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ABSTRACT 
 
Diabetic ketoacidosis (DKA) and hyperglycemic 
hyperosmolar state (HHS) are acute metabolic 
complications of diabetes mellitus that can occur in 
patients with both type 1 and 2 diabetes mellitus. 
Timely diagnosis, comprehensive clinical and 
biochemical evaluation, and effective management is 
key to the successful resolution of DKA and HHS. 
Critical components of the hyperglycemic crises’ 
management include coordinating fluid resuscitation, 
insulin therapy, and electrolyte replacement along with 
the continuous patient monitoring using available 
laboratory tools to predict the resolution of the 
hyperglycemic crisis. Understanding and prompt 
awareness of potential special situations such as DKA 
or HHS presentation in the comatose state, possibility 
of mixed acid-base disorders obscuring the diagnosis 
of DKA, and risk of brain edema during therapy are 
important to reduce the risks of complications without 
affecting recovery from hyperglycemic crisis. 
Identification of factors that precipitated DKA or HHS 
during the index hospitalization should help prevent 
subsequent episode of hyperglycemic crisis. 
 
INTRODUCTION 
 

Diabetic ketoacidosis (DKA) and hyperosmolar 
hyperglycemic state (HHS) represent two extremes in 
the spectrum of decompensated diabetes. DKA and 
HHS remain important causes of morbidity and 
mortality among diabetic patients despite well-
developed diagnostic criteria and treatment protocols 
(1). The annual incidence of DKA from population-
based studies in 1980s was estimated to range from 4 
to 8 episodes per 1,000 patient admissions with 
diabetes (2); the annualized incidence remains stable 
based on the 2017 national inpatient sample analysis 
(3). Overall, the incidence of DKA admissions in the 
US continues to increase, accounting  for about 
140,000 hospitalizations in 2009 (Figure 1 a), 168,000 
hospitalizations in 2014 (4,5), and most recently 
220,340 admissions in 2017 (3) with similar trends 
observed in England (6) and Finland (7). The 2014 
DKA hospitalization rates were the highest in persons 
aged <45 years (44.3 per 1,000) and lowest in persons 
aged ≥65 years (<2.0 per 1,000) (5); the age-related 
admission patterns remained the same in the 2017 
analyses (3). The rate of hospital admissions for HHS 
is lower than of DKA and is less than 1% of all diabetic-
related admissions (8,9). About 2/3 of adults 
presenting to the emergency department or admitted 
with DKA have a past history of type 1 diabetes (T1D), 
while almost 90% of the HHS patients have a known 
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diagnosis of type 2 diabetes (T2D) (5). In 2014, there 
were reported 207,000 emergency department visits 
with a diagnosis of hyperglycemic crisis (10). 
Decompensated diabetes imposes a heavy burden in 
terms of economics and patient outcomes. DKA is 
responsible for more than 500,000 hospital days per 
year at an estimated annual direct medical expense 
and indirect cost of 2.4 billion USD in 1997 (CDC) (11). 
The cost of inpatient DKA care in the US has 
increased to 5.1 billion USD in 2014, corresponding to 
approximate charges related to DKA care varying 
between 20-26 thousand USD per admission (12,13) 
and continued to increase in 2017 when DKA 
admissions costed healthcare about 6.76 billion USD, 
corresponding to about 31 thousand USD per each 
admission (3). The mortality rate for DKA and 
hyperglycemic crises has been falling over the years 
(Figure 1b) (4) with estimates of fatality remaining 

under 1% for DKA (3); mortality can reach up to 20% 
in HHS (14). In 2010, among adults aged 20 years or 
older, hyperglycemic crisis caused 2,361 deaths (15). 
There was a decline in mortality from 2000 to 2014 
across all age groups and both sexes with largest 
absolute decrease among persons aged ≥75 years 
(5). The mortality rate of HHS is higher, reaching 10-
20% depending on associated comorbidities and 
severity of the initial presentation compared with DKA 
(14,16,17) and is highest in those with DKA+HHS (18). 
Severe dehydration, older age, and the presence of 
comorbid conditions in patients with HHS account for 
the higher mortality in these patients (17). Recent 
analyses suggested that patients who are black, 
female, and/or having Medicaid insurance had the 
highest risk of being admitted with DKA (3).   
 

 
Figure 1. Hyperglycemic Crises. A) Incidence of DKA 1980-2009 B) Crude and Age-Adjusted Death Rates 
for Hyperglycemic Crises as Underlying Cause per 100,000 Diabetic Population, United States, 1980–
2009 C) Age-Adjusted DKA hospitalization rate per 1,000 persons with diabetes and in-hospital case-
fatality rate, United States, 2000–2014 (5). 
 
DEFINITIONS 
 

DKA consists of the biochemical triad of 
hyperglycemia, ketonemia, and high anion gap 
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metabolic acidosis (19) (Figure 2). The terms 
“hyperglycemic hyperosmolar nonketotic state” and 
“hyperglycemic hyperosmolar nonketotic coma” have 
been replaced with the term “hyperglycemic 
hyperosmolar state” (HHS) to highlight that 1) the 

hyperglycemic hyperosmolar state may consist of 
moderate to variable degrees of clinical ketosis 
detected by nitroprusside method, and 2) alterations 
in consciousness may often be present without coma. 

 

Figure 2. The triad of DKA (hyperglycemia, acidemia, and ketonemia) and other 
conditions with which the individual components are associated. From Kitabchi and 

Wall (19). 
 
Both DKA and HHS are characterized by 
hyperglycemia and absolute or relative insulinopenia. 
Clinically, they differ by the severity of dehydration, 
ketosis, and metabolic acidosis (17). 
 
DKA most often occurs in patients with T1D. It also 
occurs in T2D under conditions of extreme stress, 
such as serious infection, trauma, cardiovascular or 
other emergencies, and, less often, as a presenting 
manifestation of T2D, a disorder called ketosis-prone 
T2D (16). Similarly, whereas HHS occurs most 
commonly in T2D, it can be seen in T1D in conjunction 
with DKA. Presentations with overlapping DKA and 
HHS accounted for 27% of admissions for 
hyperglycemic crises based on one report (18).  

 
PATHOGENESIS 
 
The underlying defects in DKA and HHS are 1) 
reduced net effective action of circulating insulin as a 
result of decreased insulin secretion (DKA) or 
ineffective action of insulin in HHS (20-22), 2) elevated 
levels of counter regulatory hormones: glucagon 
(23,24), catecholamines (23,25), cortisol (23), and 
growth hormone (26,27), resulting in increased 
hepatic glucose production and impaired glucose 
utilization in peripheral tissues, and 3) dehydration and 
electrolyte abnormalities, mainly due to osmotic 
diuresis caused by glycosuria (28) (Figure 3). 
Diabetic ketoacidosis is also characterized by 
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increased gluconeogenesis, lipolysis, 
ketogenesis, and decreased glycolysis (16). 
 
Diabetic Ketoacidosis 
 
In DKA, there is a severe alteration of carbohydrate, 
protein, and lipid metabolism (8). In general, the body 
is shifted into a major catabolic state with breakdown 
of glycogen stores, hydrolysis of triglycerides from 
adipose tissues, and mobilization of amino acids from 
muscle (16). The released triglycerides and amino 
acids from the peripheral tissues become substrates 
for the production of glucose and ketone bodies by the 
liver (29). Hyperglycemia and ketone bodies 
production play central roles in developing this 
metabolic decompensation (30).  
 
HYPERGLYCEMIA 
 
The hyperglycemia in DKA is the result of three 
events: (a) increased gluconeogenesis; (b) increased 
glycogenolysis, and (c) decreased glucose utilization 
by liver, muscle, and fat. Insulinopenia and elevated 
cortisol levels also lead to a shift from protein 
synthesis to proteolysis with resultant increase in 
production of amino acids (alanine and glutamine), 
which further serve as substrates for gluconeogenesis 
(8,31). Furthermore, muscle glycogen is catabolized to 
lactic acid via glycogenolysis. The lactic acid is 
transported to the liver in the Cori cycle where it serves 
as a carbon skeleton for gluconeogenesis (32). 
Increased levels of glucagon, catecholamines, and 
cortisol with concurrent insulinopenia stimulate 
gluconeogenic enzymes, especially phosphoenol 
pyruvate carboxykinase (PEPCK) (26,33). Decreased 
glucose utilization is further exaggerated by increased 
levels of circulating catecholamines and FFA (34). 
 
KETOGENESIS 
 
Excess catecholamines coupled with insulinopenia 
promote triglyceride breakdown (lipolysis) to free fatty 
acids (FFA) and glycerol in adipose tissue. The latter 

provides a carbon skeleton for gluconeogenesis, while 
the former serves as a substrate for the formation of 
ketone bodies (35,36). The key regulatory site for fatty 
acid oxidation is known to be carnitine palmitoyl 
transferase 1(CPT1) which is inhibited by malonyl CoA 
in the normal non-fasted state but the increased ratio 
of glucagon and other counter regulatory hormones to 
insulin disinhibit fatty acid oxidation and incoming fatty 
acids from fat tissue can be converted to ketone 
bodies (37,38). Increased production of ketone bodies 
(β-hydroxybutyrate and acetoacetate) leads to 
ketonemia (39). Ketonemia is further maintained by 
the reduced liver clearance of ketone bodies in DKA. 
Extracellular and intracellular buffers neutralize 
hydrogen ions produced during hydrolysis of 
ketoacids. When overwhelming ketoacid production 
exceeds buffering capacity, a high anion gap 
metabolic acidosis develops. Studies in diabetic and 
pancreatectomized patients have demonstrated the 
cardinal role of hyperglucagonemia and insulinopenia 
in the genesis of DKA (40). In the absence of stressful 
situations, such as intravascular volume depletion or 
intercurrent illness, ketosis is usually mild (16,41). 
 
Elevated levels of pro-inflammatory cytokines and lipid 
peroxidation markers, as well as procoagulant factors 
such as plasminogen activator inhibitor-1 (PAI-1) and 
C-reactive protein (CRP) have been demonstrated in 
DKA. The levels of these factors return to normal after 
insulin therapy and correction of hyperglycemia (42). 
This inflammatory and procoagulant state may explain 
the well-known association between hyperglycemic 
crisis and thrombotic state (43,44).  
 
Hyperglycemic Hyperosmolar State 
 
While DKA is a state of near absolute insulinopenia, 
there is sufficient amount of insulin present in HHS to 
prevent lipolysis and ketogenesis but not adequate to 
cause glucose utilization (as it takes 1/10 as much 
insulin to suppress lipolysis as it does to stimulate 
glucose utilization) (33,34). In addition, in HHS there 
is a smaller increase in counter regulatory hormones 
(20,45).  
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Figure 3. Pathogenesis of DKA and HHS: stress, infection, or insufficient insulin. FFA, free fatty acid. 
Adapted from Kitabchi et al. (1). 
 
PRECEPITATING FACTORS 
 
The two most common precipitating factors in the 
development of DKA or HHS are inadequate insulin 
therapy (whether omitted or insufficient insulin 
regimen) or the presence of infection (46,47). Other 
provoking factors include myocardial infarction, 
cerebrovascular accidents, pulmonary embolism, 
pancreatitis, alcohol and illicit drug use (Figure 4). In 
addition, numerous underlying medical illness and 
medications that cause the release of counter 
regulatory hormones and/or compromise the access 
to water can result in severe volume depletion and 
HHS (46). Drugs such as corticosteroids, thiazide 
diuretics, sympathomimetic agents (e.g., dobutamine 
and terbutaline), and second generation antipsychotic 
agents may precipitate DKA or HHS (17). Most 

recently, two new classes of medications have 
emerged as triggers for DKA. Sodium-glucose 
cotransporter 2 (SGLT-2) inhibitors (canagliflozin, 
dapagliflozin, and empagliflozin) that are used for 
diabetes treatment have been implicated in the 
development of DKA in patients with both T1D and 
T2D (48). Though the absolute risk of DKA in patients 
treated with SGLT-2 inhibitors is small, this class of 
medications raises DKA risk by 2-4-fold in patients 
withT2D and its incidence can be up to 5% in patients 
with T1D (49,50). Also, anti-cancer medications that 
belong to classes of immune checkpoint inhibitors 
such as Ipilimumab, Nivolumab, Pembrolizumab, can 
cause new-onset diabetes mellitus in up to 1% of the 
patients receiving immune checkpoint inhibitors with 
about half of these patients presenting with DKA as 
the initial presentation of diabetes, particularly in those 
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individuals who may have underlying beta-cell 
autoimmunity  (51,52) (53-56). In young patients with 
T1D, insulin omission due to fear of hypoglycemia or 
weight gain, the stress of chronic disease, and eating 
disorders, may contribute in 20% of recurrent DKA 
(57). Cocaine use also is associated with recurrent 
DKA (58,59). Mechanical problems with continuous 
subcutaneous insulin infusion (CSII) devices can 
precipitate DKA (60); however, with an improvement 
in technology and better education of patients, the 
incidence of DKA have been declining in insulin pump 
users (61). There are also case reports of patients with 
DKA as the primary manifestation of acromegaly (62-
64).  
 
Increasing numbers of DKA cases have been reported 
in patients with Type 2 DM. Available evidence shows 
that almost 50 % of newly diagnosed adult African 
American and Hispanic patients with DKA have T2D 
(65). These ketosis-prone type 2 diabetic patients 
develop sudden-onset impairment in insulin secretion 
and action, resulting in profound insulinopenia (66). 
Clinical and metabolic features of these patients 
include high rates of obesity, a strong family history of 
diabetes, a measurable pancreatic insulin reserve, 
and a low prevalence of autoimmune markers of β-cell 
destruction (67-69). Aggressive management with 
insulin improves β-cell function, leading to 
discontinuance of insulin therapy within a few months 
of follow-up and 40 % of these patients remain non-
insulin dependent for 10 years after the initial episode 
of DKA (68). The etiology of acute transient failure of 
β-cells leading to DKA in these patients is not known, 
however, the suggested mechanisms include 

glucotoxicity, lipotoxicity, and genetic predisposition 
(70,71).  A genetic disease, glucose-6-phosphate 
dehydrogenase deficiency, has been also linked with 
ketosis-prone diabetes (72). In a most recent review of 
factors that can precipitate DKA, the authors 
emphasized that clinicians should consider factors 
such as socioeconomic disadvantage, adolescent 
age, female sex, prior DKA, and psychiatric 
comorbidities as potential DKA triggers in patients with 
T1D (50). Further, in US adults with T1D, HbA1c ³ 9% 
was associated with 12-fold higher incidence of DKA 
(73). Finally, with recent accumulation of knowledge of 
health hazards related to the COVID-19 pandemic, 
there is early evidence that COVID-19 infection can 
trigger DKA in patients with diabetes who otherwise 
may not have risk factors to develop ketoacidosis (74). 
Particular attention should be provided to those DKA 
patients who are COVID-19-positive on admission as 
early evidence demonstrated a 6-fold increase in 
mortality in this group of patients compared with those 
admitted with DKA without COVID-19 (75). 
 
With growing use of SGLT-2 inhibitors, it is worth 
elucidating potential risk factors that can mediate 
heightened DKA risk in patients with diabetes. It is now 
clear that T1D is an independent DKA risk factor 
regardless of whether other clinical circumstances 
known to trigger ketoacidosis are present or not. In 
people with T2D, low-carbohydrate diet, excessive 
ETOH intake, presence of autoimmunity, and/or 
exposure to stress situations such as infection, 
surgery, trauma, dehydration are now identified as 
DKA risk factors in those treated with SGLT-2 
inhibitors (50,76).   
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Figure 4. Common precipitating factors in DKA. Data are % of all cases except Nyenwe 
et al where new onset disease was not included in the percentage and complete data 
on these items were not given; therefore, the total is less than 100%. Adapted with 
modification from reference 1. 
 
CLINICAL FEATURES 
 
Symptoms and Signs 
 
DKA usually evolves rapidly within a few hours of the 
precipitating event(s). On the other hand, 
development of HHS is insidious and may occur over 
days to weeks (16). The common clinical presentation 
of DKA and HHS is due to hyperglycemia and include 
polyuria, polyphagia, polydipsia, weight loss, 
weakness, and physical signs of intravascular volume 
depletion, such as dry buccal mucosa, sunken eye 
balls, poor skin turgor, tachycardia, hypotension and 
shock in severe cases. Of note, patients with 
euglycemic DKA including those treated with SGLT-2 
inhibitors, may have less polydipsia and polyuria and 
may rather initially present with non-specific 
symptoms such as fatigue and malaise (77,78). 

Kussmaul respiration, acetone breath, nausea, 
vomiting, and abdominal pain may also occur primarily 
in DKA and are due to ketosis and acidosis. Abdominal 
pain, which correlates with the severity of acidosis 
(79), may be severe enough to be confused with acute 
abdomen in 50-75% of cases (80). Therefore, in the 
presence of acidosis, DKA as an etiology of abdominal 
pain should be considered. Patients usually have 
normal body temperature or mild hypothermia 
regardless of presence of infection (81). Therefore, a 
careful search for a source of infection should be 
performed even in the absence of fever. Neurological 
status in patients with DKA may vary from full 
alertness to a profound lethargy and coma, However, 
mental status changes in DKA are less frequent than 
HHS. The relationship of depressed consciousness 
and severity of hyperosmolality or DKA causes has 
been controversial (82,83). Some studies suggested 
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that pH is the cause of mental status changes (84); 
while, others concluded that osmolality (85) is 
responsible for the comatose state. More recently, it 
has been proposed that consciousness level in 
adolescents with DKA was related to the severity of 
acidosis (pH) and not to a blood glucose levels (86).  In 
our earlier studies of patients with DKA using low dose 
versus high dose insulin therapy, we evaluated the 
initial biochemical values of 48 patients with 
stupor/coma versus non comatose patients (87). Our 
study showed that glucose, bicarbonate, BUN and 
osmolality, and not pH were significantly different 
between non-comatose and comatose patients. 
Furthermore, in 3 separate studies in which 123 cases 
of DKA were evaluated, serum osmolality was also the 
most important determinant of mental status changes 
(19). However, in our recent retrospective study, it was 

shown that acidosis was independently associated 
with altered sensorium, but hyperosmolarity and 
serum “ketone” levels were not (88) (Figure 5). In that 
study, a combination of acidosis and hyperosmolarity 
at presentation may identify a subset of patients with 
severe DKA (7% in this study) who may benefit from 
more aggressive treatment and monitoring. Identifying 
this group of patients, who are at a higher risk for 
poorer prognosis, may be helpful in triaging them, thus 
further improving the outcome (88). Furthermore, 
according to one study, ICU-admitted patients with 
DKA are less ill, and have lower disease severity 
scores, mortality, and shorter length of ICU and 
hospital stay, than non-DKA patients. Disease severity 
scores are not, but precipitating cause is, predictive of 
prolonged hospital stays in patients with DKA (89). 
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Figure 5. Admission clinical and biochemical profile in comatose vs non-comatose 
patients with DKA (88). 
 
In patients with HHS, neurological symptoms include 
clouding of sensorium which can progress to mental 
obtundation and coma (90). Occasionally, patients 
with HHS may present with focal neurological deficits 
and seizures (91,92). Most of the patients with HHS 
and an effective serum osmolality of >320 mOsm/kg 
are obtunded or comatose; on the other hand, the 
altered mental status rarely exists in patients with 
serum osmolality of <320 mOsm/kg (8). Therefore, 
severe alteration in the level of consciousness in 
patients with serum osmolality of <320 mOsm/kg 
requires evaluation for other causes including CVA 
and other catastrophic events like myocardial and 
bowel infarctions. 
 
LABORATORY ABNORMALITIES AND 
DIAGNOSIS OF HYPERGLYCEMIC CRISES 
 

The initial laboratory evaluation of patients with 
suspected DKA or HHS should include determination 
of plasma glucose, blood urea nitrogen, serum 
creatinine, serum ketones, electrolytes (with 
calculated anion gap), osmolality, urinalysis, urine 
ketones by dipstick, arterial blood gases, and 
complete blood count with differential. An 
electrocardiogram, blood, urine or sputum cultures 
and chest X-ray should also be performed, if indicated. 
HbA1c may be useful in differentiating chronic 
hyperglycemia of uncontrolled diabetes from acute 
metabolic decompensation in a previously well-
controlled diabetic patient (17). Figure 6 summarizes 
the biochemical criteria for DKA and HHS and 
electrolyte deficits in these two conditions. It also 
provides a simple method for calculating anion gap 
and serum osmolality.  

 

 
Figure 6. Diagnostic Criteria and Typical Total Body Deficits of Water and Electrolytes in Diabetic 
Ketoacidosis (DKA) and Hyperglycemic Hyperosmolar Syndrome (HHS) 
 
DKA can be classified as mild, moderate, or severe 
based on the severity of metabolic acidosis and the 
presence of altered mental status (17). Over 30% of 
patients have features of both DKA and HHS (16) with 
most recent evidence confirming that about 1 out of 4 
patients will have both conditions at the time of 

presentation with hyperglycemic crisis (18). Patients 
with HHS typically have pH >7.30, bicarbonate level 
>20 mEq/L, and negative ketone bodies in plasma and 
urine. However, some of them may have ketonemia. 
Several studies on serum osmolarity and mental 
alteration have established a positive linear 

drugs (10,13,14). In addition, new-onset
type 1 diabetes or discontinuation of in-
sulin in established type 1 diabetes com-
monly leads to the development of DKA.
In young patients with type 1 diabetes,
psychological problems complicated by
eating disorders may be a contributing
factor in 20% of recurrent ketoacidosis.
Factors that may lead to insulin omission
in younger patients include fear of weight
gain with improved metabolic control,
fear of hypoglycemia, rebellion against
authority, and stress of chronic disease.

Before 1993, the use of continuous
subcutaneous insulin infusion devices
had also been associated with an in-
creased frequency of DKA (23); however,
with improvement in technology and bet-
ter education of patients, the incidence of
DKA appears to have reduced in pump

users. However, additional prospective
studies are needed to document reduc-
tion of DKA incidence with the use of con-
tinuous subcutaneous insulin infusion
devices (24).

Underlying medical illness that pro-
vokes the release of counterregulatory
hormones or compromises the access to
water is likely to result in severe dehydra-
tion and HHS. In most patients with HHS,
restricted water intake is due to the pa-
tient being bedridden and is exacerbated
by the altered thirst response of the el-
derly. Because 20% of these patients have
no history of diabetes, delayed recogni-
tion of hyperglycemic symptoms may
have led to severe dehydration. Elderly
individuals with new-onset diabetes (par-
ticularly residents of chronic care facili-
ties) or individuals with known diabetes

who become hyperglycemic and are un-
aware of it or are unable to take fluids
when necessary are at risk for HHS
(10,25).

Drugs that affect carbohydrate metabo-
lism, such as corticosteroids, thiazides,
sympathomimetic agents, and pentami-
dine, may precipitate the development of
HHS or DKA (4). Recently, a number of case
reports indicate that the conventional anti-
psychotic as well as atypical antipsychotic
drugs may cause hyperglycemia and even
DKA or HHS (26,27). Possible mechanisms
include the induction of peripheral insulin
resistance and the direct influence on pan-
creatic !-cell function by 5-HT1A/2A/2C
receptor antagonism, by inhibitory effects
via "2-adrenergic receptors, or by toxic ef-
fects (28).

An increasing number of DKA cases
without precipitating cause have been re-
ported in children, adolescents, and adult
subjects with type 2 diabetes. Observa-
tional and prospective studies indicate
that over half of newly diagnosed adult
African American and Hispanic subjects
with unprovoked DKA have type 2 diabe-
tes (28–32). The clinical presentation in
such cases is acute (as in classical type 1
diabetes); however, after a short period of
insulin therapy, prolonged remission is
often possible, with eventual cessation of
insulin treatment and maintenance of gly-
cemic control with diet or oral antihyper-
glycemic agents. In such patients, clinical
and metabolic features of type 2 diabetes
include a high rate of obesity, a strong
family history of diabetes, a measurable
pancreatic insulin reserve, a low preva-
lence of autoimmune markers of !-cell
destruction, and the ability to discontinue
insulin therapy during follow-up (28,
31,32). This unique, transient insulin-
requiring profile after DKA has been rec-

Figure 1—Pathogenesis of DKA and HHS: stress, infection, or insufficient insulin. FFA, free fatty
acid.

Table 1—Diagnostic criteria for DKA and HHS

DKA HHS

Mild (plasma glucose
# 250 mg/dl)

Moderate (plasma glucose
# 250 mg/dl)

Severe (plasma glucose
# 250 mg/dl)

Plasma glucose
# 600 mg/dl

Arterial pH 7.25–7.30 7.00 to $ 7.24 $ 7.00 # 7.30
Serum bicarbonate (mEq/l) 15–18 10 to $ 15 $ 10 # 18
Urine ketone* Positive Positive Positive Small
Serum ketone* Positive Positive Positive Small
Effective serum osmolality† Variable Variable Variable # 320 mOsm/kg
Anion gap‡ # 10 # 12 # 12 Variable
Mental status Alert Alert/drowsy Stupor/coma Stupor/coma
*Nitroprusside reaction method. †Effective serum osmolality: 2%measured Na& (mEq/l)' & glucose (mg/dl)/18. ‡Anion gap: (Na& ) ( %(Cl( & HCO3

( (mEq/l)'.
(Data adapted from ref. 13.)

Consensus Statement

1336 DIABETES CARE, VOLUME 32, NUMBER 7, JULY 2009
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relationship between osmolarity, pH, and mental 
obtundation (87).  Therefore, the occurrence of coma 
in the absence of definitive elevation of serum 
osmolality requires immediate consideration of other 
causes of mental status change. The levels of β-
hydroxybutyrate (β-OHB) of ≥3.8mmol/L measured by 
a specific assay were shown to be highly sensitive and 
specific for DKA diagnosis (93). In patients with 
chronic kidney disease stage 4-5, the diagnosis of 
DKA could be challenging due to the presence of 
concomitant underlying chronic metabolic acidosis or 
mixed acid-base disorders. An anion gap of >20 
mEq/L usually supports the diagnosis of DKA in these 
patients (94). Based on the 2009 American Diabetes 
Association publication, “euglycemic DKA” is 
characterized by metabolic acidosis, increased total 
body ketone concentration and blood glucose levels 
≤250 mg/dL and is thought to occur in up to 
approximately 10% of patients with DKA and mostly 
associated with conditions associated with low 
glycogen reserves and/or increased rates of 
glucosuria such as pregnancy, liver disorders, and 
alcohol consumption (1). Since approval in 2013 of 
SGLT-2 inhibitors for therapy of T2D, multiple reports 
emerged demonstrating that the use of these 
medications can result in “euglycemic” DKA 
(48,78,95). Therefore, DKA must be excluded if high 
anion gap metabolic acidosis is present in a diabetic 
patient treated with SGLT-2 inhibitors irrespective if 
hyperglycemia is present or not. On the other hand, an 
SGLT-2 inhibitor can be also associated with 
hyperglycemic DKA in individuals who have sufficient 
glycogen storage to maintain hyperglycemia even in 
the setting of enhanced glucosuria (49,96).  
 
The major cause of water deficit in DKA and HHS is 
glucose-mediated osmotic diuresis, which leads to 
loss of water in excess of electrolytes (97). Despite the 
excessive water loss, the admission serum sodium 
tends to be low. Because serum glucose in the 
presence of insulinopenia of DKA and HHS cannot 
penetrate to cells, in hyperglycemic crises, glucose 
becomes osmotically effective and causes water shifts 

from intracellular space to the extra cellular space 
resulting in dilution of sodium concentration – 
dilutional or hyperosmolar hyponatremia. Initially it has 
been thought that true sodium concentration 
(millimolar) can be obtained by multiplying excess 
glucose above 100 mg/dL by 1.6 /100 (98).  It is, 
however, accepted now that true or corrected serum 
sodium concentration in patients experiencing 
hyperglycemic crisis should be calculated by adding 
2.4 mmol/L to the measured serum sodium 
concentration for every 100 mg/dL incremental rise in 
serum glucose concentration above serum glucose 
concentration of 100 mg/dL (99). If the corrected 
sodium level remains low, hypertriglyceridemia 
(secondary to uncontrolled diabetes) should be also 
suspected. In this condition the plasma becomes milky 
and lipemia retinalis may be visible in physical 
examination (100). Osmotic diuresis and ketonuria 
also promote a total body sodium deficit via urinary 
losses, although concurrent conditions, such as 
diarrhea and vomiting, can further contribute to 
sodium losses. Total body sodium loss can result in 
contraction of extracellular fluid volume and signs of 
intravascular volume depletion. Serum potassium may 
be elevated on arrival due to insulin deficiency, volume 
depletion and a shift of potassium from intracellular to 
extra cellular compartments in response to acidosis 
(101). However, total body potassium deficit is usually 
present from urinary potassium losses due to osmotic 
diuresis and ketone excretion. More frequently, the 
initial serum potassium level is normal or low which is 
a danger sign. Initiation of insulin therapy, which leads 
to the transfer of potassium into cells, may cause fatal 
hypokalemia if potassium is not replaced 
early.  Phosphate depletion in DKA is universal but on 
admission, like the potassium, it may be low, normal 
or high (102). 
 
The differences and similarities in the admission 
biochemical data in patients with DKA or HHS are 
shown in Figure 7. 
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Figure 7. Biochemical data in patients with HHS and DKA (1).  
 
Leukocytosis is a common finding in patients with DKA 
or HHS, but leukocytosis greater than 25,000 /μL 
suggests ongoing infection requiring further work up 
(103). The exact etiology of this non-specific 
leukocytosis is not known. One study also showed 
nonspecific leukocytosis in subjects 
with hypoglycemia induced by insulin injection and 
suggested that this phenomenon may be due to the 
increased levels of catecholamines, cortisol, and 
proinflammatory cytokines such as TNF-α during 
acute stress (104). Hypertriglyceridemia may be 
present in HHS  (105) and is almost always seen in 
DKA (79).  Hyperamylasemia, which correlates with 
pH and serum osmolality and elevated level of lipase, 
may occur in 16 - 25% of patients with DKA (106). The 
origin of amylase in DKA is usually non-pancreatic 
tissue such as the parotid gland (107). 

 
Pitfalls of Laboratory Tests and Diagnostic 
Considerations for Interpreting Acid Based Status in 
DKA 
 
False positive values for lipase may be seen if plasma 
glycerol levels are very high due to rapid breakdown 
of adipose tissue triglycerides (glycerol is the product 
measured in most assays for plasma lipase). 
Therefore, elevated pancreatic enzymes may not be 
reliable for the diagnosis of pancreatitis in the DKA 
setting. Other pitfalls include artificial elevation of 
serum creatinine due to interference from ketone 
bodies when a colorimetric method is used (108). Most 
of the laboratory tests for ketone bodies use the 
nitroprusside method, which detects acetoacetate, but 
not β-hydroxybutyrate (β-OHB). Additionally, since β-
OHB is converted to acetoacetate during treatment 
(109), the serum ketone test may remain positive for a 
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prolonged period suggesting erroneously that 
ketonemia is deteriorating; therefore, the follow up 
measurement of ketones during the treatment by 
nitroprusside method is not recommended (16). 
Newer glucose meters have the capability to measure 
β-OHB, which overcomes this problem (110,111). 
Furthermore drugs that have sulfhydryl groups can 
interact with the reagent in the nitroprusside reaction, 
giving a false positive result (112). Particularly 
important in this regard is captopril, an angiotensin 
converting enzyme inhibitor prescribed for the 
treatment of hypertension and diabetic nephropathy. 
Therefore, for the diagnosis of DKA, clinical judgment 
and consideration of other biochemical data are 
required to interpret the value of positive nitroprusside 
reactions in patients on captopril. Most laboratories 
can now measure β-OHB levels. 
 
The classical presentation of acid-base disorders in 
DKA consists of increased anion gap metabolic 
acidosis where the relation of plasma anion gap 
change and bicarbonate change (Δ-Δ, ratio of AG 
change over change in bicarbonate) equals to 1 due 
to parallel reduction in plasma bicarbonate with the 
addition of ketoacids into the extravascular fluid 
space. With frequent additional bicarbonate losses in 
urine in the form of ketoanions during DKA, the 
initiation of intravenous volume resuscitation with 
chloride-containing solutions can further lower plasma 
bicarbonate and unmask non-anion gap metabolic 
acidosis when Δ-Δ becomes less than 1 due to 
changes in plasma bicarbonate that exceed the 
expected changes in AG. Respiratory compensation 
will accompany metabolic acidosis with reduction in 
PCO2 in arterial blood gas. The expected changes in 
PCO2 can be calculated using Winter’s formula: PCO2 

(mmHg) = 1.5 (Bicarbonate) + 8 ± 2 (113). Therefore, 
inappropriately high or low levels of PCO2, determined 
by ABG will suggest the presence of a mixed acid-
based disorder. For example, DKA patients with 
concomitant fever or sepsis may have additional 
respiratory alkalosis manifesting by lower-than-
expected PCO2. In contrast, a higher than calculated 

PCO2 level signifies additional respiratory acidosis and 
can be seen in patients with underlying chronic lung 
disease.  Vomiting is a common clinical manifestation 
in DKA and leads to a loss of hydrogen ions in gastric 
content and the development of metabolic alkalosis. 
Patients with DKA and vomiting may have relatively 
normal plasma bicarbonate levels and close to normal 
pH. However, AG will remain elevated and be an 
important clue for DKA. In addition, Δ-Δ ratio will be 
over 2 suggesting that there is less than expected 
reduction in bicarbonate as compared with increase in 
AG and confirm the presence of a mixed acid-base 
disorder (combination of metabolic acidosis and 
metabolic alkalosis). We recommend measurement of 
β-OHB in instances when a mixed acid-base disorder 
is present in patients with hyperglycemic crisis and 
DKA is suspected.   
 
DIFFERENTIAL DIAGNOSIS 
 
Patients may present with metabolic conditions 
resembling DKA or HHS. For example, in alcoholic 
ketoacidosis (AKA), total ketone bodies are much 
greater than in DKA with a higher β-OHB to 
acetoacetate ratio of 7:1 versus a ratio of 3:1 in DKA 
(8). The AKA patients seldom present with 
hyperglycemia (114). It is also possible that patients 
with a low food intake may present with mild 
ketoacidosis (starvation ketosis); however, serum 
bicarbonate concentration of less than 18 or 
hyperglycemia will be rarely present. Additionally, 
DKA has to be distinguished from other causes of high 
anion gap metabolic acidosis including lactic acidosis, 
advanced chronic renal failure, as well as ingestion of 
drugs such as salicylate, methanol, and ethylene 
glycol. Isopropyl alcohol, which is commonly available 
as rubbing alcohol, can cause considerable ketosis 
and high serum osmolar gap without metabolic 
acidosis. Moreover, there is a tendency to 
hypoglycemia rather than hyperglycemia with 
isopropyl alcohol injection (115,116). Finally, patients 
with diabetes insipidus presenting with severe polyuria 
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and dehydration, who are subsequently treated with 
free water in a form of intravenous dextrose water, can 

have hyperglycemia- a clinical picture that can be 
confused with HHS (117) (Figure 8).  

  

 
Figure 8. Laboratory evaluation of metabolic causes of acidosis and coma (16). 
  
TREATMENT OF DKA 
 
The goals of therapy in patients with hyperglycemic 
crises include: 1) improvement of circulatory volume 
and tissue perfusion, 2) gradual reduction of serum 
glucose and osmolality, 3) correction of electrolyte 
imbalance, and 4) identification and prompt treatment 
of co-morbid precipitating causes (8). It must be 
emphasized that successful treatment of DKA and 
HHS requires frequent monitoring of patients 
regarding the above goals by clinical and laboratory 
parameters. Suggested approaches for the 
management of patients with DKA and HHS are 
illustrated in Figures 9 and 10.  
 
Fluid Therapy 
 
DKA and HHS are volume-depleted states with total 
body water deficit of approximately 6 L in DKA and 9 

L in HHS (16,118,119). Therefore, the initial fluid 
therapy is directed toward expansion of intravascular 
volume and securing adequate urine flow. The initial 
fluid of choice is isotonic saline at the rate of 15–20 ml 
/kg body weight per hour or 1–1.5 L during the first 
hour. The choice of fluid for further repletion depends 
on the hydration status, serum electrolyte levels, and 
urinary output. In patients who are hypernatremic or 
eunatremic, 0.45% NaCl infused at 4–14 ml/kg/hour is 
appropriate, and 0.9% NaCl at a similar rate is 
preferred in patients with hyponatremia. The goal is to 
replace half of the estimated water and sodium deficit 
over a period of 12-24 hours [161]. In patients with 
hypotension, aggressive fluid therapy with isotonic 
saline should continue until blood pressure is 
stabilized. The administration of insulin without fluid 
replacement in such patients may further aggravate 
hypotension (16).  Furthermore, the use of hydrating 
fluid in the first hour of therapy before insulin 
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administration provides time to obtain serum 
potassium value before insulin administration, 
prevents possible deterioration of hypotensive 
patients with the use of insulin without adequate 
hydration, and decreases serum osmolality (17). 
Hydration alone may also reduce the level of counter-
regulatory hormones and hyperglycemia (28). 
Intravascular volume expansion reduces serum blood 
glucose, BUN, and potassium levels without 
significant changes in pH or HCO3.The mechanism for 
lowering glucose is believed to be due to osmotic 
diuresis and modulation of counter-regulatory 
hormone release (23,120). We recommend avoiding 
too rapid correction of hyperglycemia (which may be 
associated with cerebral edema especially in children) 
and also inhibiting hypoglycemia (23,120). In HHS, the 
reduction in insulin infusion rate and/or use of D5 ½ 
NS should be started when blood glucose reaches 300 
mg/dL, because overzealous use of hypotonic fluids 
has been associated with the development of cerebral 
edema (121). In one recent review, authors suggested 
gradual reduction in osmolality not exceeding 3 
mOsm/kg H2O per hour and a fall of serum sodium at 
a rate of less than 0.5 mmol/L per hour in order to 
prevent significant osmotic shifts of water to 
intracellular compartment during the management of 
hyperglycemic crises (122). It should be emphasized 
that urinary losses of water and electrolytes are also 
need to be considered. 
 
Insulin Therapy 
 
The cornerstone of DKA and HHS therapy is insulin in 
physiologic doses. Insulin should only be started after 
serum potassium value is > 3.3 mmol/L (8). In DKA, 
we recommend using intravenous (IV) bolus of regular 
insulin (0.1 u/kg body weight) followed by a continuous 
infusion of regular insulin at the dose of 0.1u/kg/hr. 
The insulin infusion rate in HHS should be lower as 
major pathophysiological process in these patients is 
severe dehydration. The optimal rate of glucose 
reduction is between 50-70 mg/hr. If desirable glucose 
reduction is not achieved in the first hour, an additional 

insulin bolus at 0.1 u/kg can be given. As mentioned 
earlier, when plasma glucose reaches 200-250 mg/dL 
in DKA or 300 in HHS, insulin rate should be 
decreased to 0.05 U/kg/hr, followed, as indicated, by 
the change in hydration fluid to D5 ½ NS. The rate of 
insulin infusion should be adjusted to maintain blood 
glucose between 150-200 mg/dL in DKA until it is 
resolved, and 250-300 mg/dL in HHS until mental 
obtundation and hyperosmolar state are corrected.  
 
A study that investigated the optimum route of insulin 
therapy in DKA demonstrated that the time for 
resolution of DKA was identical in patients who 
received regular insulin via intravenous, 
intramuscular, or subcutaneous routes (123). 
However, patients who received intravenous insulin 
showed a more rapid decline in blood glucose and 
ketone bodies in the first 2 hours of treatment. Patients 
who received intravenous insulin attained an 
immediate pharmacologic level of insulin 
concentration. Thus, it was established that an 
intravenous loading dose of insulin would be beneficial 
regardless of the subsequent route of insulin 
administration during treatment. A follow up 
study demonstrated that a priming or loading dose 
given as one half by IV route and another half by 
intramuscular route was as effective as one dose 
given intravenously in lowering the level of ketone 
bodies in the first hour (124). A bolus or priming dose 
of insulin has been used in a number of studies. The 
need of such a method, when using intravenous 
infusion of insulin, is not clear, as there is no 
prospective randomized study to establish efficacy of 
bolus or priming dose before infusion of insulin. 
However, our study in children demonstrated the 
effectiveness of intravenous injection of insulin without 
a bolus dose (125). Therefore, it would appear that if 
intravenous insulin is used, priming or bolus dose 
insulin might not be necessary.  
 
Several clinical studies have shown the potency and 
cost effectiveness of subcutaneous rapid-acting 
insulin analogs (lispro or aspart) in the management of 
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patients with uncomplicated mild to moderate DKA 
(126,127). The patients received subcutaneous rapid-
acting insulin doses of 0.2 U/kg initially, followed by 
0.1 U/kg every 1 hour or an initial dose of 0.3 U/kg 
followed by 0.2 U/kg every 2 hours until blood glucose 
was < 250 mg/dL. Then the insulin dose was 
decreased by half to 0.05, or 0.1 U/kg respectively, 
and administered every 1 or 2 hours until resolution of 
DKA. There were no differences in length of hospital 
stay, total amount of insulin needed for resolution of 
hyperglycemia or ketoacidosis, or in the incidence of 
hypoglycemia among treatment groups.  The use of 
insulin analogs allowed treatment of DKA in general 
wards or the emergency department and so reduced 
cost of hospitalization by 30% without any significant 
changes in hypoglycemic events (126). Similar results 
have been reported recently in pediatric patients with 
DKA (128). The administration of continuous IV 
infusion of regular insulin is the preferred route 
because of its short half-life and easy titration and the 
delayed onset of action and prolonged half-life of 
subcutaneous regular insulin. It is important to point 
out that the IV use of fast-acting insulin analogs is not 
recommended for patients with severe DKA or HHS, 
as there are no studies to support their use. Again, 

these agents may not be effective in patients with 
severe fluid depletion since they are given 
subcutaneously. 
 
Potassium Therapy 
 
Although total-body potassium is depleted (129,130), 
mild to moderate hyperkalemia frequently seen in 
patients with DKA is due to acidosis and insulinopenia. 
Insulin therapy, correction of acidosis, and volume 
expansion decrease serum potassium concentrations. 
To prevent hypokalemia, potassium replacement is 
initiated after serum levels fall below 5.3 mmol/L in 
patients with adequate urine output (50 ml/h). Adding 
20–30 mmol potassium to each liter of infused fluid is 
sufficient to maintain a serum potassium concentration 
within the normal range of 4–5 mmol/L (8). Patients 
with DKA who had severe vomiting or had been on 
diuretics may present with significant hypokalemia. In 
such cases, potassium replacement should begin with 
fluid therapy, and insulin treatment should be 
postponed until potassium concentration becomes > 
3.3 mmol/L in order to prevent arrhythmias and 
respiratory muscle weakness (131). 
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Figure 9. Protocol for the management of adult patients with DKA. Adapted from (94). 
 
Bicarbonate Therapy 
 
The use of bicarbonate in treatment of DKA remains 
controversial. In patients with pH >7.0, insulin therapy 
inhibits lipolysis and also corrects ketoacidosis without 
use of bicarbonate. Bicarbonate therapy has been 
associated with some adverse effects, such as 
hypokalemia (132), decreased tissue oxygen uptake 
and cerebral edema (133,134) and delay in the 
resolution of ketosis (135).  However, patients with 
severe DKA (low bicarbonate <10 mEq/L, or Pco2 < 
12) may experience deterioration of pH if not treated 
with bicarbonate. A prospective randomized study in 
patients with pH between 6.9 and 7.1 showed that 
bicarbonate therapy had no risk or benefit in DKA 
(136). Therefore, in patients with pH between 6.9 and 
7.0, it may be beneficial to give 50 mmol of 
bicarbonate in 200 ml of sterile water with 10 mmol 
KCL over two hours to maintain the pH at > 7.0 
(8,137,138). Considering the adverse effects of severe 
acidosis such as impaired myocardial contractility, 
adult patients with pH < 6.9 should be given 100 mmol 
sodium bicarbonate in 400 ml sterile water (an isotonic 
solution) with 20 mmol KCl administered at a rate of 

200 ml/h for two hours until the venous pH becomes 
greater than 7.0. Venous pH should be assessed 
every 2 hours until the pH rises to 7.0; treatment can 
be repeated every 2 hours if necessary. 
  
Phosphate Therapy 
 
There is no evidence that phosphate therapy is 
necessary in treatment for better outcome of DKA 
(139-142).  However, in patients with potential 
complications of hypophosphatemia, including cardiac 
and skeletal muscle weakness, the use of phosphate 
may be considered (143). Phosphate administration 
may result in hypocalcemia when used in high dose 
(139,142). 
  
TREATMENT OF HHS 
 
A similar therapeutic approach can be also 
recommended for treatment of HHS, but no 
bicarbonate therapy is needed for HHS, and changing 
to glucose-containing fluid is done when blood glucose 
reaches 300 mg/dL.  
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Figure 10. Protocol for the management of adult patients with HHS.  
 
Severe hyperosmolarity and dehydration associated 
with insulin resistance and presence of detectable 
plasma insulin level are the hallmarks of HHS 
pathophysiology. The main emphasis in the 
management of HHS is effective volume repletion and 
normalization of serum osmolality (14). There are no 
randomized controlled studies that evaluated safe and 
effective strategies in the treatment of HHS (121). It is 
important to start HHS therapy with the infusion of 
normal saline and monitor corrected serum sodium in 
order to determine appropriate timing of the change to 
hypotonic fluids. Insulin substitution approach should 
be very conservative as it is expected that insulin 
resistance will improve with rehydration. We 
recommend against rapid decreases in serum glucose 
and correction of serum sodium in order to avoid 
untoward effects of shifts in osmolarity on brain 
volume. This notion should particularly apply in the 
management of HHS in elderly and patients with 
multiple medical problems in whom it may not be clear 
how long these subjects experienced severe 
hyperglycemia prior to the admission to the hospital. 
 

RESOLUTION OF DKA AND HHS 
 
During follow up, blood should be drawn every 2-4 h 
for determination of serum electrolytes, glucose, blood 
urea nitrogen, creatinine, osmolality, and venous pH. 
After the initial arterial pH is drawn, venous pH can be 
used to assess the acid/base status. An equivalent 
arterial pH value is calculated by adding 0.03 to the 
venous pH value (144). The resolution of DKA is 
reached when the blood glucose is < 200 mg/dl, serum 
bicarbonate is ³15 mEq/L, pH is >7.30 and anion gap 
is ≤12 mEq/L (17). HHS is resolved when serum 
osmolality is < 320 mOsm/kg with a gradual recovery 
to mental alertness. The latter may take twice as long 
as to achieve blood glucose control. Ketonemia 
typically takes longer to clear than hyperglycemia. 
 
The proposed ADA criteria for DKA resolution include 
serum glucose level <200 mg/dL and two of the 
following: serum bicarbonate level ³15 mEq/L, pH 
>7.3, and anion gap ≤12 mEq/L (1). Therefore, the 
treatment goal of DKA is to improve hyperglycemia 
and to stop ketosis with subsequent resolution of 
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acidosis. In this regard, it is important to distinguish 
ketosis and acidosis, as the two terms are not always 
synonymous in DKA. Ketoacid production in DKA 
results in reduction in plasma bicarbonate (HCO3

-) 
levels due to neutralization of hydrogen ion produced 
during dissociation of ketoacids in the extravascular 
fluid space. Concomitantly, ketoacid anion is added 
into extravascular space resulting in anion gap (AG) 
increase. The change in HCO3

- concentration (Δ 
HCO3

-/normal serum HCO3
- – observed serum HCO3

-) 
usually corresponds to equal changes in serum anion 
gap (Δ AG/observed AG – normal AG, both corrected 
for decreases and increases in plasma albumin 
concentration). Therefore, the ratio of AG excess to 
HCO3

- deficit (delta-delta, or Δ-Δ) is close to 1 
(143,145,146). In most patients with DKA bicarbonate 
deficit exceeds the addition of ketoanions, even 
though Δ-Δ ratio remains close to 1 (147). This is 
observed due to several reasons. First, 
hyperglycemia-induced osmotic diuresis leads to 
excretion of large amounts of sodium and potassium 
ions that is accompanied by the excretion of 
ketoanions. Ultimately, the amount of excreted 
ketoanions depends on degree of kidney function 
preservation with the largest amount of ketoanion loss 
in patients with relatively preserved glomerular 
filtration rate (145). Each ketoanion can be converted 
back to HCO3

- during resolution of DKA and, therefore, 
ketoanion loss results in the loss of HCO3

-. 
Additionally, extravascular fluid space contraction 
during DKA, leads to elevation of plasma HCO3

-. 
Therefore, intravenous administration of sodium and 
chloride-containing fluids leads to further HCO3

- 

reduction and hyperchloremic metabolic acidosis 
(143,145). This is an important point as persistent 
decrease in plasma HCO3

- concentration should not 
be interpreted as a sign of continuous DKA if ketosis 
and hyperglycemia are resolving. Although not 
evaluated in prospective studies, measurement of 
serial levels of blood beta-hydroxybutyrate (β-OHB) 
can be useful adjunct to monitor the resolution of DKA 
(148). The expected fall in β-OHB with the adequate 
insulin dosing is 1mmol/L/hr; a lower decrease in 

blood β-OHB may suggest inadequate insulin 
provision.  
 
Once DKA has resolved, patients who are able to eat 
can be started on a multiple dose insulin regimen with 
long-acting insulin and short/rapid acting insulin given 
before meals as needed to control plasma glucose. 
Intravenous insulin infusion should be continued for 2 
hours after giving the subcutaneous insulin to maintain 
adequate plasma insulin levels. Immediate 
discontinuation of intravenous insulin may lead to 
hyperglycemia or recurrence of ketoacidosis. If the 
patient is unable to eat, it is preferable to continue the 
intravenous insulin infusion and fluid replacement. 
Patients with known diabetes may be given insulin at 
the dose they were receiving before the onset of 
hyperglycemic crises. In patients with new onset 
diabetes, a multi-dose insulin regimen should be 
started at a dose of 0.5-0.8 U/kg per day, including 
regular or rapid-acting and basal insulin until an 
optimal dose is established (17). 
  
COMPLICATIONS 
 
The most common complications of DKA and HHS 
include hypoglycemia and hypokalemia due to 
overzealous treatment with insulin and bicarbonate 
(hypokalemia), but these complications occur 
infrequently with current low dose insulin regimens. 
Nevertheless, in a recent retrospective study, both 
severe hypokalemia defined as K £ 2.5 mEq/L and 
severe hypoglycemia < 40 mg/dL were significantly 
and independently associated with increased risk of 
mortality in patients admitted to the tertiary care center 
for treatment of hypoglycemic crisis (18). During the 
recovery phase of DKA, patients commonly develop a 
short-lived hyperchloremic non-anion gap acidosis, 
which usually has few clinical consequences (149). 
Hyperchloremic acidosis is caused by the loss of large 
amounts of ketoanions, which are usually metabolized 
to bicarbonate during the evolution of DKA, and 
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excess infusion of chloride containing fluids during 
treatment (150). 
 
Cerebral edema, a frequently fatal complication of 
DKA, occurs in 0.7–1.0% of children, particularly those 
with newly diagnosed diabetes (120). It may also 
occur in patients with known diabetes and in very 
young adults usually under 20 years of age (151,152). 
Cerebral edema has also been reported in patients 
with HHS, with some cases of mortality (90). Clinically, 
cerebral edema is characterized by deterioration in the 
level of consciousness, lethargy, decreased arousal, 
and headache. Headache is the earliest clinical 
manifestation of cerebral edema. This is followed by 
altered level of consciousness and lethargy. 
Neurological deterioration may lead to seizures, 
incontinence, pupillary changes, bradycardia, and 
respiratory arrest. It may be so rapid in onset due to 
brain stem herniation that no papilledema is found. If 
deteriorating clinical symptoms occur, the mortality 
rate may become higher than 70%, with only 7–14% 
of patients recovering without permanent neurological 
deficit. Mannitol infusion and mechanical ventilation 
are used to combat cerebral edema. The cause of 
cerebral edema is not known with certainty. It may 
result from osmotically driven movement of water into 
the central nervous system when plasma osmolality 
declines too rapidly during treatment of DKA or HHS. 
As glucose concentration improves following insulin 
infusion and administration of the intravenous fluids, 
serum osmotic gradient previously contributed by 
hyperglycemia reduces which limits water shifts from 
the intracellular compartment. However, 
hyperglycemia treatment is associated with “recovery” 
in serum sodium that restores water transfer between 
extracellular and intracellular compartments and 
prevents water accumulation in cells (99). In cases 
when the serum glucose concentration improves to a 
greater extent than the serum sodium concentration 
rises, serum effective osmolality will decrease and 
may precipitate brain edema (153,154). Although the 
osmotically mediated mechanism seems most 
plausible, one study using magnetic resonance 

imaging (MRI) showed that cerebral edema was due 
to increased cerebral perfusion (135). Another 
postulated mechanism for cerebral edema in patients 
with DKA involves the cell membrane Na+/H+ 
exchangers, which are activated in DKA. The high H+ 
level allows more influx of Na+ thus increasing more 
influx of water to the cell with consequent edema 
(155). β-hydroxybutyrate and acetoacetate may also 
play a role in the pathogenesis of cerebral edema. 
These ketone bodies have been shown to affect 
vascular integrity and permeability, leading to edema 
formation (156). In summary, reasonable 
precautionary measures to decrease the risk of 
cerebral edema in high-risk patients include 1) 
avoidance of overenthusiastic hydration and rapid 
reduction of plasma osmolality and 2) close 
hemodynamic monitoring (157). Based on the recent 
reports, particular care should be offered to patients 
with end stage renal disease as these individuals are 
more likely to die, to have higher rates of 
hypoglycemia, or to be volume overloaded when 
admitted to the hospital with DKA (158).   
 
Hypoxemia and rarely non-cardiogenic pulmonary 
edema may complicate the treatment of DKA [242]. 
Hypoxemia may be related to the reduction in colloid 
osmotic pressure that leads to accumulation of water 
in lungs and decreased lung compliance. The 
pathogenesis of pulmonary edema may be similar to 
that of cerebral edema suggesting that the 
sequestration of fluid in the tissues may be more 
widespread than is thought. Thrombotic conditions 
and disseminated intravascular coagulation may 
contribute to the morbidity and mortality of 
hyperglycemic emergencies (159-161). Prophylactic 
use of heparin, if there is no gastrointestinal 
hemorrhage, should be considered. 
 
PREVENTION 
 
About one in five patients with T1D admitted for DKA 
will be readmitted for DKA within 30 days (162). 
Several studies suggested that the omission of insulin 
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is one of the most common precipitating factors of 
DKA, sometimes because patients are socio-
economically underprivileged, and may not have 
access to or afford medical care (163-165). In addition, 
they may have a propensity to use illicit drugs such as 
cocaine, which has been associated with recurrent 
DKA (58), or live in areas with higher food deprivation 
risk (166). Therefore, it is important to continuously re-
assess socio-economic status of patients who had at 
least one episode of DKA. The most recent data 
demonstrating a significant increase in DKA 
hospitalization rates in diabetic persons aged 45 years 
and younger (10) suggests that this group of patients 
may require particular attention to understand why 
they are more vulnerable than others to develop 
hyperglycemic crisis. Education of the patient about 
sick day management is very vital to prevent DKA, and 
should include information on when to contact the 
health care provider, blood glucose goals, use of 
insulin, and initiation of appropriate nutrition during 
illness and should be reviewed with patients 
periodically. Patients must be advised to continue 
insulin and to seek professional advice early in the 
course of the illness. COVID-19-positive patients with 
diabetes outside of the hospital environment should be 
particularly vigilant in point-of-care monitoring of home 
blood glucose and/or β-OHB until the resolution of 
infection. Close follow up is very important, as it has 
been shown that three-monthly visits to the endocrine 
clinic will reduce the number of ER admission for DKA 
(167). Close observation, early detection of symptoms 
and appropriate medical care would be helpful in 
preventing HHS in the elderly. 
 
A study in adolescents with T1D suggests that some 
of the risk factors for DKA include higher HbA1c, 
uninsured children, and psychological problems (168). 
In other studies, education of primary care providers 

and school personnel in identifying the signs and 
symptoms of DKA has been shown to be effective in 
decreasing the incidence of DKA at the onset of 
diabetes (169). In another study outcome data of 556 
patients with diabetes under continuing care over a 7-
year period were examined. The hospitalization rates 
for DKA and amputation were decreased by 69 % due 
to continuing care and education (170). There is early 
evidence that use of continuous glucose monitoring 
(CGM) can decrease DKA incidence (171,172). 
Contrary to the initial observations connecting DKA 
episodes with insulin pump malfunction, the newer 
pumps are associated with reduced DKA risk without 
or with concomitant CGM application in T1D youth 
(173). Given the increased DKA risks associated with 
HbA1c ³ 9% in patients with T1D, all efforts should be 
applied to understand and potentially address reasons 
for poor chronic glycemic control as this may prevent 
DKA admission. Considering DKA and HHS as 
potentially fatal and economically burdensome 
complications of diabetes, every effort for diminishing 
the possible risk factors is worthwhile.   
  
SGLT-2 inhibitor-induced DKA in patients with T2D is 
a potentially avoidable condition in light of 
accumulating knowledge of potential triggers 
prompting the development of this hyperglycemic 
emergency (174). A recent international consensus 
statement on the DKA risk management in patients 
with T1D treated with SGLT-2 inhibitors (76) can be 
effectively applied to the care of patients with T2D as 
well. Avoidance or temporary discontinuation of 
SGLT-2 inhibitors in clinical situations that 
independently increase risk of intravascular volume 
depletion and/or development of ketosis-prone 
conditions listed in the Figure 11 can mitigate the DKA 
risk. The DEEARAILS pneumonic can help recalling 
these clinical situations.   
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Figure 11. Precipitating factors for DKA in patients taking SGLT2 inhibitors. LADA= latent autoimmune 
diabetes in adults 
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