation of 
LDLR 

Autosomal 
Recessive 
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 Autosomal recessive 
hypercholesterolemia 

LDLRAP1 
(15) 

<1 in 1 X 106 (16) ↓LDL Clearance 

Sitosterolemia ABCG5/ABC
G8 (17) 

< 1 in 5x 106 ↓cholesterol 
excretion 

↓LDL Clearance 

Cerebrotendinous 
xanthomatosis  

CYP27A1 3-5 in 1X105  ↓ conversion of 
cholesterol to 
chenodeoxychol
ic acid (CDCA) 
and cholic acid 

Lysosomal Acid 
Lipase Deficiency 

LIPA (18) 1 in 4 to 30 X 104  ↓ hydrolysis of 
cholesterol 
esters and 
triglycerides 

 
Autosomal Dominant Hypercholesterolemia  
 
Autosomal dominant hypercholesterolemia (ADH) is 
characterized by severe life-long elevations in low-
density lipoprotein-cholesterol (LDL-C) with a 
concomitant 10-20 fold-increased risk of premature 
coronary heart disease (CHD) compared with the 
general population (11). Autosomal dominant 
hypercholesterolemia is primarily caused by mutations 
in genes involved in the receptor-mediated uptake of 
LDL by the LDL receptor (LDLR) in hepatocytes 
(Figure 2).   
 
Thus far, three genes have been found to cause the 
disorder: LDLR (Online Mendelian Inheritance in Man 
[OMIM] # 143890, referred to as having familial 
hypercholesterolemia [FH]), apolipoprotein B-100 
(APOB, OMIM # 107730, referred to as familial 
defective APOB), and proprotein convertase subtilisin-
like kexin type 9 (PCSK9, OMIM # 603776, referred to 
as FH3) (5). In ADH cohorts, mutation detection rates 
vary - as high as 90% in ethnically homogenous 
populations (19-23) and as low as 40% in a multiethnic 
US cohort (24). 
 
FAMILIAL HYPERCHOLESTEROLEMIA   
 

Brown and Goldstein (6) first demonstrated that 
autosomal dominant hypercholesterolemia is due to 
dysfunctional LDLR. Pathogenic changes in LDLR 
result in impaired uptake and processing of LDL 
particles, which leads to decreased LDL clearance 
and elevated serum cholesterol levels. Over 1700 
mutations in LDLR have been described thus far, and 
roughly about 1000 are likely to be pathogenic (7,25-
28). Mutations can be predicted to be pathogenic 
using scoring tools such as Sorting Intolerant from 
Tolerant (SIFT) (29), Polymorphism Phenotyping v2 
(PolyPhen-2) (30), or Combined Annotation 
Dependent Depletion (CADD) (31). Guo et al (32) 
recently developed a prediction model using structural 
modeling and bioinformatics algorithm called 
“Structure-based Functional Impact Prediction for 
Mutation Identification” (SFIP-MutID) for FH with 
LDLR single missense mutations. Among autosomal 
dominant hypercholesterolemia patients with 
detectable mutations, LDLR mutations represent 
~90% of cases, and recent large-scale exome 
sequencing studies have identified LDLR mutations as 
the most common genetic defect among all individuals 
with premature CHD (33).  
 
FH can occur as either homozygous (or compound 
heterozygous) or heterozygous, with a gene dosage 
effect. Homozygous FH is rare with a frequency of 1 in 
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1,000,000, whereas heterozygous FH affects 1 in 250-
500. Higher frequencies have been reported in 
homogenous ethnicities such as the Danish, French 
Canadians, South African Afrikaners, and Christian 
Lebanese (34,35). As expected, homozygotes are 
more severely affected than heterozygotes, with LDL-

C that are typically > 500 mg/dL (36) (Figure 1). 
Heterozygotes have LDL-C between 190 and 500 
mg/dL.  Recent literature has suggested that FH is 
more common and complex than previously thought 
and many patients have polygenic susceptibility rather 
than a monogenic cause (1). 

 

 
Figure 1. Phenotypic Spectrum of Familial Hypercholesterolemia (FH). Clinical diagnosis of FH can be 
variable due to different underlying molecular mutations and additional genetic characteristics. LDL, 
low-density lipoprotein; APO, apolipoprotein B; PCSK9, pro-protein convertase subtilisin/kexin type 9; 
Lp(a), lipoprotein a; SNP = single nucleotide polymorphism. (Adapted from Strum, A.C., et al., Clinical 
Genetic Testing for Familial Hypercholesterolemia: JACC Scientific Expert Panel. J Am Coll Cardiol. 
2018; 72(6):662-680 (9)). 
  
FAMILIAL DEFECTIVE APO B-100 (FDB) 
 
APOB-100 is the major apolipoprotein on LDL 
particles and helps the LDL-receptor bind LDL. FDB 
was first described phenotypically by Innerarity et al. 
in 1987 (37) after investigation by Vega and Grundy 
suggested that reduced binding of LDL to LDLR 
played a causative role in hypercholesterolemia. 
Mutations can occur in the  ApoB domain involved in 
the binding of APOB to the LDLR, reducing clearance 
of LDL from plasma and causing 

hypercholesterolemia (13).  Mutations in ApoB 
account for approximately 5% of the FH cases (27). 
Approximately 0.1% of the Northern Europeans and 
US Caucasians are known to carry p.Arg3500Gln 
variant in ApoB, whereas p.Arg3500Trp variant in 
ApoB is seen among East Asians (38-40). The 
p.Arg3500Gln variant raises plasma LDL-C by 
approximately 60 to 70 mg/dL and thus have a milder 
effect on plasma LDL-c than mutations in LDLR or 
PCSK9, but has been associated with increased 
coronary artery calcification, and earlier coronary 
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artery disease, likely due to increase in small dense 
LDL particles (41).  
 
PRO-PROTEIN CONVERTASE SUBTILISIN/KEXIN 
TYPE 9 (PCSK9) 
 
PCSK9 was discovered in 2003 as a serine protease 
that degrades hepatic LDLRs in the endosomes 
thereby reducing receptor availability. PCSK9 gain-of-
function (GOF) mutations cause increased LDRr 
degradation and reduced recycling to the cell surface, 
causing reduced LDL uptake and an increase in LDL-
C concentration (42). Interestingly, functional studies 
show that different variants have different 
mechanisms to achieve the enhanced degradation of 
LDLr (43-46).  Mutations upregulating activation of the 
PCSK9 gene were discovered in three French families 
with autosomal dominant hypercholesterolemia but no 
mutations in LDLR or ApoB (47). PCSK9 GOF 
mutations represent less than 1% of cases, with 
approximately 30 variants described to date (48). 
Currently there are two FDA approved human 
monoclonal antibodies to PCSK9:  alirocumab and 
evolocumab. They were approved in 2015 and work 
by neutralizing PCSK9, inhibiting the interaction 
between PCSK9 and the LDLR, leading to an increase 
in the number of LDL receptors and, finally, enhancing 
uptake of LDL particles. 
 
Autosomal Recessive Hypercholesterolemia 
(ARH)  
 
ARH is caused by bi-allelic mutations in the LDLR 
adaptor protein 1 (LDLRAP1) gene. LDLR adaptor 
protein (LDLRAP1 or ARH) promotes the clustering of 
LDLRs into the clathrin-coated pits on the basolateral 
surface of hepatocytes by coupling the cytoplasmic tail 
of LDLR to structural components of the clathrin-
coated pit and thus is essential for LDLR-mediated 
endocytosis. Inactivating mutations in LDLRAP1 lead 

to retention of LDLRs on the apical surface, thus 
severely reducing LDL uptake (15). 
 
Sitosterolemia, Lysosomal Acid Lipase Deficiency, 
and Cerebrotendinous Xanthomatosis are discussed 
in other Endotext chapters. 
 
Clinical Features 
 
FH should be suspected in any child with elevated 
LDL-C along with family history of elevated LDL-C, 
tendon xanthomas, premature CHD, or sudden 
premature cardiac death. Cholesterol esters deposit in 
peripheral tissues like Achilles and extensor tendons 
giving rise to tendon xanthomas and their 
accumulation in arterial walls lead to development of 
plaques and atherosclerosis.  Xanthomas are rarely 
seen in children and adolescents. However 
atherosclerosis is present from early childhood, and 
children with FH have endothelial dysfunction and 
increased carotid intima-media thickness (49). 
 
There are three diagnostic tools available for FH 

(Figure 2-4):  
 
1. The US MedPed Program diagnostic criteria (50): 

It utilizes total cholesterol levels specific to an 
individual’s age and family history. The levels were 
derived from mathematical modeling using 
published cholesterol levels for FH individuals in 
the United States and Japan (Figure 2). 

2. The Simon Broome Register Group criteria (51): It 
utilizes cholesterol levels, clinical characteristics, 
molecular diagnosis, and family history (Figure 3). 

3. The Dutch Lipid Clinic Network criteria (52): It 
utilizes family history of hyperlipidemia or heart 
disease, clinical characteristics such as tendinous 
xanthomata, elevated LDL cholesterol, and/or an 
identified mutation (Figure 4). 
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Figure 2. US MedPed Program Diagnostic Criteria. 
 

 
Figure 3. The Simon Broome Register Criteria.     
 

 
Figure 4. The Dutch Lipid Clinic Network Criteria. 
 
LIPOPROTEIN(a) 
 
Lipoprotein (a) [Lp(a)] consists of an LDL particle and 
apolipoprotein(a) [apo(a)] and has been shown to be 
associated with increased risk of atherosclerotic 
cardiovascular disease including CHD, myocardial 

infarction and ischemic strokes. An Lp(a) level 
>100 nmol/L) in Caucasians and >150 nmol/L in 
African American is considered a risk enhancing 
factor. National Lipid Association recommends 
measurement of Lp(a) in youth (< 20 years) with FH; 
family history of first-degree relatives with premature 
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ASCVD; unknown cause of ischemic stroke; or a 
parent or sibling with elevated Lp(a) (53). Lp(a) is 
discussed in another Endotext chapter. 
 
FAMILIAL CHYLOMICRONEMIA SYNDROME 
(FCS) (TYPE 1 HYPERLIPOPROTEINEMIA) 
 
Type 1 hyperlipoproteinemia (T1HLP, OMIM# 
238600) or familial chylomicronemia syndrome is 
characterized by severe fasting hypertriglyceridemia 
secondary to accumulation of triglyceride (TG)-rich 
lipoproteins, especially chylomicrons. It results from 
mutations in one or more genes that compromise 

chylomicron lipolysis and clearance; mostly due to 
biallelic loss of function mutations in lipoprotein lipase 
(LPL) gene (3,54-56), or rarely due to mutations in 
apolipoprotein CII (APOC2), lipase maturation factor 1 
(LMF1), glycosyl-phosphatidylinositol anchored high-
density lipoprotein-binding protein 1 (GPIHBP1), and 
apolipoprotein AV (APOA5) (57,58). These disorders 
typically show autosomal recessive inheritance with 
published estimates of prevalence of ~1:1,000,000. A 
recent study estimates that population prevalence 
could be as high as 1 in 300,000 (59). 
 
Genetics 

 
Table 2. Genetic Basis of Familial Chylomicronemia Syndrome 

Gene Homozygote prevalence Gene product function Age of onset 

LPL 1 in 1 million 

(95% cases) 

Hydrolysis of TG, peripheral 
uptake of FFA 

Infancy or 
childhood 

APOC2 20 families Required cofactor of LPL Childhood or 
adolescence 

LMF1 2 families Chaperone molecule required 
for proper LPL folding and/or 
expression 

Late adulthood 

APOA5 5 families Enhancer of LPL activity Late adulthood 

GPIHBP1 15 families Anchors LPL on capillary 
endothelium. Stabilizes 
binding of chylomicrons near 
LPL, supports lipolysis 

Infancy or 
childhood  

 
Lipoprotein Lipase (LPL) Deficiency  
 
FCS most commonly results from lipolytic defects due 
to deficiency of LPL. LPL is produced primarily by 
adipocytes and myocytes and binds to heparan 
sulfate, located at the heparin-binding site on the 
surface of capillary endothelial cells, allowing LPL to 
extend into the plasma and participate in the 
hydrolysis of TG carried in chylomicrons and very-low-

density lipoproteins. Bi-allelic LPL mutations account 
for about 95% cases of FCS. More than 114 mutations 
in LPL have been described, and almost all of these 
have been shown to reduce or eliminate LPL activity 
in the homozygous state, preventing hydrolysis, and 
resulting in accumulation of triglyceride-rich 
lipoproteins, primarily chylomicrons (3,60).  
 
Apolipoprotein C-II (APOC2) Mutations  
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APOC2 encodes for apolipoprotein (apo) C-II which is 
found on high-density lipoproteins (HDL), 
chylomicrons, and very-low-density lipoproteins, and 
acts as a key cofactor and an activator for LPL (61,62). 
Twenty families with disease causing mutations in 
ApoC2 have been reported in the literature.  
 
Lipase Maturation Factor 1 (LMF1) Mutations 
 
LMF1 serves as a chaperone in the endoplasmic 
reticulum and is required for the posttranslational 
activation of LPL, thus playing a regulatory role in 
lipase activation and lipid metabolism (63). Two 
families with disease causing mutations in LMF1 have 
been reported in literature 
 
Apolipoprotein A-V (APOAV) Mutation 
 
Apo A-V is believed to stabilize the lipoprotein–
enzyme complex and to enhance lipolysis; thus, when 
Apo A-V is defective or absent, the efficiency of LPL-
mediated lipolysis is decreased (64,65). Five patients 
with disease causing mutations in APOAV have been 
reported in literature. 
 
Glycosylphosphatidylinositol-Anchored High-
Density Lipoprotein-Binding Protein 1 (GPIHBP1) 
Mutation 
 
GPIHBP1 is a glycosylphosphatidylinositol-anchored 
protein on capillary endothelial cells, which transports 
LPL into capillaries (66).  GPIHBP1 directs the 
transendothelial transport of LPL, helps anchor 
chylomicrons to the endothelial surface, and enhances 
lipolysis (67). Mutations in mutations in GPIHBP1 
have been reported in 15 families.  
 
Clinical Features 
 
FCS usually presents by adolescence although cases 
are often unrecognized until adulthood (60). Often, 
patients don’t get diagnosed until after developing 
pancreatitis (60,68), at which time triglycerides are 
noted to be severely elevated (at least > 1000 mg/dL). 
Other clinical features include eruptive or tuberous 

xanthomas, recurrent pancreatitis, lipemia retinalis, 
and hepatosplenomegaly. Some rare cases may 
present with failure to thrive, intestinal bleeding, 
anemia, or encephalopathy (69-71). Unique clinical 
features like neonatal transient obstructive jaundice 
due to xanthomas in pancreatic head region and 
asymptomatic renal xanthomas have been recently 
described (72,73). 
 
Several physical exam findings characterize FCS. On 
fundoscopic exam, a pale pink appearance of vessels 
can be noted, referred to as lipemia retinalis. Lipemia 
retinalis occurs due to light scattering of large 
chylomicron particles. Eruptive xanthomas - crops of 
discrete yellow papules on an erythematous base – 
can manifest on the back, buttocks, and extensor 
aspects of elbows and knees. The eruptive xanthomas 
clear as triglycerides decrease.   Hepatosplenomegaly 
occurs due to triglyceride accumulation in the liver and 
spleen. 
 
Severe hypertriglyceridemia is an increased risk of 
acute pancreatitis, a serious condition often 
complicated by the systemic inflammatory response 
syndrome, multiorgan failure, pancreatic necrosis, and 
mortality rates as high as 20%. Even when not having 
pancreatitis episodes, some FCS patients suffer from 
bouts of abdominal pain. 
 
Diagnostic Approach 
 
FCS should be suspected in patients with severe 
hypertriglyceridemia (> 1000 mg/dL) without any 
secondary cause (e.g., uncontrolled diabetes, alcohol 
use, etc.).  Gene sequencing to look for homozygous 
or compound heterozygous mutations in known genes 
such as LPL, APOC2, APOA5, LMF1 and GPIHBP1 
may be performed. Although not always clinically 
available, several research labs can do sequencing or 
these genes can be included as part of targeted next-
generation sequencing diagnostic panel for 
monogenic dyslipidemias. A molecular diagnosis aids 
in the early identification of at-risk family members. It 
might also help to establish candidacy for emerging 
therapies that target primary LPL deficiency, 
especially for patients who present at a young age. 
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Treatment of these patients poses a significant 
challenge, as the current medications for 
hypertriglyceridemia such as fibrates, niacin, and 
omega-3 fatty acids are ineffective (55,74). The only 
effective therapy is extremely low-fat diet (55,75).  
Recent clinical trial of the gastric and pancreatic lipase 
inhibitor, orlistat, reduced serum triglycerides by 
greater than 50% in two patients with FCS due to 
GPIHBP1 mutations and was shown to be safe and 
highly efficacious in lowering serum triglycerides in 
children with FCS (76). Alipogene tiparvovec 
(Glybera®; AMT-011, AAV1-LPL(S447X)) is an 
adeno-associated virus serotype 1-based gene 
therapy, which was approved in Europe for adult 
patients with familial LPL deficiency in 2012 but has 
been subsequently withdrawn from the market in April 
2017 (77). Volanesorsen, an antisense 
oligonucleotide against APOC3 mRNA, is approved to 
treat individuals with familial chylomicronemia 
syndrome in Europe but not the US.  In a pooled 
analysis of four studies comparing 139 patients 
treated with volanesorsen a significant reduction in 
triglycerides was observed compared to placebo [TG 
level (MD: -73.9%; 95%CI: -93.5%, -54.2; p < .001) 
(77A).    
 
FAMILIAL COMBINED HYPERLIPIDEMIA (FCHL) 
 
FCHL is the most common inherited form on 
dyslipidemia. Its prevalence is estimated to be about 1 
in 100 and thus is of importance for cardiovascular 
metabolic health of the population (78). A nomogram 
was created in 2004 to calculate probability of being 
affected by FCHL using three variables: age and 
gender adjusted triglyceride, total cholesterol, and 
absolute apoB levels. Points are calculated on point 
scale, translated into probabilities. The individual is 
considered as affected by FCHL if probability is at 
least 60%, in the setting of one other family member 
with FCH phenotype, and at least one individual in the 
family with premature cardiovascular disease (CVD) 
(79) . No single gene has yet been identified as a 
causative factor. It is a complex genetic disease and 
the features are determined by interaction of multiple 
FCHL susceptibility genes with environmental factors. 
The genes most frequently reported to be associated 

with FCHL are functionally related to plasma lipid 
metabolism and clearance, such as USF1, HL, 
PPARG, TNFRSF1B, LPL, LIPC, APOA1/CIII/AIV/AV 
and APOE (80). Overproduction of VLDL particles and 
hepatic fat accumulation are both central aspects of 
FCHL. Increased free fatty acid flux (from 
dysfunctional adipose tissue) towards the liver, 
increased hepatic de novo lipogenesis, and impaired 
β oxidation results in hepatic fat accumulation (80). 
FCHL is typically a diagnosis of adults. Its diagnosis is 
very complex in children due to lack of long-term data 
linking lipid values measured in children to the 
expression of the disease in the adult state or in older 
people. Hyperapo B in children may be a precursor of 
other lipid abnormalities, and thus it is suggested as a 
good marker of early diagnosis of FCH (81).  
 
FAMILIAL HYPERTRIGLYCERIDEMIA (FHTG) 
 
Similar to FCHL, FHTG is a complex genetic disease 
and the features are determined by the interaction of 
multiple susceptibility genes that increase triglyceride 
levels with environmental factors. Triglyceride levels 
are between 250-1000 mg/dL and LDL-c and apoB 
levels are not elevated. It is often accompanied by 
obesity and insulin resistance.    
 
FAMILIAL DYSBETALIPOPROTEINEMIA 
 
Dysbetalipoproteinemia is characterized by 
accumulation of remnant particles due to homozygous 
apoE2 genotype. The estimated prevalence is from 
0.12% to 0.40% (82).  A secondary insult such as 
insulin resistance, obesity, diabetes, hypothyroidism, 
or estrogen use decreases remnant clearance, 
increasing VLDL production. Patients have elevated 
total cholesterol (250-500 mg/dL) and triglyceride 
levels (250- 600 mg/dL), often with decreased HDL-C 
and LDL-C. This disorder is suspected when TG/apoB 
ratio is <10.0 and the diagnosis can be confirmed by 
VLDL-C/ plasma TG >0.69 plus an apoE2/E2 
genotype (83). 
 
LIPODYSTROPHY  
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Generalized and partial lipodystrophy syndromes are 
frequently associated with hypertriglyceridemia from 
late childhood and are discussed in details in another 
Endotext chapter (84,85).  
 
SCREENING 
 
There is strong evidence demonstrating a log-linear 
relationship between total cholesterol levels and 
coronary heart disease (CHD) risk. Thus the National 
Heart, Lung, and Blood Institute (NHLBI) along with 
the American Academy, issued integrated 
recommendations for cardiovascular (CV) risk 
reduction, including guidelines for management of 
hypertension, obesity, and hyperlipidemia (86). 
Universal lipid screening should be performed with 
measurement of non-fasting non-HDL cholesterol in 
all children ages 9 –11 years and 17–21 years. Those 
with abnormal levels should have two additional 
fasting lipid profiles measured 2 weeks to 3 months 
apart and averaged. Abnormal levels are then 
stratified by LDL cholesterol, TG levels, and risk 
factors. One of the important goals of the universal 
screening is identifying patients with FH. FH affects 1 
in 250 population, and patients develop severe 
coronary artery disease and other vascular 
complications at a young age if not recognized and 
treated. Current evidence suggests that early 
detection of FH and cascade screening are required. 
Among heterozygous patients the long latent period 
before the expected onset of coronary artery disease 
provides an opportunity for initiating effective drug and 
lifestyle changes improving the prognosis of the 
disease (87,88). Universal screening in youth can also 
provide means of identifying affected family members 
through reverse cascade screening (89).  
 
With decreasing cost and increasing accessibility, 
incidentally identified variants are becoming common 
and the ACMG (American College of Medical Genetics 
and Genomics) recently published guidance on 
clinically actionable genes. LDLRR, APOB and 
PCSK9 are amongst these genes. The Centers for 
Disease Control and Prevention has devised a 3-tier 
system for actionable genomic applications; with tier 1 

genes backed by strong evidence that supports that 
identification should alter management to prevent the 
disease. Currently, the hyperlipidemia–associated 
genes represent the Centers for Disease Control and 
Prevention tier 1 list (90,91). 
 
Cost-Effectiveness  
 
Multiple studies have reported cost-effectiveness of 
screening. Goldman et al (92) showed the use of low-
to-moderate doses of hydroxymethylglutaryl 
coenzyme A (HMG CoA) reductase inhibitor for 
primary prevention in patients with heterozygous FH 
was cost effective. Statins are now very inexpensive 
and generic.  A detailed study from the United 
Kingdom compared the identification and treatment of 
FH patients by universal screening, opportunistic 
screening in primary care, screening of premature 
myocardial infarction admissions, and tracing family 
members of affected patients. They concluded that 
screening family members of people with familial 
hypercholesterolemia is the most cost effective option 
for detecting cases across the whole population (93). 
Another study showed that the cost-effectiveness of a 
family based screening program for FH in the 
Netherlands is between 25·5- and 32-thousand Euros 
per year of life gained (94). A recent study showed 
cost effectiveness if searching primary care databases 
for high-risk population of FH followed by cascade 
testing as only half of the carriers are identified by 
cascade screening at this time (95).  
 
GENETIC COUNSELING 
 
FH has an autosomal dominant inheritance with a 
gene dosage effect and the impact of diagnosis is 
likely to extend beyond the affected patient to multiple 
relatives across multiple generations. Identifying at-
risk individuals is very important to prevent morbidity 
and mortality due to premature CVD. Given the 
complicated nature of genetic testing, there is 
significant role of genetic counseling for professionals 
treating hypercholesterolemic patients. Genetic 
counseling should begin when the proband is 
suspected to have diagnosis of FH. The discussion 
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should include an explanation of inheritance patterns, 
information about genetic testing, including potential 
benefits, risks, and potential for incidental or uncertain 
findings. Once results are obtained, genetic 
counseling helps the patient in their interpretation. 
Genetic counselors should discuss the genetic tests 
results and interpretations and need to test family 
members in families with positive results. They also 
need to discuss that about 20–40% of FH patients do 
not have any unidentifiable mutations in Sanger 
sequencing (first line testing), and might benefit from 
new testing modalities like whole exome sequencing. 
FCS has autosomal recessive inheritance and genetic 

testing of the families help identify at risk individuals. 
Early identification of subjects at risk for developing 
HTG could prompt early lifestyle modification or 
evidence- based pharmacological intervention to 
reduce risk of clinical end points. Individuals that are 
heterozygous for LPL defects are at increased risk of 
developing hypertriglyceridemia, particularly in 
response to environmental insults such as obesity, 
diabetes, ETOH, etc. FCHL on the other hand is a 
complex disorder that both genetics and environment 
can play a role in its pathogenesis which can be 
explained to the families.  
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