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Abbreviations 
 
[Ca2+e] : extracellular  Ca2+ concentration 
Calcidiol : 25 OH vitamin D3 
Calcitriol : 1,25 diOH vitamin D3 
CaSR : Ca2+-sensing receptor 
CKD : chronic kidney disease 
CKD-MBD : CKD-associated mineral and bone 
disorder 
EGF-R : epidermal growth factor receptor 
ESKD, end-stage kidney disease 
FGF23: fibroblast growth factor-23 
FGFR-1, fibroblast growth factor receptor-1 
FGFR-3, fibroblast growth factor receptor-3 

Ki67 : Ki-67 antigen (cell-cycle linked antigen) 
MEN-1 : multiple endocrine neoplasia type-1 
Klotho: α-Klotho 
PCNA : proliferating cell nuclear antigen (cell-cycle 
linked antigen) 
PTH : parathyroid hormone 
iPTH : intact PTH 
PTHrp : parathyroid hormone related peptide 
PTX : parathyroidectomy 
TGF-β : transforming growth factor-β 
VDR : vitamin D receptor 

 
ABSTRACT 
 
Chronic kidney disease (CKD) is associated with 
mineral and bone disorders (CKD-MBD) which starts 
early in the course of the disease and worsens with its 
progression. The main initial serum biochemistry 
abnormalities are increases in fibroblast growth factor 
23 (FGF23) and parathyroid hormone (PTH) and 
decreases in 1,25 dihydroxy vitamin D (calcitriol) and 
soluble α-Klotho (Klotho), allowing serum calcium and 
phosphate to stay normal for prolonged time periods. 
Subsequently, serum 25 hydroxy vitamin D (calcidiol) 
decreases and in late CKD stages 
hyperphosphatemia develops in the majority of 
patients. Serum calcium may stay normal, decrease, 
or increase. Sclerostin, Dickkopf-1, and activin A also 
play a role in the pathogenesis of CKD-MBD. Both the 
synthesis and the secretion of PTH are continuously 

stimulated in the course of CKD, resulting in 
secondary hyperparathyroidism. In addition to the 
above systemic disturbances downregulation of 
vitamin D receptor, calcium-sensing receptor and 
Klotho expression in parathyroid tissue further 
enhances PTH overproduction. Last but not least, 
miRNAs have also been shown to be involved in the 
hyperparathyroidism of CKD. The chronic stimulation 
of parathyroid secretory function is not only 
characterized by a progressive rise in serum PTH but 
also by parathyroid gland hyperplasia. It results from 
an increase in parathyroid cell proliferation which is 
not fully compensated for by a concomitant increase 
in parathyroid cell apoptosis. Parathyroid hyperplasia 
is initially of the diffuse, polyclonal type. In late CKD 
stages it often evolves towards a nodular, monoclonal 
or multiclonal type of growth. Enhanced parathyroid 
expression of transforming growth factor-β and its 
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receptor, the epidermal growth factor receptor, is 
involved in polyclonal hyperplasia. Chromosomal 
changes have been found to be associated with clonal 
outgrowth in some, but not the majority of benign 
parathyroid tumors removed from patients with end-
stage kidney disease. In initial CKD stages skeletal 
resistance to the action of PTH may explain why low 
bone turnover predominates in a significant proportion 
of patients, together with other conditions that inhibit 
bone turnover such as reduced calcitriol levels, sex 
hormone deficiency, diabetes, Wnt inhibitors and 
uremic toxins. High turnover bone disease (osteitis 
fibrosa) occurs only later on, when increased serum 
PTH levels are able to overcome skeletal PTH 
resistance. The diagnosis of secondary uremic 
hyperparathyroidism and osteitis fibrosa relies mainly 
on serum biochemistry. X-ray and other imaging 
methods of the skeleton provide diagnostically 
relevant information only in severe forms. From a 
therapeutic point of view, it is important to prevent the 
development of secondary hyperparathyroidism as 
early as possible in the course of CKD. A variety of 
prophylactic and therapeutic approaches are 
available, as outlined in the final part of the chapter. 
 
 
 
 
INTRODUCTION 
 
Chronic kidney disease (CKD) is almost constantly 
associated with a systemic disorder of mineral and 
bone metabolism, at present named CKD-MBD (1). 
According to this definition, the disorder is manifested 
by either one or a combination of biochemical 
abnormalities (abnormal calcium, phosphate, PTH, or 
vitamin D metabolism), bone abnormalities (abnormal 
bone turnover, mineralization volume, linear growth, or 
strength) and vascular or other soft tissue calcification. 
Subsequently, the underlying pathophysiology has 
become more complex, with the progressive 
awareness that fibroblast growth factor 23 (FGF23), a-
Klotho (subsequently called "Klotho") as well as the 
Wnt-b-catenin signaling pathway also play an 

important role (see below). CKD-MBD generally 
becomes apparent in CKD stage G3, i.e. at a 
glomerular filtration rate between 60 and 30 ml/min x 
1.73 m2. Initially, it is characterized by a tendency 
towards hypocalcemia, fasting normo- or 
hypophosphatemia, and diminished plasma 25OH 
vitamin D (calcidiol) and 1,25diOH vitamin D (calcitriol) 
concentrations, together with a progressive increase 
in plasma FGF23 and intact parathyroid hormone 
(iPTH), a decrease in plasma soluble Klotho (2–5) and 
the development of renal osteodystrophy. Renal 
osteodystrophy often presents initially as adynamic 
bone disease and subsequently transforms into 
osteitis fibrosa or mixed bone disease (6). Pure 
osteomalacia is seen only infrequently. The low bone 
turnover observed in a significant proportion of 
patients in early stages of CKD could be due to the 
initial predominance of bone turnover inhibitory 
conditions such as resistance to the action of PTH, 
reduced serum calcitriol levels, sex hormone 
deficiency, diabetes, inflammation and malnutrition, 
and uremic toxins leading to the repression of 
osteocyte Wnt-�-catenin signaling and increased 
expression of Wnt antagonists such as sclerostin, 
Dickkopf-1 and secreted frizzled-related protein 4 
(7,8). According to this scenario, high turnover bone 
disease occurs only later on, when sufficiently 
elevated serum PTH levels are able to overcome the 
skeletal resistance to its action. Even at that stage, 
over suppression of PTH by the administration of 
excessive calcium and/or vitamin D supplements can 
again induce adynamic bone disease (9). 
Nephrologists became progressively aware of the fact 
that the abnormally high serum phosphorus levels in 
late CKD stages, associated with either 
hyperparathyroidism or (mostly iatrogenically induced) 
hypoparathyroidism, may be detrimental to the 
patients not only in terms of abnormal bone structure 
and strength, but also in terms of the relative risk of 
soft-tissue calcifications and cardiovascular as well as 
all-cause mortality (10–13). As regards serum PTH 
levels, observational studies have consistently 
reported an increased relative risk of death in patients 
with CKD stage G5  and PTH values at the extremes, 
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that is less than two or greater than nine times the 
upper normal limit of the assay (14,15). For PTH 
values within the range of two to nine times the upper 
normal limit reports of associations with relative risk of 
cardiovascular events or death in patients with CKD 
have been inconsistent. A recent observational study 
done in a very large patient population undergoing 
hemodialysis therapy in 9 countries confirmed the J-
shaped association of all-cause or cardiovascular 
mortality with PTH and pointed in addition to a direct, 
linear relationship with total alkaline phosphatase (16). 
Interestingly, a direct association between plasma 
iPTH in the normal range and cardiovascular mortality 
was found even in elderly men without CKD (17). 
 
From a clinical point of view, it may be useful to 
complete the term CKD-MBD by two syndromes, 
namely CKD-associated osteoporosis and CKD-
associated cardiovascular disease, as proposed in a 
recent KDIGO controversies conference (18). Both 
hyper and hypoparathyroidism contribute to these 
syndromes. 
 
SECONDARY HYPERPARATHYROIDISM IN CKD 
– SEQUENCE OF PLASMA BIOCHEMISTRY 
CHANGES IN EARLY CKD STAGES  
 
Phosphate Retention  
 
The precise sequence of metabolic and endocrine 
anomalies in incipient CKD leading to secondary 

hyperparathyroidism remains a matter of debate. 
Many years ago, it was postulated that a retention of 
phosphate in the extracellular space due to the 
decrease in glomerular filtration rate and the 
accompanying reduction in plasma ionized calcium 
concentration was the primary event in the 
pathogenesis of secondary hyperparathyroidism. 
These anomalies would only be transient, and a new 
steady state would rapidly be reached, with 
normalization of plasma calcium and phosphate in 
response to increased PTH secretion and the well-
known inhibitory effect of this hormone on the tubular 
reabsorption of phosphate (“trade-off hypothesis” of 
Bricker and Slatopolsky) (19). However, this 
hypothesis has become less attractive since it was 
demonstrated that plasma phosphate is only rarely 
elevated in early CKD, and phosphate balance was 
found to be not positive but negative, at least in rats 
with moderate-degree CKD (20). Most often, plasma 
phosphate remains normal until CKD stages G4-G5 
(2,21). It may even be moderately diminished in CKD 
(22).  Oral phosphate absorption remains normal in 
early stages of experimental CKD (20), and urinary 
phosphate excretion after an oral overload in patients 
with mild CKD was actually found to be accelerated 
(22). Nonetheless, one could argue that in early kidney 
disease normal or even subnormal concentrations of 
plasma phosphate might be observed after a slight, 
initial plasma phosphate increase following phosphate 
ingestion and stimulation 
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Figure 1. Schematic view of the time profile of disturbances in mineral hormones and bone turnover with 
progression of chronic kidney disease (CKD). From Drueke & Massy (6). 
 
of the secretion of FGF23 and PTH, which in turn could 
overcorrect plasma phosphate rapidly, due to a potent 
inhibition of tubular phosphate reabsorption. However, 
a subsequent study identified slight increases of 
plasma phosphate in a large US population sample 
(NHANES III) with CKD stage G3 as compared to a 
healthy control population without evidence of kidney 
disease (23). Probably both the time of plasma 
phosphate determinations during the day as well as 
subtle changes in circulating and local factors involved 
in the control of phosphate balance determine the 
actual plasma level of phosphate in patients with CKD. 
 
Fibroblast Growth Factor 23 (FGF23) and Klotho 

 
FGF23 is recognized at present as a major, if not the 
most important player in the control of phosphate 
metabolism. It is mainly produced by osteocytes and 
osteoblasts. It decreases plasma phosphate by 
reducing tubular phosphate reabsorption similar to, 
but independent of PTH. Moreover, in contrast to PTH 
it decreases the renal synthesis of calcitriol. To 
activate its receptors, FGFR-1 and FGFR-3 on tubular 
epithelial cells requires the presence of Klotho (or 
more precisely α-Klotho), which in its function as a co-
receptor confers FGF receptor specificity for FGF23 
(24). Although initially Klotho expression was found 
only in the distal tubule, it has subsequently been 
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demonstrated to occur in the proximal tubule as well. 
In line with this finding, the ablation of Klotho 
specifically from the distal tubules certainly resulted in 
a hyperphosphatemic phenotype, but to a lesser 
degree than in systemic or whole nephron Klotho 
knockout models (25). The regulation of FGF23 
production and its interrelations with PTH, calcitriol, 
calcium, phosphate, and Klotho are complex, being 
only progressively unraveled. Isakova et al. provided 
evidence that serum FGF23 increased earlier than 
serum iPTH in patients with CKD (4). This observation 
is also supported by experiments in an animal model 
of CKD and the use of anti-FGF23 antibodies (26). 
However, the authors of a subsequent large-scale 
population study took issue with the claim that the 
increase in circulating FGF23 preceded that of PTH 
(27). Klotho expression in kidney, Klotho plasma 
levels and Klotho urinary excretion decrease with 
progressive CKD (28,29). The presence of Klotho is 
required to allow FGF23 to exert its action in the 
kidney. In addition, Klotho also exerts FGF23 
independent effects. It acts from the tubular luminal 
side as an autocrine or paracrine enzyme to regulate 
transporters and ion channels. By modifying the Na-
phosphate co-transporter NaPi2a it can enhance 
phosphaturia directly (30). However, its purported 
glycosidase activity has been put into question 
recently (31).  The issue then arises which comes first 
in CKD, an increase in FGF23 or a decrease in Klotho 

? The answer remains a matter of debate (32). Some 
studies showed that secreted soluble Klotho levels 
decrease  before FGF23 levels increase (33,34) but 
the sequence of events may differ depending on 
experimental models and diverse clinical conditions 
(35). CKD is probably the most common cause of 
chronically elevated serum FGF23 levels (36). FGF23 
production in bone is increased by phosphate, 
calcitriol, calcium, PTH, Klotho, and iron. Not all of 
these effects are necessarily direct. The effect of PTH 
clearly is both direct, via stimulation of PTH receptor-
1 (PTH-R1) (37) and the orphan nuclear receptor 
Nurr1 (38), and indirect, via an increase in calcitriol 
synthesis (39). On the other hand, FGF23 inhibits PTH 
synthesis and secretion although in CKD this effect is 
mitigated by reduced Klotho and FGFR-1 expression 
in parathyroid tissue (40-42). 
 
The increase in circulating FGF23 with the 
progression of CKD is independently associated with 
serum phosphate, calcium, iPTH, and calcitriol 
(43,44). Despite its direct inhibitory action on the 
parathyroid tissue FGF23 contributes to the 
progression of secondary hyperparathyroidism by 
reducing renal calcitriol synthesis and subsequently 
decreasing active intestinal calcium transport. Figure 
2 shows the complex interrelations between serum 
FGF23, Klotho, phosphate, calcium, calcitriol, and 
parathyroid function in CKD. 
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Figure 2. Chronic kidney disease-associated mineral and bone disorder (CKD-MBD). Complex 
interactions between phosphate, FGF23, FGF receptor-1c (FGFR1c), Klotho, 1,25diOH vitamin D 
(calcitriol), renal 1α 25OH vitamin D hydroxylase (1α hydroxylase), vitamin D receptor (VDR), calcium, 
Ca-sensing receptor (CaSR), and parathyroid hormone (PTH). From Komaba & Fukagawa (45), modified. 
 
Calcium Deficiency 
 
In early CKD stages, disturbances of calcium 
metabolism may already be present. They include a 
calcium deficiency state due to a negative calcium 
balance resulting from low oral calcium intakes and 
impaired active intestinal calcium absorption (although 
a positive calcium balance can be induced by the 
ingestion of high amounts of calcium-containing 
phosphate binders) (46,47), a tendency towards 
hypocalcemia due to skeletal resistance to the action 
of PTH (48), and reduced calcium-sensing receptor 
(CaSR) expression in the parathyroid cell. All these 
factors contribute to the development of parathyroid 
overfunction (48,49). Their relative importance 
increases with the progression of CKD. It also 
depends on individual patient characteristics such as 

the underlying type of nephropathy, comorbidities, 
dietary habits, and amount of food intake. 
 
Inhibition of Calcitriol Synthesis 
 
The progressive loss of functioning nephrons and 
increased production of FGF23 are mainly responsible 
for the reduction in renal calcitriol synthesis, favoring 
the development of hyperparathyroidism. Although 
PTH in turn stimulates renal tubular 1α-OH vitamin D 
hydroxylase activity resistance to its action probably 
attenuates this counter-regulatory mechanism. 
Whether the direct inhibition of  1α-OH vitamin D 
hydroxylase activity by FGF23 is more powerful than 
its stimulation by PTH depends on several other 
additional factors such as the presence of  
hyperphosphatemia, metabolic acidosis, and uremic 
toxins. The marked disturbances of the calcitriol 
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synthesis pathway probably explain the long reported 
direct relation in patients with CKD between plasma 
calcidiol and calcitriol, and between plasma calcitriol 
and glomerular filtration rate (50). Such relations are 
not observed in people with normal kidney function. 
 
Yet another hypothesis is based on the observation 
that calcidiol does not penetrate into proximal tubular 
epithelium from the basolateral side, but only from the 
luminal side. The complex formed by calcidiol and its 
binding protein (DBP) is ultrafiltered by the 
glomerulus, subsequently enters the tubular 
epithelium from the apical side via the multifunctional 
brush border membrane receptor megalin, and then 

serves as substrate for the renal enzyme, 1α-OH 
vitamin D hydroxylase for calcitriol synthesis (Figure 
3) (51).  Reduced glomerular filtration leads to a 
decrease in calcidiol-DBP complex transfer into the 
proximal tubular fluid and hence reduced availability of 
calcidiol substrate for luminal reabsorption and 
calcitriol formation. However, the validity for the 
human situation of this mechanism established in the 
mouse has subsequently been questioned since 1α-
OH vitamin D hydroxylase expression was found not 
only in proximal, but also in distal tubular epithelium of 
human kidney, that is in tubular areas in which megalin 
apparently is not expressed (52). 

 

 
Figure 3. Schematic representation of the role of megalin in renal tubular 25 OH vitamin D reabsorption. 
Megalin is a multifunctional brush border membrane receptor  expressed in the proximal renal tubule. It 
enables endocytic reabsorption of 25 OH vitamin D (calcidiol) filtered by the glomerulus and the 
subsequent synthesis of 1,25 diOH vitamin D (calcitriol) by mitochondrial 1-α 25 OH vitamin D 
hydroxylase. After Nykjaer et al (51). 
 
Finally, the concentration of plasma calcidiol is 
diminished in the majority of patients with CKD 
(53,54). The reasons for this vitamin D deficiency state 
include insufficient hours of sunshine or sun exposure 
especially in the elderly, skin pigmentation, intake of 
antiepileptic drugs (like in general population), and in 
addition enhanced urinary excretion of calcidiol 
complexed to vitamin D binding protein (DBP) in 
presence of proteinuria, and loss into the peritoneal 
cavity in those on peritoneal dialysis treatment. All 

these factors may also contribute to the reduction in 
calcitriol synthesis (55). However, low plasma calcidiol 
has also been postulated to be a risk factor per se for 
secondary hyperparathyroidism, as suggested by an 
observational study in Algerian patients on 
hemodialysis with insufficient exposure to sunshine 
(56) and the observation that calcidiol is able to directly 
suppress PTH synthesis and secretion in bovine 
parathyroid cells in vitro, although with much less 
potency than calcitriol (57). 
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SECONDARY HYPERPARATHYROIDISM IN CKD 
– PLASMA BIOCHEMISTRY CHANGES IN 
ADVANCED CKD STAGES  
 
The above-mentioned roles of relative or absolute 
deficiency states of calcium and vitamin D are steadily 
gaining importance with the progression of CKD, and 
phosphate becomes a major player. 
 
Role of Hyperphosphatemia 
 
In CKD stages G4-G5 hyperphosphatemia becomes 
an increasingly frequent feature (21), due to 
phosphate retention caused by the progressive loss of 
functioning nephrons and the increasing difficulty in 
augmenting glomerular phosphate ultrafiltration and to 
further reduce its tubular reabsorption when it is 
already maximally inhibited by high serum FGF23 and 
PTH levels. 
 
FGF23 Excess and Klotho Deficiency 
 
Circulating FGF23 may reach extremely high, 
maladaptive concentrations in patients with end-stage 
kidney disease (ESKD) (58). In parallel, a reduction of 
Klotho expression is observed in kidney and 
parathyroid tissue, as well as of soluble Klotho in the 
plasma and urine of patients and animals with CKD 
(28,29,32). The reduction is particularly marked in 
advanced stages of CKD. The resulting resistance to 
the action of FGF23 in kidney and parathyroid tissue 
favors hyperparathyroidism (see below). 
 
Uremic Syndrome 
 
The uremic syndrome itself could also play a role. In 
addition to phosphate, many other so-called uremic 
toxins, that is substances which accumulate in the 
uremic state, are known to interfere with vitamin D 
metabolism and action (59,60). Indoxyl sulfate has 
been shown to participate in the pathogenesis of 
skeletal resistance to the action of PTH (61), in 

addition to direct inhibitory effects on bone turnover 
(62). 
 
SECONDARY HYPERPARATHYROIDISM IN CKD 
– MORPHOLOGICAL PARATHYROID TISSUE 
CHANGES 
 
Normal parathyroid glands are mainly composed of 
chief cells and few oxyphil cells. In patients with CKD 
and secondary hyperparathyroidism, the parathyroid 
oxyphil cell content often increases considerably. 
Studies showed that such patients whose parathyroid 
glands had high oxyphil cell counts were likely to be 
relatively refractory to drug treatment (63). A recent 
report demonstrated the existence of a chief-to-oxyphil 
cell trans-differentiation characterized by gradual 
mitochondrial enrichment associated with the uremic 
milieu. The mitochondrial enrichment and cellular 
proliferation of chief cell and oxyphil cell nodules 
decreased significantly after leaving the uremic milieu 
via transplantation into nude mice (64). 
 
MECHANISMS INVOLVED IN THE PATHOGENESIS 
OF SECONDARY HYPERPARATHYROIDISM 
 
Generally speaking, there are at least two major 
different mechanisms which determine the magnitude 
of secondary hyperparathyroidism in CKD. The first is 
an increase in PTH synthesis and secretion per cell, 
and the second an increase in parathyroid gland 
mass, mostly due to enhanced cell proliferation 
(hyperplasia), and to a lesser degree also an increase 
in cell size (hypertrophy) (see schematic 
representation in Figure 4). Whereas acute stimulation 
of PTH synthesis and/or release generally occurs in 
the absence of enhanced cell growth, these two 
processes appear to be tightly linked under conditions 
of chronic stimulation. The main factors involved in the 
control of the two processes are again calcitriol, 
calcium, and phosphate whereas the direct effects of 
FGF23 appear to be essentially limited to the control 
of PTH synthesis and secretion. In the following, the 
disturbances of the mechanisms controlling 
parathyroid function will be discussed subsequently 
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for each of these three factors, although there are 
numerous interactions between them. Thereafter, the 

influence of other factors and comorbid conditions 
related to CKD will be presented. 

 

 
Figure 4. Pathogenesis of secondary hyperparathyroidism. Schematic representation of parathyroid 
hormone (PTH) synthesis and secretion (upper part) and parathyroid cell proliferation and apoptosis 
(lower part), as regulated by a number of hormones and growth factors. 
 
Calcitriol 
 
The above-mentioned decrease in plasma calcitriol 
aggravates hyperparathyroidism via several 
mechanisms. The first is direct and results from an 
insufficient inhibition of PTH synthesis due to low 
circulating calcitriol levels and a disturbed action of 
calcitriol at the level of the preproPTH gene. It is well 
established that calcitriol, after forming a complex with 
its receptor, vitamin D receptor (VDR) and 
heterodimerizing with the retinoic acid receptor (RXR), 
directly inhibits preproPTH gene transcription by 
binding to a specific DNA response element (VDRE) 
located in the 5’-flanking region of the gene. In CKD, 
in addition to low extracellular concentrations of 
calcitriol, at least two other factors interfere with 
calcitriol’s action on the preproPTH gene (65). The first 
factor is a reduced expression of the VDR gene in 
hyperplastic parathyroid tissue of CKD patients (66). 
This reduction is particularly marked in nodular, as 

compared to diffusely hyperplastic parathyroid tissue. 
The second factor is reduced binding of calcitriol to 
VDR, slowed nuclear migration of the calcitriol–VDR 
complex and less efficient inhibitory action on the 
preproPTH gene, in association with the uremic state 
(60,67). Of note, the extracellular Ca2+ concentration 
[Ca2+e] appears to  play a role in the regulation of 
VDR expression. In rat parathyroid glands, low 
[Ca2+e] reduced VDR expression independently of 
calcitriol, whereas high [Ca2+e] increased it (68). 
Hypocalcemia may attenuate by this mechanism the 
feedback of increased plasma calcitriol concentrations 
on the parathyroids. 
 
The second level at which calcitriol regulates PTH 
gene expression involves calreticulin. Calreticulin is a 
calcium binding protein which is present in the 
endoplasmic reticulum of the cell and also may have a 
nuclear function. It regulates gene transcription via its 
ability to bind a protein motif in the DNA-binding 
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domain of nuclear hormone receptors of sterol 
hormones. Sela-Brown et al. proposed that calreticulin 
might inhibit vitamin D's action on the PTH gene, 
based on in vitro and in vivo experiments (69). They 
fed rats either a control diet or a low calcium diet, the 
latter leading to increased PTH mRNA levels despite 
high serum calcitriol levels that would be expected to 
inhibit PTH gene transcription. Their postulate that 
high calreticulin levels in the nuclear fraction might 
prevent the effect of calcitriol on the PTH gene was 
strongly supported by the observation that 
hypocalcemic rats had increased levels of calreticulin 
protein in parathyroid nuclear fraction. This could 
explain why hypocalcemia leads to increased PTH 
gene expression despite high serum calcitriol levels 
and might also be relevant for the refractoriness of 
secondary hyperparathyroidism to calcitriol treatment 
observed in many patients with CKD. 
 
The third mechanism of calcitriol’s action could be 
indirect, via a stimulatory effect on parathyroid CaSR 
expression, as shown by Brown et al (70) and 
subsequently confirmed by Mendoza et al (71). 
 
The fourth mechanism is again a direct one. It is due 
to the well-known inhibitory effect of vitamin D on cell 
proliferation and the induction of differentiation 
towards mature, slowly growing cells. A decrease in 
plasma calcitriol and a perturbed action at molecular 
targets favor abnormal cell growth in general. This is 
the case with parathyroid tissue as well, and 
parathyroid hyperplasia ensues (72). The important 
role of vitamin D in the pathogenesis of parathyroid 
hyperplasia of experimental uremia was first shown by 
Szabo et al (73). These authors administered 
increasing doses of calcitriol to rats either at the time 
of inducing chronic kidney failure or at a later time 
point, when uremia was already well established. They 

were able to prevent parathyroid cell proliferation 
entirely when calcitriol was given in initial CKD stages, 
but not when given later. Fukagawa et al showed that 
pharmacologic doses of calcitriol repressed c-myc 
expression in the parathyroid tissue of uremic rats and 
suggested that the hormone might suppress 
parathyroid hyperplasia by this pathway (74). In 
contrast, Naveh-Many et al. (75) failed to observe 
such an antiproliferative effect of calcitriol in 
parathyroid cells of uremic rats but they administered 
the hormone for only three days. The short-term 
administration may not have been sufficient for an 
efficacious suppression of cell turnover. 
 
To answer the question of a possible direct calcitriol 
action on parathyroid cells, several studies were 
performed in experimental models in vitro. Nygren et 
al. (76) showed in primary cultures of bovine 
parathyroid cells, maintained in short-term culture, that 
these cells underwent significant increases both in 
number and size in response to fetal calf serum, and 
that the addition of 10-100 ng/mL calcitriol almost 
completely inhibited cell proliferation whereas cell 
hypertrophy was unaffected. Kremer et al (77) 
subsequently confirmed in same parathyroid cell 
model that calcitriol exerted an anti-proliferative 
action. They further suggested that this inhibition 
occurred via a reduction of c-myc mRNA expression. 
One report showed an inhibitory action under long-
term culture conditions (up to 5 passages) of the effect 
of calcitriol on bovine parathyroid cell proliferation 
(78). Our group subsequently confirmed such a direct 
antiproliferative effect of calcitriol in a human 
parathyroid cell culture system derived from 
hyperplastic parathyroid tissue of patients with severe 
secondary uremic hyperparathyroidism (79) (Figure 
5). 
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Figure 5. Antiproliferative effect of 1,25 diOH vitamin D on parathyroid cells. Reduction of parathyroid 
cell proliferation in response to increasing medium 1,25diOH vitamin D (calcitriol) concentrations in the 
incubation milieu of a human parathyroid cell culture system, with parathyroid cells derived from 
hyperplastic parathyroid tissue of patients with severe secondary uremic hyperparathyroidism. From 
Roussanne et al (79). 
 
A fifth mechanism is the potential association between 
parathyroid function and vitamin D receptor (VDR) 
polymorphism. Fernandez et al (80) separated 
patients on hemodialysis therapy with similar serum 
calcium levels and dialysis vintage into two groups, 
according to their serum iPTH levels, namely low PTH 
(<12 pmol/L) or high PTH (>60 pmol/L). They found 
that the BB genotype and the B allele were 
significantly more frequent in the low PTH than in the 
high PTH group (32.3 % vs 12.5 %, and 58.8% vs 
39.1%, respectively). This information suggests that 
VDR gene polymorphism influences parathyroid 
function in CKD. Similar results have been reported in 
a large sample of Japanese patients undergoing 
hemodialysis (81). In this latter study, after excluding 
patients with diabetes and patients with a dialysis 
vintage of less than 10 years, the authors observed 
lower plasma iPTH levels in ESKD patients with BB 
than with Bb or bb alleles. A relationship between Apa 
I polymorphism (A/a alleles) and the severity of 
hyperparathyroidism has also been sought in 
Japanese patients on hemodialysis (82). Plasma PTH 
levels in AA and Aa groups were approximately half 
that of the aa group. However, other groups found no 

difference in PTH levels for various VDR 
polymorphisms (83-85). Moreover, although in some 
clinical conditions VDR polymorphism may be 
associated with variations of the half-life of the VDR 
gene transcript (86) or of VDR function (87), there has 
been no report showing that in uremic patients with 
secondary hyperparathyroidism the density of 
parathyroid cell VDR varied with different VDR 
genotypes. In addition, although VDR genotypes may 
have some influence on the degree of parathyroid cell 
proliferation, the mechanism by which this could occur 
remains unknown. 
 
Finally, Egstrand et al recently provided experimental 
evidence for the role of a circadian clock operating in 
parathyroid glands. This clock and downstream cell 
cycle regulators were shown to be disturbed in uremic 
rats, potentially contributing to dysregulated 
parathyroid cell proliferation in secondary 
hyperparathyroidism  (88,89). 
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Calcium 
 
[Ca2+e] is the primary regulator of PTH secretion. 
Small changes in serum Ca2+ concentration result in 
immediate changes of PTH release, which are either 
short-lived or long-lived depending on the velocity of 
the restoration of serum Ca2+ towards normal. Thus, 
postprandial urinary calcium excretion was increased 
in patients with CKD as it was in healthy volunteers, 
but only in the patients was this accompanied by 
significantly reduced serum Ca2+ and increased PTH 
levels (90). The inverse relation between Ca2+ and 
PTH in the circulation obeys a sigmoidal curve (91). 
While the majority of in vitro studies have reported a 
decreased responsiveness of hyperplastic parathyroid 
cells to changes in [Ca2+e] in vivo studies have not 
always confirmed this. These discrepant findings are 
likely due to different methods used to assess the 
dynamics of PTH secretion (92). 
 
Several in vitro studies have shown that the set point 
of calcium for PTH secretion (that is the Ca2+ 
concentration required to produce half maximal PTH 
secretion) is greater in parathyroid cells from primary 
adenomas and secondary (uremic) hyperplastic 
parathyroid glands than in normal parathyroid cells 
(93). Such a relatively poor response to [Ca2+e] 
should contribute to the increased PTH levels 
observed in uremic patients with secondary 
hyperparathyroidism. 
 
We and others have demonstrated that both primary 
parathyroid adenoma and secondary uremic, 
hyperplastic parathyroid gland tissue exhibit a 
decrease in the expression of CaSR protein (94,95). 
In secondary uremic hyperparathyroidism, there is a 
significant decrease of CaSR in diffusely growing 
hyperplastic tissue, with the decrease being even 

more marked in nodular areas (characteristic of 
advanced hyperparathyroidism with autonomously 
growing cells) (94) (Figure 6). Since changes in 
intracellular Ca2+ elicited by hyper or hypocalcemia 
depend on the expression and activity of the CaSR, 
any decrease explains, at least in part, an impaired 
intracellular calcium response to [Ca2+e] and hence a 
reduced inhibitory effect of the cation on PTH 
secretion. Several factors contribute to the 
downregulation of CaSR expression and/or activity in 
CKD including reduced calcitriol levels (70,71), low 
magnesium levels (94), dietary phosphate intake 
(probably indirect action) (97), and metabolic acidosis 
(98). However, raising extracellular phosphate has 
been recently shown to also exert a direct inhibitory 
action on parathyroid cell CaSR activity of isolated 
human parathyroid cells and thus to increase PTH 
secretion (99). Almaden et al studied calcium-
regulated PTH response in vitro, using respectively 
primary parathyroid adenoma and uremic hyperplastic 
tissue, the latter either of the nodular or the diffuse 
type (100). They found that in primary adenoma tissue 
PTH secretion was less responsive to an increase in 
[Ca2+e] than in uremic hyperplastic parathyroid 
tissue; among the latter, nodular tissue was less 
responsive than diffusely hyperplastic tissue. The 
decreased secretory response to Ca2+ observed in 
nodular uremic hyperplasia may be explained by the 
markedly reduced CaSR expression in CKD, as 
demonstrated by Gogusev et al (94). This decrease 
can be overcome, at least partially, by PTHrp, as 
shown by Lewin et al (101), who observed that the 
administration of PTHrp significantly stimulated the 
impaired secretory capacity of the parathyroid glands 
of uremic rats in response to hypocalcemia. Of note, 
this observation also implies that the PTH/PTHrp 
receptor is expressed on the parathyroid cell. 
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Figure 6. Calcium-sensing receptor (CaSR) expression in normal and hyperplastic parathyroid glands. 
Normal parathyroid tissue (in blue), secondary (2°) hyperparathyroidism from dialysis patients (glands 
with diffuse hyperplasia in yellow; glands with nodular hyperplasia in green), and  primary (1°) 
adenomatous hyperparathyroidism from patients with conserved kidney function (in orange). Decreased 
expression of both CaSR protein and mRNA in the majority of hyperplastic glands, with a particularly 
marked decrease in nodular type secondary uremic hyperparathyroidism. After Gogusev et al (94). 
 
The shift of the calcium set point to the right in patients 
on dialysis in vivo has been a much less constant 
finding than the right shift observed in the above-
mentioned studies in uremic parathyroid tissue in vitro. 
While in patients with CKD and a mild to moderate 
degree of hyperparathyroidism the set point was most 
often found to be normal, an altered set point was 
observed in presence of severe parathyroid 
overfunction with hypercalcemia (102). This anomaly 
could at least in part be due to CaSR down-regulation. 
As regards CKD patients with less severe parathyroid 
overfunction, a considerable controversy took place 
regarding the results of in vivo assessments of 
parathyroid gland function (103,104). In part, 
disparities among study results reflected technical 
differences in experimental methods and/or variations 
in the mathematical modeling of PTH secretion in vivo 
(105).  Another difficulty in interpreting the results of in 
vivo dynamic tests of parathyroid gland function 
relates to the issue of parathyroid gland size.  Because 

there is a basal, or non-suppressible, component of 
PTH release from the parathyroid cell even at high 
[Ca2+e], excessive PTH secretion may result solely 
from increases in parathyroid gland mass (102). This 
can theoretically occur in the absence of any defect in 
calcium sensing at the level of the parathyroid cell.  
Since parathyroid gland hyperplasia is present to 
some extent in nearly all patients with CKD stages G3-
G5, alterations in PTH secretion due to increases in 
parathyroid gland mass cannot readily be 
distinguished from those attributable to changes in 
calcium-sensing by the parathyroid cell using the four-
parameter model for in vivo studies (104). 
 
The precise role of calcium in parathyroid cell 
proliferation is still a matter of discussion. On the one 
hand, calcium deficiency, in the presence or absence 
of hypocalcemia and vitamin D deficiency (or reduced 
production of calcitriol), is considered to be a stimulus 
of parathyroid hyperplasia. Thus Naveh-Many et al 
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showed that calcium deprivation, together with vitamin 
D deficiency, greatly enhanced the rate of parathyroid 
cell proliferation in normal rats and also in rats with 
CKD, using the cell cycle-linked antigen, PCNA (75). 
The concomitant decrease in CaSR expression in 
CKD, as observed in parathyroid glands of both 
dialysis patients and uremic rats (94, 106), should 
theoretically enhance parathyroid tissue hyperplasia 
further. Indirect support for this contention came from 
the observation that the administration of the 
calcimimetic compound NPS R-568, a CaSR agonist, 
led to the suppression of parathyroid cell proliferation 
in rats with CKD (107). However, in the study by 
Naveh-Many et al the dietary regimen was poor in both 
calcium and vitamin D. On the other hand, Wernerson 
et al observed parathyroid cell hypertrophy, not 
hyperplasia when feeding normal rats on a calcium-
deficient diet alone, in the absence of concomitant 
vitamin D deficiency (108). 
 
The question of whether the effect of calcium is direct 
or indirect remains therefore unsolved at present. It 
can only be answered by in vitro studies. For a long 
time, available culture systems using normal 
parathyroid cells did not allow maintaining functionally 
active cells for prolonged time periods. They were all 
characterized by a rapid and significant loss of PTH 
secretion within 3 to 4 days (109-111). One culture 
model has been described using bovine parathyroid 
cell organoids, which maintained the ability to 

modulate PTH secretion in response to [Ca2+e] and 
tissue-like morphology for 2 weeks (112). However, 
only one long-term study using bovine parathyroid 
cells demonstrated a release of bioactive bovine PTH 
but with reduced sensitivity to [Ca2+e] (113). Other 
reports showed that the rapid decrease in PTH 
responsiveness of cultured bovine parathyroid cells to 
changes in [Ca2+e] was associated with a marked 
reduction in CaSR expression (114,115). Yet other 
parathyroid cell-derived culture models proposed in 
the literature were in fact devoid of any PTH secretory 
capacity (116,117). 
 
To study direct effects of [Ca2+e] on the parathyroid 
cell in vitro, we developed a functional human 
parathyroid cell culture system capable of maintaining 
the regulation of its secretory activity and expression 
of extracellular CaSR mRNA and protein for several 
weeks. For this purpose, we used parathyroid cells 
derived from hyperplastic parathyroid tissue of 
patients on hemodialysis with severe secondary 
hyperparathyroidism (118). In a subsequent study with 
this experimental model, we surprisingly obtained 
evidence that parathyroid cell proliferation index, as 
estimated by [3H]-thymidine incorporation into an 
acid-precipitable fraction as a measure of DNA 
synthesis, could be directly stimulated by high [Ca2+e] 
in the incubation medium, compared with low [Ca2+e] 
(79) (Figure 7). 

 

http://www.endotext.org/


 
 

 
www.EndoText.org 15 

 
Figure 7. Effect of medium calcium concentration on parathyroid cell proliferation. Stimulatory effect on 
parathyroid cell proliferation (measured by KI-67 staining method) of high medium calcium 
concentrations in the incubation milieu of a human parathyroid cell culture system derived from 
hyperplastic parathyroid tissue of patients with severe secondary uremic hyperparathyroidism. From 
Roussanne et al (79). 
 
We confirmed this finding in independent experiments 
using the cell cycle-linked antigen Ki-67 to determine 
parathyroid cell proliferation. However, the addition of 

the calcimimetic NPS R-467 to the incubation medium 
led to a decrease in cell proliferation (Figure 8). 

 

 
Figure 8. Inhibitory effect of calcimimetic on parathyroid cell proliferation.  Human parathyroid cells 
derived from hyperplastic parathyroid tissue of patients with severe secondary uremic 
hyperparathyroidism were maintained in high medium calcium incubation milieu and exposed to 
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increasing concentrations of calcimimetic NPS R-467. Determination of cell proliferation by [3H]-
thymidine incorporation method. After Roussanne et al (79). 
 
Of interest, calcimimetics have subsequently been 
shown to upregulate the expression of  both CaSR 
(71,119) and VDR (67) in parathyroid glands of uremic 
rats. In an attempt to unify our apparently contradictory 
in-vitro observations with respect to findings made in 
vivo, we proposed the following hypothesis. The effect 
of calcium on parathyroid cell proliferation could occur 
along two different pathways, via two distinct 
mechanisms. Inhibition of proliferation would occur via 
the well-known parathyroid CaSR-dependent 
pathway, whereas stimulation of proliferation would 
occur via an alternative pathway (Figure 9). Note that 
the parathyroid tissue samples used in our study 
stemmed from uremic patients with long-term ESKD 
and severe secondary hyperparathyroidism. Since 
such parathyroid tissue generally exhibits decreased 
CaSR expression, it is possible that the number of 
CaSR expressed in the parathyroid cell membranes of 
our culture model was insufficient to inhibit cell 
proliferation. Of note, the human CaSR gene has two 
promoters and two 5’ untranslated exons; therefore, 
the alternative usage of these exons leads to 
production of multiple CaSR mRNAs in parathyroid 
cells (120). The expression of CaSR mRNA produced 
by one of the two promoters of CaSR gene is 
specifically reduced in parathyroid adenomas, 
suggesting a role in PTH hypersecretion and 
proliferation. Moreover, the membrane-bound 550-kD 
Ca2+-binding glycoprotein megalin, which belongs to 
the low-density lipoprotein receptor superfamily, has 

been identified in parathyroid chief cells as another 
putative calcium-sensing molecule. It could be 
involved in calcium-regulated cellular signaling 
processes as well (121). Based on these 
observations, it is possible that parathyroid cells 
express multiple CaSR-like molecules. Consequently, 
if the well-known parathyroid CaSR is downregulated, 
parathyroid cell proliferation induced by increases in 
[Ca2+e] may occur via a different type of CaSR. 
Another possibility is an alteration in post-receptor 
signal transduction that could occur in 
hyperparathyroid states or under cell culture 
conditions. Our observations are in line with findings 
by Ishimi et al. which were incompatible with a direct 
effect of low [Ca2+e] in the pathogenesis of 
parathyroid hyperplasia (78). However, any 
extrapolation from such in vitro observations to the in 
vivo setting should be done with caution. Further work 
is needed to define the precise pathway(s) by which 
calcium regulates parathyroid tissue growth. 
 
The effect of CaSR activation by calcimimetics on 
parathyroid cell proliferation may also depend on the 
timing of calcimimetic administration since CaSR 
expression exhibits significant diurnal rhythmicity. 
Egstrand et al recently showed in rats with CKD that 
the inhibitory effect of cinacalcet administration on 
parathyroid cell proliferation effectively depended on 
its timing, suggesting a possible benefit of using 
chronotherapy (122).  
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Figure 9. Hypothesis of the regulation of parathyroid cell proliferation by extracellular [Ca2+]. 1) 
Inhibitory pathway via the calcium-sensing receptor (CaR). 2) Stimulatory pathway via an unknown 
transmembrane transduction mechanism. Physiologically, pathway 1 predominates over pathway 2. In 
presence of parathyroid hyperplasia with calcium-sensing receptor down-regulation pathway 2 could 
become dominant and favor parathyroid cell proliferation over suppression. After Roussanne et al (79). 
 
Phosphate 
 
A direct action of phosphate on PTH secretion by the 
parathyroid cell has long been suspected. However, it 
has been formally demonstrated in vitro only in 1996 
(123-125). This demonstration required the use of 
either intact parathyroid glands (from rats) (Figure 10) 
or parathyroid tissue slices (from cows) whereas it had 
not been possible to obtain such direct stimulation 

using the classic model of isolated bovine parathyroid 
cells. Elevating plasma phosphate concentration in the 
incubation milieu of experimental models using intact 
(or partially intact) parathyroid tissue led to a 
stimulation of PTH secretion within some hours, in the 
absence of any change in [Ca2+e]. This effect could 
be abrogated by an increase in cytosolic Ca2+ 
concentration (126). 
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Figure 10. Direct inhibition of parathyroid hormone (PTH) secretion by phosphate. Intact parathyroid 
glands obtained from normal rats were maintained in culture and exposed to increasing phosphate 
concentrations in the incubation medium. After Almaden et al (126). 
 
Silver’s group reported subsequently that phosphate, 
like calcium, regulates pre-pro-PTH gene expression 
post-transcriptionally by changes in protein-PTH 
mRNA interactions at the 3'-UTR which determine 
PTH mRNA stability. The authors identified the 
minimal sequence required for protein binding in the 
PTH mRNA 3'-UTR and determined its functionality. 
They found that the conserved PTH RNA protein-
binding region conferred responsiveness to calcium 

and phosphate and determined PTH mRNA stability 
and levels (127). Thus, a low calcium diet increased 
stability, whereas a low phosphate diet decreased 
stability of PTH mRNA (128) (Figure 11). The PTH 
mRNA 3’-untranslated region-binding protein was 
subsequently identified by this research group as 
adenylate-uridylate-rich element RNA binding protein 
1 (AUF1) (129). 

 

http://www.endotext.org/


 
 

 
www.EndoText.org 19 

 
Figure 11. Post-transcriptional regulation of PTH mRNA stability by calcium, phosphate, and kidney 
failure. Pre-pro-PTH gene expression is modulated via changes in protein-PTH mRNA interactions at the 
3'-UTR region which determine PTH mRNA stability. Low calcium diet increases stability, whereas low 
phosphate diet decreases stability of PTH mRNA. PTH mRNA protective factor AUF1 in yellow, PTH 
mRNA degrading endonuclease in orange. After Yalcindag et al (128,129). 
 
In addition to its stimulatory effect on PTH secretion, a 
high phosphate diet also rapidly induces parathyroid 
overfunction and hyperplasia, as shown in 
experimental animal models (130). Subsequent 
studies showed that hyperphosphatemia induced by 
phosphate-rich diets in animals with CKD led to 
parathyroid hyperplasia even when changes in plasma 
Ca2+ and calcitriol concentration were carefully 
avoided, pointing to a direct effect of phosphate on cell 
proliferation (75,125). Conversely, early dietary 
phosphate restriction in the course of CKD was 
capable of preventing both PTH oversecretion and 
parathyroid hyperplasia (75,125,131). Interestingly, 
dietary phosphate restriction following phosphate 
overload in rats led to an immediate decrease in PTH 

secretion despite no regression of parathyroid gland 
size (132). 
 
Our group wished to know whether the stimulatory 
effect of phosphate on parathyroid cell proliferation 
was direct or indirect. To answer this question, we 
used the above-described in vitro model of human 
uremic parathyroid cells maintained in long-term 
culture (118). We could show that cell proliferation 
index was directly stimulated by high phosphate 
concentrations in the incubation medium, compared 
with low phosphate concentration (79) (Figure 12). 
These experiments demonstrated that phosphate is 
capable of stimulating not only PTH secretion, but also 
of inducing parathyroid tissue hyperplasia by a direct 
mode of action. 
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Figure 12. Direct stimulatory effect of extracellular phosphate on parathyroid cell proliferation. Response 
of parathyroid cell growth to increasing phosphate concentrations in the incubation milieu of a human 
parathyroid cell culture system derived from hyperplastic parathyroid tissue of patients with severe 
secondary uremic hyperparathyroidism. Determination of cell proliferation by [3H]-thymidine 
incorporation method. After Roussanne et al (133). 
 
FGF23 plays an important role in the control of plasma 
phosphate. Elevated FGF23 in CKD allows efficient 
inhibition of proximal tubular phosphate reabsorption 
and maintenance of plasma phosphate in the normal 
range. However, since hyperphosphatemia directly 
stimulates PTH secretion, its correction by FGF23 
indirectly leads to a reduction of PTH release, in 
addition to the direct inhibitory action of FGF23 on 
parathyroid secretory activity (see above).  
 
FGF23 and Klotho 
 
As mentioned before, FGF23 directly inhibits PTH 
synthesis and secretion via its action on parathyroid 
FGFR-1 (134). FGF23 also increases parathyroid 
CaSR and VDR expression, further contributing to the 
suppression of PTH by this hormone (135). In 
advanced stages of CKD FGF23’s effect is partially or 
even completely abolished owing to downregulation of 
the expression of its receptor and co-receptor Klotho 

(40-42). Of interest, in the early stages of CKD there 
could be an initial upregulation of FGFR-1 and Klotho, 
with enhanced PTH secretion in response to FGF23 
via an Na+/K+ -ATPase driven pathway (136). 
Subsequent findings suggested a function for Klotho 
in suppressing PTH biosynthesis and parathyroid 
gland growth, even in the absence of CaSR (137). 
Moreover, they pointed to a physical interaction 
between Klotho and CaSR. Specific deletion of CaSR 
in parathyroid tissue led to elevated serum PTH levels 
and parathyroid gland hyperplasia, and additional 
deletion of Klotho in parathyroid glands exacerbated 
this condition. However, a more recent review 
concluded that the role of parathyroid Klotho remains 
controversial (138). 
 
MicroRNAs 
 
Shilo et al provided evidence for the important role of 
microRNAs (miRNAs) in the physiological regulation 
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of parathyroid function, and its dysregulation in the 
secondary hyperparathyroidism of CKD (139,140). 
The authors found an abnormal regulation of many 
miRNAs in experimental uremic hyperparathyroidism 
supporting a key role for miRNAs in this condition. 
Specifically, their studies showed that inhibition of the 
abundant let-7 family increased PTH secretion in 
normal and uremic rats, as well as in mouse 
parathyroid organ cultures. Conversely, the inhibition 
of the upregulated miRNA-148 family prevented the 
increase in serum PTH of uremic rats, and inhibition of 
let-7 family also reduced PTH secretion in parathyroid 
organ cultures. Thus, miRNA dysregulation represents 
yet another crucial step in the pathogenesis of 
secondary hyperparathyroidism. 
 
Other Factors and Conditions  
 
As already pointed out above, the uremic state with its 
accumulation of numerous uremic toxins is another 
long suspected, albeit yet ill-defined factor in the 
pathogenesis of secondary hyperparathyroidism. 
Recently, several pieces of evidence have been 
provided in favor of the role of the uremic state which 
interferes with the binding of calcitriol to VDR (60) and 
with the nuclear uptake of the hormone-receptor 
complex (67). This should have consequences not 
only for PTH synthesis and secretion, but also for 
parathyroid cell proliferation. Another mechanism of 
excessive proliferation involves the mTOR pathway, 
which has been shown to be activated in secondary 
hyperparathyroidism (141). Inhibition of mTOR 
complex 1 (mTORC1) by rapamycin decreased 
parathyroid cell proliferation in vivo and in vitro. 
Parathyroid-specific genetic ablation of mTOR (PT-
mTOR−/−) in mice resulted in disrupted gland 
structure but normal serum PTH levels. Conversely, 
mice with parathyroid-specific deletion of the tuberous 
sclerosis complex-1 gene (Tsc1) leading to mTORC1 
hyperactivation, exhibited enlarged parathyroid glands 
and elevated serum PTH and calcium levels (142). Of 
note, despite impaired gland structure, PT-mTOR−/− 
mice with CKD were able to increase serum PTH to 
levels similar to controls (143). In keeping with this 

experimental finding, kidney transplant recipients 
treated with mTOR inhibitors, as compared to those 
treated with calcineurin inhibitors, had reduced serum 
PTH levels and a lower incidence of secondary 
hyperparathyroidism (143). 
 
Patients with diabetes receiving dialysis therapy have 
relatively low plasma PTH levels, as compared to 
those without diabetes. The high incidence of low 
bone turnover in uremic patients with diabetes (144-
147) has been attributed to low levels of biologically 
active PTH, possibly via an inhibition of PTH secretion 
or a modification of the PTH peptide by the 
accumulation of advanced glycation end-products 
such as pentosidine (140) or else oxidative 
modifications of PTH (149,150). However, 
experimental studies have demonstrated that the 
metabolic abnormalities associated with diabetes can 
also directly decrease bone turnover, independent of 
PTH (151). In general, patients with low bone turnover 
tend to develop hypercalcemia when on a normal or 
high dietary calcium intake, probably due to a 
diminished skeletal capacity of calcium uptake. This in 
turn tends to reduce plasma PTH. Thus, not only does 
hypoparathyroidism promote adynamic bone disease 
but adynamic bone disease also favors 
hypoparathyroidism. Another issue is whether in 
patients with diabetes abnormalities such as 
hyperglycemia and insulin deficiency or resistance 
may directly affect parathyroid function. In an in vitro 
study using dispersed bovine parathyroid cells, high 
glucose and low insulin concentrations suppressed 
the PTH response to low Ca2+ concentration (152). 
These results are compatible with the view that 
diabetes directly inhibits parathyroid function. 
However, when uremic rats were fed on a high 
phosphate diet to induce secondary 
hyperparathyroidism, the presence of diabetes did not 
prevent it (152). 
 
Aluminum bone disease is generally associated with 
low serum PTH levels (153-154) and a decreased 
PTH response to stimulation by hypocalcemia 
(155,156). In aluminum intoxicated patients, high 
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amounts of aluminum are also found in parathyroid 
tissue (157). The relatively low PTH levels may reflect 
either an inhibition of PTH secretion by the 
hypercalcemia commonly observed in this condition 
(158) or a direct inhibitory effect of aluminum on 
parathyroid cell function (159). Direct toxic effects of 
the trace element have also been demonstrated in 
studies in vitro (160,161). Observations made in 
experimental animals and results of clinical studies 
have been less clear. Whereas some authors found 
that aluminum overload did not decrease plasma PTH 
levels in vivo (160,161), others reported a decrease 
(162,163). Whatever the mechanisms involved, 
subsequent clinical data clearly showed that the 
introduction of an aluminum-free dialysis fluid and the 
discontinuation of aluminum contamination of the 
dialysate or aluminum removal with deferoxamine 
resulted in an increase in plasma PTH levels and in 
PTH response to hypocalcemia (164). Thus, although 
there appears to be an association between aluminum 
toxicity and parathyroid gland function, the interaction 
is complex. 
 
Post-Receptor Mechanisms Involved in 
Polyclonal Parathyroid Tissue Growth 
 
As pointed out above, calcitriol reduces parathyroid 
cell proliferation by decreasing the expression of the 
early gene, c-myc. This gene modulates cell cycle 
progression from G1 to S phase. A decrease in plasma 
calcitriol and/or a disturbance of its action at the level 
of the parathyroid cell, which are both frequently 
observed in uremic patients, may cause disinhibition 
of c-myc expression and progression into the cell 
cycle. Another mode of action involves the cyclin 
kinase inhibitor p21WAF1. Calcitriol has long been 
shown to induce the differential expression of 
p21WAF1 in the myelo-monocytic cell line U937 and 
to activate the p21 gene transcriptionally in a VDR-
dependent, but p53-independent, manner, thereby 
arresting parathyroid growth (165). Slatopolsky’s 
group further showed that the administration of 
calcitriol to moderately uremic rats enhanced 
parathyroid p21 expression and prevented high 

phosphate-induced increase in parathyroid TGF-β 
content (165). In addition, these authors found that 
calcitriol altered membrane trafficking of the epithelial 
growth factor receptor (EGFR), which binds both EGF 
and TGF-β, and down-regulated EGFR mediated 
growth signaling (166). Induction of p21 and reduction 
of TGF-β content in the parathyroid glands also 
occurred when uremia-induced parathyroid 
hyperplasia was suppressed by high dietary Ca intake. 
The mechanisms by which a phosphate-rich diet and 
hyperphosphatemia induce parathyroid hyperplasia, 
and conversely a phosphate-poor diet  and 
hypophosphatemia inhibit parathyroid tissue growth, 
have also been examined by this group in a detailed 
fashion. Thus, Dusso et al showed that feeding a low 
phosphate diet to uremic rats increased parathyroid 
p21 gene expression through a vitamin D-independent 
mechanism (167). When administering a high 
phosphate diet, p21 expression was not suppressed. 
In this condition, they observed an increase in 
parathyroid tissue TGF-β expression and a direct 
correlation between this expression and parathyroid 
cell proliferation rate. This finding is in line with a 
previous observation by our group of de novo TGF-β 
expression in severely hyperplastic parathyroid tissue 
of patients with ESKD (168). The inducer of TGF-β 
gene transcription could be activator protein 2α (AP2), 
whose expression and transcriptional activity at the 
TGF-β promoter is increased in the secondary 
hyperparathyroidism of CKD (169). 
 
Although these findings provide more insight into the 
pathways by which changes in phosphate intake, and 
ultimately variations in extracellular phosphate 
concentration, control parathyroid tissue growth, the 
exciting question of the transmembrane signal 
transduction mechanism and subsequent nuclear 
events triggered by phosphate remains yet to be 
answered. It is possible that phosphate acts as a 
partial, non-competitive CaSR antagonist to modulate 
PTH secretion (169a). 
 
In addition to p21 and TGF-β, a variety of other growth 
factors and inhibitors are probably involved in 
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polyclonal parathyroid hyperplasia. PTHrp has been 
proposed as a possible growth suppressor in the 
human parathyroid (170). PTHrp, and probably PTH 
itself, also exert an inhibitory effect on PTH secretion 
by acting via a negative feedback loop on PTH-R1 
which appears to be expressed in the parathyroid cell 
membrane as well (107). Table 1 summarizes various 
changes in gene and growth factor expression, which 
are potentially involved in the parathyroid tissue 
hyperplasia of secondary uremic 
hyperparathyroidism. Gcm2 has been identified as a 
master regulatory gene of parathyroid gland 
development, since Gcm2 knockout mice lack 
parathyroid glands (171). Correa et al. found high 

Gcm2 mRNA expression in human parathyroid glands 
in comparison with other non-neural tissues and 
underexpression in parathyroid adenomas but not in 
lesions of hyperparathyroidism secondary to uremia 
(172). Gcm2 expression itself is regulated by Gata3, 
and Gata3, in cooperation with Gcm2 and MafB, 
stimulates PTH gene expression, by interacting with 
the ubiquitous transcription factor SP1 (173). MafB 
probably plays a role in uremic hyperparathyroidism 
as well. Thus stimulation of the parathyroid by CKD in 
MafB+/-mice resulted in an impaired increase in serum 
PTH, PTH mRNA, and parathyroid cell proliferation 
(174,175). 

 
Table 1. Changes in Gene and Growth Factor Expression Potentially Involved in 
Parathyroid Tissue Hyperplasia of Secondary Uremic Hyperparathyroidism 
Early immediate genes and receptor/coreceptor genes 
-Enhanced c-myc gene expression (Fukagawa et al, Kidney Int 1991; 39: 874-81) 
-Decreased calcium-sensing receptor (CaSR) gene expression (Kifor et al, J Clin Endocrinol 
Metab 1996; 81: 1598-1606. Gogusev et al, Kidney Int 1997; 51: 328-36) 
-Decreased vitamin D receptor (VDR) gene expression (Fukuda et al, J Clin Invest 1993; 92: 
1436-42) 
-Decrease in parathyroid Klotho and FGFR1c gene expression (Galitzer et al, Kidney Int 
2010; 77: 211-8. Canalejo et al, JASN 2010; 21: 1125-35. Komaba et al, Kidney Int 2010; 77: 
232-8) 
Gene polymorphisms 
-Vitamin-D receptor (VDR) gene polymorphism (Olmos et al, Methods Find Exp Clin 
Pharmacol 1998; 20: 699-707. Fernandez et al, J Am Soc Nephrol 1997; 8: 1546-52. 
Tagliabue et al, Am J Clin Pathol 1999; 112: 366-70) 
Growth factors and cell cycle inhibitors 
-Increased acidic growth factor (aFGF) gene expression (Sakaguchi, J Biol Chem 1992; 267: 
24554-62) 
-Decreased parathyroid hormone-related peptide (PTHrp) gene expression (Matsushita et al, 
Kidney Int 1999; 55: 130-8) 
-De novo transforming growth factor-α (TGF-α) gene expression (Gogusev et al, Nephrol Dial 
Transplant 1996; 11: 2155-62) 
-Induction of TGF-α by high phosphate diet (Dusso et al, Kidney Int 2001; 59: 855-865) 
-Insufficient inhibition of cyclin kinase inhibitor p21WAF1 (Dusso et al, Kidney Int 2001; 59: 
855-65); p21WAF1can be induced by calcitriol (Cozzolino et al, Kidney Int 2001; 60: 2109-
2117) 
-mTOR activation and rpS6 phosphorylation (Volovelsky et al, JASN 2016; 27: 1091–1101) 
Gene mutations: association with monoclonal or multiclonal growth 
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-Mutation of menin gene (Falchetti et al, J Clin Endocrinol Metab 1993; 76: 139-44. Tahara et 
al, J Clin Endocrinol Metab 2000; 85: 4113-7. Imanishi et al, J Am Soc Nephrol 2002;13:1490-
8) 
-Mutation of Ha-ras gene (Inagaki et al, Nephrol Dial Transplant 1998; 13: 350-7) 
-No involvement of VDR or CaSR gene mutations (Degenhardt et al, Kidney Int 1998; 53: 
556-61. Brown et al, J Clin Endocrinol Metab 2000; 85: 868-72) 

 
SECONDARY HYPERPARATHYROIDISM IN CKD 
– MECHANISMS INVOLVED IN THE 
TRANSFORMATION OF POLYCLONAL TO 
MONOCLONAL PARATHYROID GROWTH 
 
In severe forms of secondary hyperparathyroidism 
nodular formations within diffusely hyperplastic tissue 
are a frequent finding (176). This observation probably 
corresponds to the occurrence of a monoclonal type of 
cell proliferation within a given tissue, which initially 
exhibits polyclonal growth. Clonal, benign tumoral 
growth was initially shown by Arnold et al using 
chromosome X-inactivation analysis method (177) 
and subsequently confirmed by other groups 

(178,179).  After the initially diffuse, polyclonal 
hyperplasia, with the progression of CKD towards 
ESKD foci of nodular, monoclonal growth may arise 
within one or several parathyroid glands which 
eventually may transform to diffuse monoclonal 
neoplasia leading to an aspect comparable to that of 
primary parathyroid adenoma. Several different clones 
often coexist in the same patient, and sometimes even 
in a single parathyroid gland. Figure 13 shows the 
progression from polyclonal to monoclonal and/or 
multiclonal parathyroid hyperplasia (180). It also 
shows corresponding changes in ultrasonographic 
features. 

 

 
Figure 13. Schematic representation of the transformation of parathyroid hyperplasia from polyclonal to 
nodular, monoclonal/multiclonal growth with the progression of CKD towards ESKD. After Tominaga et 
al (180). 
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Acquired mutations of tumor enhancer or tumor 
suppressor genes are almost certainly involved in the 
development of such cell clones but precise 
knowledge about acquired genetic abnormalities 
remains limited (178). To identify new locations of 
parathyroid oncogenes or tumor suppressor genes 
important in this disease, Imanishi et al performed 
both comparative genomic hybridization (CGH) and 
genome-wide molecular allelotyping on a large 
number of uremia-associated parathyroid tumors 
(181). One or more chromosomal changes were 
present in 24% of tumors, markedly different from the 
values in common sporadic adenomas (28%), 
whereas no gains or losses were found in 76% of 
tumors. Two recurrent abnormalities were found, 
namely gain of chromosome 7 (9% of tumors) and gain 
of chromosome 12 (11% of tumors).  Losses on 
chromosome 11, the location of the MEN1 tumor 
suppressor gene, occurred in only one uremia-
associated tumor (2%), as compared to 34% in 
adenomas. The additional search for allelic losses with 
polymorphic microsatellite markers led to the 
observation of recurrent allelic loss on 18q (13% of 
informative tumors). Lower frequency loss was 
detected on 7p, 21q, and 22q. Interestingly, the cyclin 
D1 oncogene, activated and overexpressed by clonal 
gene rearrangement or other mechanisms in 20-40% 
of parathyroid adenomas (182,183) has not been 
found to be overexpressed in uremia-associated 
tumors (183). 
 
Another interesting question was if somatic genes 
played a major role in the normal regulation of 
parathyroid function, such as the CaSR and VDR 
genes.  The expression of these two genes was found 
to be decreased in the hyperplastic parathyroid tissue 
of uremic patients (66,94,95). The decrease was 
particularly marked in nodular areas, as compared to 
diffuse areas of parathyroid gland hyperplasia. 
Moreover, in uremic rats the decrease in CaSR 
expression was inversely related to the degree of 
parathyroid cell proliferation (97). However, the search 
for mutations or deletions of the VDR gene or the 

CaSR gene in uremic hyperparathyroidism has 
remained unsuccessful (178,184,185). The question 
remains unsolved whether the downregulation of 
CaSR and VDR expression is a primary event or 
whether it is secondary to hyperplasia. 
 
Whether benign parathyroid tumors may evolve 
towards malignant forms is still subject to debate. 
Since in patients on dialysis therapy parathyroid 
carcinoma is a rare event (186–188), malignant 
transformation of clonal parathyroid neoplasms is 
probably exceptional. 
 
Genome-wide allelotyping and CGH have directly 
confirmed the presence of monoclonal parathyroid 
neoplasms in uremic patients with refractory 
secondary hyperparathyroidism whereas the 
candidate gene approach has led to only modest 
results. Somatic inactivation of the MEN1 gene does 
contribute to the pathogenesis of uremia-associated 
parathyroid tumors, but its role in this disease appears 
to be limited, and there is probably no role for DNA 
changes of the CaSR and VDR genes. Recurrent DNA 
abnormalities suggest the existence of new 
oncogenes on chromosomes 7 and 12, and tumor 
suppressor genes on 18q and 21q, involved in uremic 
hyperparathyroidism. Finally, patterns of somatic DNA 
alterations indicate that markedly different molecular 
pathogenetic pathways exist for clonal outgrowth in 
severe uremic hyperparathyroidism, as compared to 
common sporadic parathyroid adenomas. Our group 
did not find a correlation between the presence of 
microscopically evident nodules and the clonal 
character of resected parathyroid tissue, and 
appearances of several glands with histological 
patterns of diffuse hyperplasia also were 
unequivocally monoclonal in the absence of 
detectable nodular formations, suggesting that the 
current criteria for pathological diagnosis do not reflect 
the genetic differences among these two 
histopathological types (177). 
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Parathyroid Cell Apoptosis 
 
It remains uncertain whether reduced apoptosis rates 
can also contribute to parathyroid tissue hyperplasia 
(68,181,182). One research group examined this 
issue in rats with short-term kidney failure (5 days). 
They were unable to detect apoptosis in hyperplastic 
parathyroid glands (183). However, this failure could 
be due to a lack of sensitivity of the employed 
methods. 
 

Negative findings in rats, with no identifiable apoptotic 
figures at all in parathyroid glands (72,190,191), 
contrast with subsequent positive observations in rats 
by others (192,193) and with personal observations of 
significant apoptotic figures in hyperplastic parathyroid 
glands removed from uremic, severely 
hyperparathyroid patients during surgery (194). In our 
study of human parathyroid glands from patients with 
ESKD approximately ten times higher apoptotic cell 
numbers were observed than in normal parathyroid 
tissue, using TUNEL method (Figure 14) (194). 

 

 
Figure 14. Increased proportion of apoptotic (TUNEL positive) cells in parathyroid glands from patients 
with primary or secondary uremic hyperparathyroidism, as compared to normal parathyroid tissue. After 
Zhang et al (194). 
 
Of note, the uremic state appears to stimulate 
apoptosis in other cell types as well such as circulating 
monocytes (195), possibly via the well-known increase 
of cytosolic Ca2+ which has been observed in a 
variety of cell types in kidney failure (196), and also 
possibly via the noxious effect of bioincompatible 
dialysis membranes used for renal replacement 
therapy (197). The observed enhancement of 
parathyroid tissue apoptosis could compensate, at 
least in part, the increase in parathyroid cell 
proliferation observed in secondary uremic 
hyperparathyroidism. 
 

SECONDARY HYPERPARATHYROIDISM IN CKD 
– REGRESSION OF PARATHYROID  
HYPERPLASIA ? 
 
Whether regression of parathyroid hyperplasia occurs 
in animals or patients with advanced stages of CKD 
remains a matter of debate. According to some 
authors regression must be an extremely slow 
process, if it occurs at all (75,190). This is in sharp 
contrast to the rapid reversibility of excessive PTH 
secretion in uremic rats which was observed after 
normalization of renal function by kidney 
transplantation (198), although parathyroid mass 
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probably did not rapidly decrease in this acute 
experimental model. 
 
The issue of regression is of clinical importance. As an 
example, if a  patient on dialysis therapy has a 
dramatic increase in total parathyroid mass there is 
practically no chance to obtain gland mass regression 
after a successful kidney  transplantation. In this 
condition it would seem appropriate to perform a 
surgical parathyroidectomy prior to transplantation. If 
however significant regression of hyperplasia can 
occur as an active or passive process, namely by 
enhanced apoptosis or reduced proliferation, 
prophylactic surgery could be avoided. That 
regression of parathyroid hyperplasia secondary to 
vitamin D deficiency can occur has been convincingly 
demonstrated many years ago in experiments done in 
chicks (199). The administration of cholecalciferol to 
these birds that had developed an increase in 
parathyroid gland mass when fed a rachitogenic, 
vitamin D-free diet for 8-10 weeks led to a significant 
(50%) reduction in gland weight. Calcitriol failed to 
achieve the same effect at low, albeit hypercalcemic, 
dose but was capable of reducing gland mass at 
higher dose. However, in an experimental dog model 
no parathyroid mass regression was found when the 
animals were first submitted to a low-calcium, low-
sodium and vitamin D deficient diet for two years and 
subsequently to a normal diet for another 17 months 
(200). In uremic animals, evidence for or against the 
possibility of regression of increased parathyroid 
tissue mass remains sparse and inconclusive. 
 
The calcimimetic drug NPS R-568 was shown to 
decrease parathyroid cell proliferation and to prevent 
parathyroid hyperplasia in 5/6th nephrectomized rats; 
however, it was unable to entirely revert established 
hyperplasia (191,201). In apparent contrast, Miller et 
al showed that in rats with established secondary 
hyperparathyroidism cinacalcet administration led to 
complete regression of parathyroid hyperplasia (202). 
The cinacalcet-mediated decrease in parathyroid 
gland size was accompanied by increased expression 
of the cyclin-dependent kinase inhibitor p21. However, 

these were short-term experiments over an 11-week 
time period. Interestingly, the prevention of cellular 
proliferation with cinacalcet occurred despite 
increased phosphorus and decreased calcium serum 
levels. 
 
In patients with primary hyperparathyroidism 
spontaneous remission of overfunctioning parathyroid 
glands has been observed in rare instances, caused 
by parathyroid “ apoplexy ” due to tissue necrosis 
(203). The diagnosis of parathyroid tissue necrosis is 
more difficult to ascertain in secondary than in primary 
forms of hyperparathyroidism because the hyperplasia 
of the former is not limited to a single gland. 
 
Regression of parathyroid hyperplasia in patients on 
hemodialysis in response to intravenous calcitriol 
pulse therapy for 12 weeks has been reported by 
Fukagawa et al using ultrasonography (204). These 
authors observed a significant decrease in mean 
gland volume from 0.87 to 0.51 cm3 over this time 
period, together with a reduction in serum iPTH of 
more than 50%. In contrast, Quarles et al who also 
examined parathyroid gland morphology in patients on 
hemodialysis in vivo in response to intermittent 
intravenous or oral calcitriol treatment for 36 weeks 
failed to observe a decrease in parathyroid gland size 
as assessed by high resolution ultrasound and/or 
magnetic resonance imaging (205). Mean gland size 
was 1.9 and 2.1 cm3 before and 3.3 and 2.3 cm3 after 
oral and intravenous calcitriol therapy, respectively. 
The authors achieved a maximum average serum 
PTH reduction of 43% over this time period. There 
were marked differences between these two studies, 
which may explain the apparently diverging results. 
Hyperparathyroidism probably was more severe in the 
latter than in the former. Although initial mean serum 
iPTH levels were similar, serum phosphorus was 
higher and the decrease in serum PTH achieved in 
response to calcitriol was less marked in the latter. 
Moreover, parathyroid mass was more than double. In 
another study, Fukagawa et al examined the possible 
relation between parathyroid size and the long-term 
outcome after calcitriol pulse therapy, by subdividing 
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patients into different groups according to initial 
parathyroid gland volume assessments (206). In two 
patients on hemodialysis with detectable gland(s), in 
whom the size of all parathyroid glands as well as PTH 
hypersecretion regressed to normal, secondary 
hyperparathyroidism remained controllable for at least 
12 months after switching to conventional oral active 
vitamin D therapy. In contrast, in seven patients on 
hemodialysis in whom the size of all parathyroid 
glands did not regress to normal by calcitriol pulse 
therapy, secondary hyperparathyroidism relapsed 
after switching to conventional therapy although PTH 
hypersecretion could be controlled temporarily. 
Similarly, Okuno et al. showed in a study in patients 
on hemodialysis that plasma PTH levels and the 
number of detectable parathyroid glands decreased in 
response to the active vitamin D derivative 
maxacalcitol (22-oxacalcitriol) given for 24 weeks only 
when the mean value of the maximum diameter of the 
parathyroid glands was less than 11.0 mm, but not 
when it was above that value (207). 
 
Taken together, these findings suggest that the 
degree of parathyroid hyperplasia, as detected by 
ultrasonography, is an important determinant for 
regression in response to calcitriol therapy. It is 
probable, although not proven, that the type of 
hyperplasia, namely monoclonal/multiclonal vs 
polyclonal growth, is even more important as regards 
the potential of regression than the mere size of each 
gland. 
 
Figure 2 (see above) summarizes in a schematic view 
the main mechanisms involved in abnormal PTH 
synthesis and secretion and in parathyroid tissue 
hyperplasia. It further points to the possible 
counterregulatory role of apoptosis. 
 
Altered PTH Metabolism and Resistance to PTH 
Action 
 
PTH metabolism is greatly disturbed in CKD. 
Normally, most of full-length PTH1-84 is transformed 
in the liver to the biologically active N-terminal PTH1-

34 fragment and several other, inactive C-terminal 
fragments. The latter are mainly catabolized in the 
kidney and the degradation process involves solely 
glomerular filtration and tubular reabsorption, whereas 
the N-terminal PTH1-34 fragment undergoes both 
tubular reabsorption and peritubular uptake, as does 
the full-length PTH1-84 molecule (208). Tubular 
reabsorption involves the multifunctional receptor 
megalin (209). 
 
With the progression of CKD, both pathways of renal 
PTH degradation are progressively impaired. This 
leads to a marked prolongation of the half-life of C-
terminal PTH fragments in the circulation (210–212) 
and their accumulation in the extracellular space. 
Moreover, there is no peritubular metabolism of PTH1-
84 in uremic non-filtering kidneys, in contrast to 
peritubular uptake by normal, filtering kidneys (213). 
Hepatic PTH catabolism appears however to be 
unchanged in CKD since uremic livers and control 
livers released equal amounts of immunoreactive C-
terminal PTH fragments (213). 
 
A decreased response to the action of PTH may be 
another factor involved in the stimulation of the 
parathyroid glands in CKD. A diminished calcemic 
response to the infusion of PTH has long been 
reported, suggesting that PTH oversecretion was 
necessary to maintain eucalcemia. The skeletal 
resistance to PTH has been attributed to various 
mechanisms, including impaired vitamin D action in 
association with hyperphosphatemia, overestimation 
of true PTH(1-84) by assays measuring iPTH (see 
below), accumulation of inhibitory PTH fragments, 
oxidative modification of PTH, increase in circulating 
osteoprotegerin and sclerostin levels, administration 
of active vitamin D derivatives and calcimimetics, and 
altered PTH-R1 expression (7,149,214,215). 
Concerning the latter mechanism, studies have 
suggested the presence of PTH receptor isoforms in 
various organs of normal rats. Downregulation of PTH-
R1 mRNA has been observed in various tissues of 
uremic rats (216–219) and also in osteoblasts of 
patients with end-stage renal disease (220). However, 
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the issue of PTH-R1 expression in bone tissue 
remains a matter of controversy since one group found 
it to be upregulated in patients with moderate to severe 
renal hyperparathyroid bone disease (221). A recent 
study claimed that the inhibition of PTH binding to 
PTH-R1 by soluble Klotho could represent yet another 
mechanism of PTH resistance (222). This observation 
would be compatible with the presence of an 
upregulated, yet biologically inactive PTH-R1.  
 
Other mechanisms involved in the control of the 
normal balance between bone formation and 
resorption and their response to PTH are the Wnt-β-
catenin signaling pathway and its inhibition by 
sclerostin and Dickkopf-related protein 1 (Dkk1) 
(7,58,223), and the activin A pathway with its inhibition 
by a decoy receptor (224). Wnt-β-catenin inhibitors  
are expressed predominantly in osteocytes. Whereas 
reduced activity of sclerostin and Dkk1 leads to 
increased bone mass and strength, the opposite 
occurs with overexpression of both sclerostin and 
Dkk1 in animal models. In CKD, circulating levels of 
both Wnt-β-catenin inhibitors have generally been 
found to be increased (56), and serum sclerostin was 
found to correlate negatively with serum PTH 
(225,226), and PTH has been shown to blunt 
osteocytic production of this Wnt inhibitor (227). Since 
high PTH and sclerostin levels coexist in CKD this 
raises the suspicion that sclerostin contributes to PTH 
resistance in CKD (7). Calcitonin and bone 
morphogenetic proteins stimulate, whereas PTH and 
estrogens suppress the expression of sclerostin 
and/or Dkk1 (228,229). Bone formation induced by 
intermittent PTH administration to patients with 
osteoporosis could be explained, at least in part, by 
the ability of PTH to downregulate sclerostin 

expression in osteocytes, permitting the anabolic Wnt 
signaling pathway to proceed (230). In patients with 
ESKD sclerostin is a strong predictor of bone turnover 
and osteoblast number (231). Serum levels of 
sclerostin correlate negatively with serum iPTH in 
such patients. Sclerostin was superior to iPTH for the 
positive prediction of high bone turnover and number 
of osteoblasts. In contrast, iPTH was superior to 
sclerostin for the negative prediction of high bone 
turnover and had similar predictive values as 
sclerostin for the number of osteoblasts. Serum 
sclerostin levels increase after parathyroidectomy (7). 
As regards activin A, a member of the transforming 
growth factor-b superfamily, Hruska’s group has 
demonstrated increased serum levels and systemic 
activation of its receptors in mouse models of CKD 
(224). In humans, serum activin A levels increase 
already at early stages of CKD, before elevations in 
intact PTH and FGF23, supporting its role in CKD-
MBD and PTH resistance (232).   
 
Interesting new pathways have recently been 
identified by Pacifici’s group. First, they used various 
mouse models to demonstrate a permissive activity of 
butyrate produced by the gut microbiota, required to 
allow stimulation of bone formation by PTH (233). 
Butyrate’s effect was mediated by short-chain fatty 
acid receptor GPR43 signaling in dendritic cells and 
by GPR43-independent signaling in T cells. Second, 
the group showed that intestinal segmented 
filamentous bacteria (SFB) enabled PTH to expand 
intestinal TNF+ T and Th17 cells and thereby increase 
their egress from the intestine and recruitment to the 
bone marrow to cause bone loss (234). Figure 15 
shows these recently detected pathways involving the 
gut microbiota. 
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Figure 15.  Importance of intestinal microbiota for PTH action in bone. The stimulation of bone anabolism 
by PTH requires butyrate formation by short chain fatty acid (SCFA) producing gut bacteria. CKD 
probably reduces its production. Butyrate increases the frequency of regulatory T (Treg) cells in the 
intestine and in the bone marrow and potentiates the capacity of intermittently administered PTH to 
induce the differentiation of naïve CD4+ T cells into Tregs, a population of T cells which induces 
conventional CD8+ T cells to release Wnt10b. This osteogenic Wnt ligand activates Wnt signaling in 
osteoblastic cells and stimulates bone formation. Butyrate enables intermittent PTH dosing to expand 
Tregs via GPR43 signaling in dendritic cells (DCs) and GPR43 independent targeting of T cells. Butyrate 
may also affect bone remodeling by modulating osteoclast genes. The stimulation of bone resorption by 
PTH requires the presence of segmented filamentous bacteria (SFB) within gut microbiota for the 
production of Th17 cells in intestinal Peyers' plaques. Continuously elevated PTH levels lead to TNF+ T 
cell expansion in the gut and the bone marrow via a microbiota-dependent, but SFB independent 
mechanism. Furthermore, intestinal TNF producing T cells are required for PTH to increase the number 
of intestinal Th17 cells, and TNF mediates the migration of intestinal Th17 cells to the bone marrow. This 
migration depends on the upregulation of chemokine receptor CXCR3 and chemokine CCL20. Bone 
marrow Th17 cells then induce osteoclastogenesis by secreting IL-17A, RANKL, TNF, IL-1, and IL-6. From 
Massy & Drueke (235). 
 
It will be interesting to examine the hypotheses that 
the excessive bone resorption associated with 
secondary hyperparathyroidism in CKD is at least 
partially due to either insufficient intestinal butyrate 
availability, excessive intestinal SFB activity, or both 
(235).  
 

Finally, the analysis of cohort studies performed in 
diverse populations point towards differences in 
mineral metabolism control, rather than genetic or 
environmental factors, as the main drivers of the 
variability of PTH responsiveness (236). 
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SECONDARY HYPERPARATHYROIDISM IN CKD 
– CLINICAL FEATURES 
 
In most patients with ESKD, advanced secondary 
hyperparathyroidism remains a clinically silent 
disease. Clinical manifestations are generally related 
to severe osteitis fibrosa and to the consequences of 
hypercalcemia and/or hyperphosphatemia. 
 
Osteoarticular pain may be present. When patients 
become symptomatic, they usually complain of pain 
on exertion in skeletal sites that are subjected to 
biomechanical stress. Pain at rest and localized pain 
are rather unusual and suggest other underlying 
causes. Severe proximal myopathy is seen in some 
patients, even in the absence of vitamin D deficiency. 
These symptoms and signs are more frequent in 
patients who suffer from mixed renal osteodystrophy, 
resulting from a combination of parathyroid 
overfunction and vitamin D deficiency. Skeletal 
fractures may occur after only minor injury. They may 
also develop on the ground of cystic bone lesions, the 
so-called “brown tumors”, which occur for still 
unknown reasons in a small number of uremic patients 
with secondary hyperparathyroidism. Rupture of the 
patella or avulsion of tendons may be seen in 
advanced cases. The relation between serum PTH 
levels and fracture risk of patients on dialysis has been 
examined in several observational studies, reporting 
either a linear or U-shaped relation, increased fracture 
risk with low PTH levels, or no relation at all. A new 
recent observational study from Japan in more than 
180,000 patients on hemodialysis therapy showed a 
linear relationship, with a graded reduction towards 
lower PTH levels (237). The absolute risk difference 
associated with higher PTH levels was more 
pronounced in older individuals, female patients, and 
those with lower body mass index. 
 
Uremic pruritus is most often associated with an 
elevated Ca x P product although other factors may 
also be involved. Related symptoms and signs are the 
red eye syndrome due to the deposition of calcium in 
the conjunctiva, cutaneous calcification, and 

pseudogout. The latter is a form of painful arthralgia of 
acute or subacute onset caused by intra-articular 
deposition of radio-opaque crystals composed of 
calcium pyrophosphate dehydrate. 
 
The syndrome of “ calciphylaxis ” is an infrequent 
manifestation of cutaneous and vascular calcification 
in uremic patients which may occur in association with 
secondary hyperparathyroidism, although this 
association is by no means constant. It is 
characterized by rapidly progressive skin necrosis 
involving buttocks and the legs, particularly the thighs. 
It can produce gangrene and may be fatal. It occurs as 
the result of arteriolar calcification and has also been 
termed “calcific uremic arteriolopathy” to reflect more 
accurately the nature of the lesion (238). Of interest, a 
post-hoc analysis of the EVOLVE trial in patients on 
hemodialysis recently showed that cinacalcet 
administration, which allows improved PTH control, 
resulted in a significant decrease in the incidence of 
calcific uremic arteriolopathy as compared to placebo 
(239). 
 
SECONDARY HYPERPARATHYROIDISM IN CKD -
- DIAGNOSIS 
 
The biochemical diagnosis relies on the determination 
of plasma iPTH. This is also true for primary 
hyperparathyroidism. In patients with CKD, there are 
several limitations to its measurement, in addition to 
the usual day-to-day variations in healthy people 
(240). Physiological iPTH plasma values are not 
"normal" for uremic patients since values in the normal 
range are often associated with low bone turnover 
(adynamic bone disease) whereas normal bone 
turnover may be observed in presence of elevated 
plasma intact PTH levels (241–244). It is currently 
unclear to what extent this is due to imperfections in 
the PTH assays used (see below), PTH receptor 
status, post-receptor events, non-PTH-mediated 
changes in bone metabolism (e.g. supply of vitamin D 
or its metabolites, supply of estrogens or androgens), 
or a combination of these factors. 
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The accumulation of a large non (1-84) molecular form 
of PTH, which is detected by iPTH (so-called "intact" 
PTH) assays, has been described in patients with 
CKD (245). The large PTH fragment was tentatively 
identified as hPTH(7-84) (246). This finding is of 
importance in the interpretation of PTH values, since 
true hPTH(1-84) represents only about 50-60% of the 
levels detected by current iPTH assays, and since 
PTH(7-84) antagonizes PTH(1-84) effects on serum 
calcium and on osteoblasts (247). Moreover, the 
secretory responses of hPTH(1-84) and non-hPTH(1-
84) to changes in [Ca2+e] are not proportional for 
these two PTH moieties (87), and a large variability 
has been found between different assay methods 
used for plasma PTH measurement in patients with 
CKD, recognizing PTH(7-84) with various cross-
reactivities (248). Varying plasma sampling and 
storage conditions may further complicate the 
interpretation of PTH results provided by clinical 
laboratories (249). The development of assays which 
detect full-length (whole) human PTH, but not amino-
terminally truncated fragments (250), was initially 
considered as major progress in this field. To further 
improve the assessment of uremic 
hyperparathyroidism and the associated increase in 
bone turnover Monier-Faugere et al proposed to 
calculate the ratio of PTH-(1-84) to large c-terminal 
PTH fragments (251). The usefulness in the clinical 
setting of the whole PTH assay and of the ratio of 
whole PTH to PTH fragments has however not been 
convincingly established for the diagnosis of 
parathyroid overfunction in adult (252,253) or pediatric 
(254) patients on dialysis. From a practical point of 
view, it must be pointed out that at present the 
measurement of PTH with third-generation assays is 
not widely available. Another potential issue is the 
presence of oxidized, inactive PTH in the circulation of 
patients with CKD, its concentrations being much 
higher than those of iPTH (149), although with large 
interindividual variations (149). Whereas one study 
showed a U-shaped association of non-oxidized, but 
not oxidized, PTH with survival in patients on 
hemodialysis therapy (255), a subsequent study done 
in CKD stage 2-4 patients found iPTH, but not non-

oxidized PTH, to be associated with all-cause death in 
multivariable analysis (256). The reason for these 
apparently opposite findings is unclear. The assertion 
that PTH oxidation is an vitro artifact has been 
disproved recently (257). Based on personal findings, 
Hocher and Zeng postulated that oxidized and non-
oxidized PTH should be measured separately to 
correctly evaluate the degree of severity and clinical 
relevance of parathyroid overfunction in CKD (150). 
However, in a subsequent study Ursem et al observed 
a strong correlation between serum non-oxidized PTH 
and total PTH in patients with ESKD (258). Most 
importantly, they found that both histomorphometric 
and circulating bone turnover markers exhibited 
similar correlations with non-oxidized PTH and total 
PTH. The authors therefore concluded that non-
oxidized PTH is not superior to total PTH as a 
biomarker of bone turnover in ESKD. However, 
presently available methods do not enable a precise 
distinction between biologically active and inactive 
PTH forms, be it through oxidative or other post-
translational modifications of the hormone (259). A 
recent study has shown that it is now feasible to 
standardize all PTH assays by recalibrating PTH 
immunoassays using liquid chromatography coupled 
with mass spectrometry as the reference method, 
regardless of the assay methodology (second or third 
generation immunoassay) (260). The proposed 
approach may pave the way for accurate interpretation 
of PTH in clinical practice (261,262). 
 
Most importantly, we will hopefully be able in the future 
to rely not only on serum PTH but also on appropriate 
direct markers of bone structure and function for the 
assessment of renal osteodystrophy and on markers 
of cardiovascular disease related to secondary 
hyperparathyroidism (263). 
 
Bone x-ray diagnosis is impossible in mild to moderate 
forms of secondary hyperparathyroidism, but relatively 
easy in severe forms. Nevertheless, to date x-ray 
diagnosis is rarely used in routine clinical praxis. 
Typical lesions include resorptive defects on the 
external and internal surfaces of cortical bone, with the 
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resorption particularly pronounced on the 
subperiosteal surface. Resorption within cortical bone 
enlarges the Haversian channels, resulting in 
longitudinal striation; resorption at the endosteal 
surface causes cortical thinning. These lesions can be 
generally detected first in the hand skeleton, most 
characteristically at the periosteal surface of the 
middle phalanges (Figure 16). 
 
Accelerated bone deposition at this site (periosteal 
neostosis) can also be seen. Another characteristic 
feature is resorptive loss of acral bone (acro-

osteolysis), in particular at the terminal phalanges, at 
the distal end of the clavicles, and in the skull (‘pepper-
pot’ aspect) (Figure 17). Whereas cortical bone is 
progressively thinning, the mass of spongy bone tends 
to increase, particularly in the metaphyses. The latter 
phenomenon results in a characteristic sclerotic 
aspect of the upper and lower thirds of the vertebrae, 
contrasting with rarefaction of the vertebral center 
(‘rugger jersey spine’). Osteosclerosis is also 
commonly seen in radiographs of the metaphyses of 
the radius and tibia. 

 

 
Figure 16. Periosteal resorption and small vessel calcification in severe secondary uremic 
hyperparathyroidism. (a) X-ray aspect of periosteal resorption within cortical bone of middle phalanges 
of the hand, indicative of osteitis fibrosa, and extensive finger artery calcification in a CKD stage 5 patient 
with severe secondary hyperparathyroidism. (b) Aspect one year after surgical parathyroidectomy: 
complete bone lesion healing and disappearance of arterial calcification. 
 

http://www.endotext.org/


 
 

 
www.EndoText.org 34 

 
Figure 17. X-ray pepper-and-salt aspect of the skull in a patient on long-term hemodialysis with severe 
secondary hyperparathyroidism. 
 
In addition to the skeletal lesions, radiographs often 
reveal various types of soft tissue calcification. These 
comprise vascular calcifications, i.e. calcification of 

intimal plaques (aorta, iliac arteries) (Figure 18a), as 
well as diffuse calcification (Mönckeberg type) of the 
media of peripheral muscular arteries (Figure 18b). 

 

 
Figure 18. Massive intima (a) and media (b) calcification of hypogastric artery in a patient on long-term 
hemodialysis. From Amann (264). 
 
Of interest, media calcification of digital arteries can 
entirely regress after surgical parathyroidectomy 
(Figure 16). Calcium deposits may also be seen in 

periarticular tissue or bursas and may exhibit tumor-
like features (Figure 19). 
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Figure 19. X-ray feature of a tumor-like periarticular calcification in the shoulder of a chronic 
hemodialysis patient with adynamic bone disease due to aluminum intoxication. 
 
Since the development of electron-beam computed 
tomography (EBCT) and multiple slice computed 
tomography (MSCT), more reliable means have 
become available to assess quantitatively vascular 
calcification and its progression in uremic patients 
(265). However, these techniques are not universally 
available and costly. Moreover, they do not allow a 
distinction between arterial intima and media 
calcifications. Such a distinction can be obtained by 
radiograms of the pelvis and the thigh, combined with 
ultrasonography of the common carotid artery. Using 
these simple methods, London et al could show that 
patients on hemodialysis with arterial media 
calcification had a longer survival than hemodialysis 
patients with arterial intima calcification, but in turn 
their survival was significantly shorter than that of 
patients on hemodialysis without calcifications (266). 
Of note, both severe hyperparathyroidism and marked 
hypoparathyroidism favor the occurrence of the two 
types of calcifications in such patients (267–269). In 
contrast to permanently elevated serum PTH levels, 
the intermittent administration of PTH1-34 has been 

shown to decrease arterial calcification in uremic rats 
(270) and in diabetic mice with LDL receptor deletion 
(271). This observation tends to demonstrate that 
normal parathyroid function is required not only for the 
maintenance of optimal bone structure and function, 
but also as an efficacious defense against soft tissue 
calcification, and that intermittent PTH administration 
may not only improve osteoporosis (272), but also 
reduce vascular calcification, at least in experimental 
animals. 
 
SECONDARY HYPERPARATHYROIDISM IN CKD 
– TREATMENT 
 
Medical Management 
 
Presently available options of medical treatment 
should take into account plasma biochemistry and x-
ray findings, and if available also the dimensions of the 
largest parathyroid glands, as assessed by 
ultrasonography. A gland diameter of 5-10 mm or 
more is considered as being indicative of autonomous 
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growth, which often is resistant to medical treatment 
(206). 
 
Schematically, there are five major medical treatment 
options which can be combined in some cases, but not 
in others, namely the restriction of phosphate intake 
and/or the administration of calcium supplements, oral 
phosphate binders, vitamin D derivatives, and 
calcimimetics (273,274). In patients on dialysis the 
weekly dose of renal replacement therapy is an 
additional important factor. An optimal dialysis 
technique allows controlling hyperphosphatemia and 
providing enough calcium to avoid PTH stimulation by 
hypocalcemia during dialysis sessions. 
 
To control hyperparathyroidism, it is important to avoid 
both hypocalcemia and hypercalcemia, and to reduce 
or correct hyperphosphatemia. In patients with 
controlled plasma phosphate, this can be achieved by 
giving either calcitriol or one of its synthetic analogs, 
or by administering oral calcium supplements. For a 
long time, calcitriol or alfacalcidol was the preferred 
therapy in uremic patients with high to very high 
plasma intact PTH values and normal to moderately 
elevated plasma calcium levels, when plasma 
phosphate did not exceed recommended levels, 
namely 1.5 mmol/L for CKD stages 3-4 and 1.8 
mmol/L for CKD stage 5, according to the K/DOQI 
guidelines of 2003 (275). However, the administration 
of active vitamin D derivatives often induces 
hypercalcemia and/or hyperphosphatemia. The 
KDIGO CKD-MBD guideline of 2009 (276) and its 
subsequent updates in 2017/2018 and 2025 (277-279) 
suggest maintaining iPTH levels in CKD stage 5D 
patients (i.e. patients receiving dialysis therapy) in the 
range of approximately two to nine times the upper 
normal limit for the assay, to keep serum calcium 
normal, and to decrease serum phosphorus towards 
the normal range. Uncertainty prevails regarding ideal 
PTH and phosphorus targets in patients with CKD 
stages G3-G5 and those on dialysis therapy. Marked 
changes in iPTH levels in either direction within the 
newly defined, broadened range should prompt 
initiation or change in therapy to avoid progression to 

levels outside of this range. Patients with CKD stages 
G3a-G5 not on dialysis whose levels of intact PTH are 
progressively rising or persistently above the upper 
normal limit for the assay should be evaluated for 
modifiable factors, including hyperphosphatemia, 
hypocalcemia, high phosphate intake, and vitamin D 
deficiency. 
 
Vitamin D and Active Vitamin D Derivatives  
 
A satisfactory degree of vitamin D repletion should 
probably be aimed at in case of vitamin D deficiency, 
knowing that the majority of patients with CKD have at 
least some degree of vitamin D deficiency (53,280). 
Relative vitamin D depletion has been shown to be an 
independent risk factor for secondary 
hyperparathyroidism in patients on hemodialysis (56). 
Repletion with native vitamin D may lead to improved 
control of secondary hyperparathyroidism in patients 
not yet on dialysis (281) and in those treated by 
dialysis (282) but no beneficial effect has been 
observed in a subsequent meta-analysis (283). 
Vitamin D repletion may allow optimal bone formation, 
help to avoid osteomalacia, and exert numerous other 
positive effects due to the pleiotropic actions of vitamin 
D, but most of these presumably positive actions 
remain a matter of debate (283,282). Most importantly, 
randomized controlled trials with native vitamin D or 
calcidiol have not been performed so far to evaluate 
hard clinical outcomes of patients with CKD. 
 
As regards the administration of active vitamin D 
sterols during the course of CKD, the updated KDIGO 
guidelines suggest that calcitriol and vitamin D 
analogues not be routinely used in patients with CKD 
G3a-G5. They further state that it is reasonable to 
reserve the use of these agents for patients with CKD 
G4-G5 having severe and progressive 
hyperparathyroidism (277-278). 
 
To correct secondary hyperparathyroidism of 
moderate to severe degree the oral administration of 
active vitamin D derivatives is generally more efficient 
than that of native vitamin D. In patients on 
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hemodialysis, calcitriol or its analogs can be given 
either orally or intravenously. The oral administration 
can be on a daily basis (for instance 0.125 to 0.5 µg of 
calcitriol) or as intermittent bolus ingestions (for 
instance 0.5 to 2.0 µg of calcitriol for each dose) 
whereas the intravenous administration is always 
intermittent (0.5 to 2.0 µg of calcitriol or more per 
injection). The route and mode of administration of 
calcitriol or alfacalcidol probably play only a minor role. 
Since the highly active 1α-hydroxylated vitamin D 
derivatives can easily induce hypercalcemia, intensive 
research has focused on the development of various 
non-hypercalcemic analogs, including the natural 
vitamin D compound 24,25(OH)2 vitamin D3, 22-oxa-
calcitriol (maxacalcitol), 19-nor-1,25(OH)2 vitamin D3 
(paricalcitol), and 1α-(OH) vitamin D2 (hectorol). 
Despite numerous studies done in many patients none 
of them has been shown to be entirely devoid of 
inducing increases in plasma calcium or phosphate, 
and none has been demonstrated so far to be superior 
to calcitriol or alfacalcidol in controlling secondary 
hyperparathyroidism in the long run (285,286). An 
observational study by Teng et al. showed that 
paricalcitol administration to a large cohort of patients 
on hemodialysis conferred a remarkable (16%) 
survival advantage over the administration of calcitriol 
(287). Numerous subsequent observational studies 
reported a survival benefit, either comparing treatment 

with active vitamin D derivatives to no treatment, or 
novel active vitamin D derivatives to calcitriol in CKD 
patients not yet on dialysis (288) or those receiving 
dialysis treatment (289–291). Another observational 
study conducted in patients on hemodialysis, 
however, did not find a survival advantage with 
paricalcitol, as compared to calcitriol (292). In the 
absence of randomized controlled trials, it is 
impossible to conclude that paricalcitol treatment is 
superior to calcitriol or alfacalcidol in terms of patient 
survival. Findings of observational studies can only be 
considered as hypothesis-generating. They need to be 
confirmed by a properly designed prospective 
investigation (293). 
 
Calcimimetics 
 
The introduction of the calcimimetic cinacalcet into 
clinical practice led to a change in the above treatment 
strategy since it enables controlling 
hyperparathyroidism without increasing plasma 
calcium or phosphorus. Calcimimetics modify the 
configuration of the CaSR, a receptor cloned by Brown 
et al in 1993 (294). They make the CaSR more 
sensitive to [Ca2+e], in contrast to the so-called 
calcilytics which decrease its sensitivity, as 
schematically shown in Figure 20. 
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Figure 20. Schematic representation of the modulation of the calcium-sensing receptor (CaSR) by 
calcimimetics and calcilytics. CaSR is expressed on the cell membrane. Calcimimetics increase its 
sensitivity to calcium ions whereas calcilytics decrease it. 
 
Initial acute studies in patients on intermittent 
hemodialysis showed that the calcimimetic cinacalcet 
was capable of reducing plasma PTH within hours, 
immediately followed by a rapid decrease in plasma 
calcium and a minor decrease in plasma phosphate 
(295–297). In addition, calcimimetics can also reduce 
parathyroid cell proliferation. Both short-term and 
long-term studies performed in rats and mice with 
CKD showed that the administration of the 
calcimimetic NPS R-568, starting at the time of CKD 
induction, prevented parathyroid hyperplasia 
(191,201,298). This effect is probably due to a direct 
inhibitory action on the parathyroid cell, as shown by 
our group in an experimental study in which we 
exposed human uremic parathyroid cells to the 
calcimimetic NPS-R467 (79). An interesting finding of 
a yet unexplained mechanism and significance is the 
observation that calcimimetic treatment led to an 
approximately 5-fold increase in the proportion of 
oxyphil cells, as compared to chief cells, in parathyroid 

glands removed from CKD patients with refractory 
hyperparathyroidism  (299-301). Of note, oxyphil cells 
also exhibited higher CaSR expression than chief cells 
in such glands (302). 
 
Perhaps more important from a clinical point of view, 
the administration of calcimimetics enabled an 
improvement of osteitis fibrosa (107), halted the 
progression of vascular calcification both in uremic 
animals (298,303) and probably also in patients 
undergoing dialysis (304), prevented vascular 
remodeling (305), improved cardiac structure and 
function (306), and prolonged survival (307) in uremic 
animals with secondary hyperparathyroidism. 
 
The long-term administration of cinacalcet to patients 
on hemodialysis proved to be superior to « optimal » 
standard therapy in controlling secondary uremic 
hyperparathyroidism, in that it was able to induce not 
only a decrease in plasma PTH but also in plasma 
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calcium and phosphate (308-311). Figure 21 shows 
the superior control of severe secondary 
hyperparathyroidism by cinacalcet as compared to 
placebo treatment with standard of care (312). The 
initial daily dose is 30 mg orally, which can be 
increased up to 180 mg if necessary. Cinacalcet is 
generally well tolerated, with the exception of 
gastrointestinal side effects, which however cease in 
the majority of patients with time. Since its 
administration generally leads to a decrease in serum 

calcium, a close follow-up is required, at least initially, 
to avoid severe hypocalcemia with possible adverse 
clinical consequences. Cinacalcet can be associated 
with calcium-containing and non-calcium containing 
phosphate binders and also with vitamin D derivatives. 
For PTH lowering a combination therapy may lead to 
more complete correction than single drug treatment 
because of less side-effects and greater efficacy in the 
control of hyperparathyroidism (313,314). 

 

 
Figure 21. Effect of cinacalcet on need of parathyroidectomy in patients on hemodialysis therapy. In the 
EVOLVE trial, parathyroidectomy was performed in 140 (7%) cinacalcet-treated and 278 (14%) placebo-
treated patients. Key independent predictors of parathyroidectomy included younger age, female sex, 
geographic region and absence of history of peripheral vascular disease. One hundred and forty-three 
(7%) cinacalcet-treated and 304 (16%) placebo-treated patients met the biochemical definition of severe, 
unremitting (« tertiary ») hyperparathyroidism. Considering the pre-specified biochemical composite or 
surgical parathyroidectomy as an endpoint, 240 (12%) cinacalcet-treated and 470 (24%) placebo-treated 
patients developed severe, unremitting hyperparathyroidism (312). 
 
The subsequent development of an intravenously 
active calcimetic led to another series of clinical 
studies aimed at controlling secondary 
hyperparathyroidism in patients on hemodialysis with 
an easy access to parenteral drug administration, 
thereby reducing oral pill overload. Two randomized 
controlled trials were conducted in such patients with 
moderate to severe secondary hyperparathyroidism, 
evaluating the efficacy and safety of the intravenous 

calcimimetic, etelcalcetide as compared to placebo 
(315). Thrice weekly administration of active drug after 
hemodialysis led to a greater than 30% reduction in 
serum PTH compared with less than 8.9% of patients 
receiving placebo. The reduction in PTH was rapid 
and sustained over 26 weeks. Treatment with 
etelcalcetide lowered serum calcium in the majority of 
patients, with overt symptomatic hypocalcemia 
reported in 7%. Adverse events occurred in 92% of 
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etelcalcetide-treated and 80% of placebo-treated 
patients. Nausea, vomiting, and diarrhea were more 
common in etelcalcetide-treated patients, as were 
symptoms potentially related to hypocalcemia. A 
subsequent double-blind, double-dummy randomized 
controlled trial compared intravenous etelcalcetide to 
oral cinacalcet in patients on hemodialysis with 
moderate to severe secondary hyperparathyroidism 
(316). It showed that the use of etelcalcetide was not 
inferior to cinacalcet in reducing serum PTH 
concentrations over 26 weeks. In addition, 
etelcalcetide met several superiority criteria, including 
a greater reduction in serum PTH concentrations from 
baseline, and more potent reductions in serum 
concentrations of FGF23 and two markers of high-
turnover bone disease. 
 
How about hard patient outcomes? The randomized 
controlled trial EVOLVE examined the question 

whether better control of secondary uremic 
hyperparathyroidism by cinacalcet, as compared to 
placebo treatment with standard of care, reduced the 
incidence of cardiovascular events and mortality 
(312). The study enrolled 3803 patients receiving long-
term hemodialysis therapy. Using intention-to-treat 
analysis the study outcome was negative (Figure 22, 
upper part). However, after adjustment for age and 
other confounders, and also when using lag-censoring 
analysis (Figure 22, lower part), there was a nominally 
significant reduction in the primary cardiovascular 
endpoint including mortality in the cinacalcet treatment 
group in whom serum PTH, calcium, and phosphate 
were better controlled than in the placebo treatment 
group. Moreover, a post-hoc lag-censoring analysis of 
EVOLVE further showed that the incidence of clinically 
ascertained fractures was lower in the cinacalcet than 
the placebo arm (317). 
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Figure 22. Effect of cinacalcet on cardiovascular outcomes of patients on hemodialysis therapy. The 
randomized controlled trial EVOLVE examined the question of whether a better control of secondary 
uremic hyperparathyroidism by cinacalcet, as compared to placebo treatment with standard of care, 
reduced the incidence of cardiovascular events and mortality. The study enrolled 3803 patients receiving 
long-term hemodialysis therapy. Using intention-to-treat analysis the study outcome was negative 
(upper part of Figure). However, with lag-censoring analysis there was a nominally significant reduction 
in the primary composite cardiovascular endpoint in the cinacalcet treatment group in whom serum PTH, 
calcium, and phosphorus were better controlled than in the placebo treatment group (lower part of 
Figure). From Chertow et al (312). 
 
Phosphate Binders, Inhibitors of Intestinal 
Phosphate Absorption, Oral Phosphate 
Restriction, and Phosphate Removal by Dialysis  
Calcium-containing phosphate binders should be 
given, preferentially during or at the end of phosphate-

rich meals, to patients with CKD and uncontrolled 
hyperphosphatemia who have no hypercalcemia or 
radiological evidence of marked soft tissue 
calcifications. In these latter cases non-calcium-
containing phosphate binders should be preferred 
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(see below). The administration of calcium salts alone 
such as calcium carbonate or calcium acetate is 
sufficient for the control of hyperphosphatemia in 
many instances, particularly in patients with CKD 
stages G3-G5 not yet on dialysis. At the same time 
these calcium salts will prevent serum iPTH from rising 
in the majority of patients (318). They may however 
lead to calcium overload (46,47) and excessive PTH 
suppression, resulting eventually in adynamic bone 
disease (319). In patients on hemodialysis, the 
efficacy and tolerance of this treatment may be 
enhanced by the concomitant use of low-calcium 
dialysate, for instance a calcium concentration of 1.25 
mmol/L, especially if plasma intact PTH levels are not 
very high. However, long-term studies have shown 
that the continuous use of a dialysate calcium of only 
1.25 mmol/L requires close monitoring of plasma 
calcium and PTH because of the risk of inducing 
excessive PTH secretion (320,321). A dialysate 
calcium concentration between 1.25 and 1.5 mmol/L 
is more appropriate in terms of optimal calcium 
balance and control of secondary hyperparathyroidism 
(322). The use of a low calcium dialysate also may 
require higher doses of active vitamin D derivatives 
(323) or cinacalcet (324) for the control of secondary 
hyperparathyroidism. Of note, the use of a low calcium 
bath favors hemodynamic instability during the 
hemodialysis session (325) and the occurrence of 
sudden cardiac arrest (326, 327). In patients on 
CAPD, the use of calcium carbonate, in the absence 
of vitamin D, together with a reduction of the dialysate 
calcium concentration from 1.75 to 1.45 mmol/L 

prevents the occurrence of hypercalcemia in most 
patients (328). However, the addition of daily low-dose 
alfacalcidol may lead to hypercalcemia, despite a 
further reduction of dialysate calcium to 1.0 mmol/L. 
 
The development of calcium-free, aluminum-free oral 
phosphate binders such as sevelamer-HCl (329-331), 
sevelamer carbonate (332,333), lanthanum carbonate 
(334-336), sucroferric oxyhydroxide (337), and ferric 
citrate (338) allows controlling hyperphosphatemia 
without the potential danger of calcium overload. Their 
phosphate binding capacity is roughly equivalent to 
that of Ca carbonate or calcium acetate. Sevelamer 
offers in addition the advantage to lower serum total 
cholesterol and LDL-cholesterol and to increase 
serum HDL-cholesterol, to slow the progression of 
arterial calcification in dialysis patients (330), and 
possibly to improve survival in such patients (339). 
The administration of sevelamer is probably more 
efficient in halting the progression of vascular 
calcification than calcium carbonate or calcium 
acetate but this remains a matter of debate 
(14,340,341). The administration of lanthanum 
carbonate to uremic animals has been shown to also 
reduce progression of vascular calcification (342,344), 
but studies in patients with CKD have led to variable 
results (344-346). The effects of calcium-free, 
aluminum-free phosphate binders on serum iPTH are 
variable, depending on baseline iPTH and 
concomitant therapies. In general, iPTH levels are 
higher in response to these binders than to calcium-
containing phosphate binders (Figure 23) (347,348). 
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Figure 23. Effect of oral calcium vs. sevelamer on serum intact PTH (iPTH) in CKD. In this 54-week, 
randomized, open-label study the effects of sevelamer hydrochloride on bone structure and various 
biochemical parameters were compared to that of calcium carbonate in 119 patients on long-term 
hemodialysis therapy. Serum iPTH was consistently lower with calcium carbonate than with sevelamer 
treatment. From Ferreira et al (347). 
 
The administration of aluminum-containing phosphate 
binders should be avoided because of their potential 
toxicity. They may be given in some treatment 
resistant cases, but only for short periods of time 
(276). 
 
Another approach chosen to control 
hyperphosphatemia and therefore to prevent or delay 
the development of secondary hyperparathyroidism is 
pharmacologic interference with active intestinal 
phosphate transport by oral inhibitors of the 
phosphate/sodium cotransporter NaPi2b, using either 
already available drugs such as niacin or nicotinamide 
(349-351), or more recently developed novel inhibitors 
such as tenapanor (352,353). The rather disappointing 
results of available studies have not led so far to their 
introduction into clinical practice (354). 
 
Dietary phosphate intake should be assessed and 
diminished, if possible. Special attention should be 
given to the avoidance of foods containing phosphate 

additives (355). The spontaneous reduction of protein 
intake with age probably explains the often better 
control of serum phosphate in elderly as compared to 
younger patients with ESKD, and this may contribute 
to the relatively lower PTH levels of the former and 
their propensity to develop adynamic bone disease 
(356). However, when reducing dietary phosphate 
intake and concomitantly protein intake, one has to 
take care to avoid the induction of protein malnutrition. 
Restricting dietary protein intake excessively may 
increase the risk of mortality (357). In patients on 
dialysis therapy, an attempt should always be made to 
improve the efficiency of the dialysis procedure. 
 
A better correction of metabolic acidosis by 
bicarbonate-buffered dialysate, as compared to 
acetate-buffered dialysate, probably helps to delay the 
progression of osteitis fibrosa in patients on 
hemodialysis (358). One possible mechanism for the 
beneficial role of acidosis correction is an increase in 
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the sensitivity of the parathyroid gland to plasma 
ionized calcium (359). 
Current recommendations for the medical treatment 
and prevention of patients with CKD-MBD, including 
secondary hyperparathyroidism, can be found in the 
2009 KDIGO CKD-MBD                                                                                                                                                                                                                                                                                       
guideline (276) and its subsequent updates (277,278). 
It must be pointed out though that there is no definitive 
proof of a beneficial effect of phosphate lowering on 
patient-level outcomes (257). 
 
Local Injection of Alcohol and Active Vitamin D 
Derivatives 
 
Since in advanced forms of secondary 
hyperparathyroidism the hyperplasia of parathyroid 
glands is asymmetrical, with some glands being 
grossly enlarged and others remaining relatively small, 
local injection of ethanol (360,361) or active vitamin D 
derivatives (362,363) has been proposed as an 
alternative therapy in patients who become resistant 
to medical treatment. However, the direct injection 
technique has not reached widespread use in clinical 
practice outside of Japan. Other research groups have 
been unable to obtain convincing results (364,365). 
 
Despite major advances in the medical treatment of 
CKD-MBD the achievement of the targets for plasma 
calcium, phosphate, Ca x P product, and PTH, as 
recommended by the K/DOQI guidelines (275), was 
found to be far from being optimal in the DOPPS 
patient population for the years 2002-2004 (366). It 
was actually rare in the patients on hemodialysis of 
this international cohort to fall within recommended 
ranges for all four indicators of mineral metabolism, 
although consistent control of all three main CKD-
MBD parameters calcium, phosphate, and PTH was 
found to be a strong predictor of survival in another 
observational study on patients undergoing 
hemodialysis (367). A recent report on such patients 
in France confirmed that a satisfactory control of 
serum calcium, phosphate, or PTH was achieved in 
less than 20% among them (368). 
 

Surgical Treatment 
 
Surgical correction remains the final, symptomatic 
therapy of the most severe forms of secondary 
hyperparathyroidism, which cannot be controlled by 
medical treatment (369). The most important goal 
remains to prevent or correct the development of 
major clinical complications associated with this 
disease. The presence of severe hyperparathyroidism 
must be demonstrated by clinical, biochemical and 
imaging evidence. In general, neck surgery should 
only be done when plasma iPTH values are greatly 
elevated (> 600-800 pg/mL), together with an increase 
in plasma total alkaline phosphatases (or better bone-
specific alkaline phosphatase), and only after one or 
several medical treatment attempts have remained 
unsuccessful in decreasing plasma iPTH with 
cinacalcet (in patients on dialysis only) and/or active 
vitamin D derivatives or if their use is relatively or 
absolutely contraindicated, namely in presence of 
persistent hypercalcemia, marked 
hyperphosphatemia, or severe vascular calcifications. 
Bone histomorphometry examination is rarely needed. 
Clinical symptoms and signs such as pruritus and 
osteoarticular pain are non-specific and therefore no 
good criteria for operation on their own. Similarly, an 
isolated increase in plasma calcium and/or phosphate, 
even in case of coexistent soft tissue calcifications, is 
not a sufficient criterion alone for surgical 
parathyroidectomy. However, in the presence of a 
persistently high plasma PTH the latter disturbances 
may facilitate the decision to proceed to surgery. The 
results can be spectacular, including in rare instances 
the complete disappearance of soft tissue 
calcifications from small peripheral arteries (see 
Figure 15b). A concomitant aluminum overload should 
be excluded or treated, if present, before performing 
surgery. 
 
Parathyroid gland imaging is useful for the indication 
of parathyroidectomy, especially for recurrent 
hyperparathyroidism. Ultrasound examination is the 
first-line technique but generally misses ectopic 
glands (370). CT scan or MRI can be used to visualize 
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ectopic glands but often cannot differentiate 
parathyroid tissue from lymph node or thyroid nodule. 
Scintigraphy using 99mTc sestamibi coupled with 123I 
is a much more specific technique, allowing detection 
of parathyroid tissue with a false-positive rate inferior 
to 5% (371). More recently, this method has been 
replaced by parathyroid 18F-fluorocholine positron 
emission tomography (PET/CT), which shows even 
greater sensitivity and accuracy in detecting abnormal 
parathyroid glands (371, 372). 
 
Two main surgical procedures are generally used, 
either subtotal parathyroidectomy or total 
parathyroidectomy with immediate 
autotransplantation. There is no substantial difference 
in operative difficulties and treatment results between 
the two procedures. We found that the long-term 
frequency of recurrent hyperparathyroidism was 
similar (373). One group of authors claimed superiority 
of total parathyroidectomy without reimplantation of 
parathyroid tissue in terms of long-term control of 
hyperparathyroidism, tolerance, and safety (374), but 
this claim has been questioned by us and others (375-
377). We do not recommend the performance of total 
parathyroidectomy without autotransplantation in 
uremic patients since permanent hypoparathyroidism 
and adynamic bone disease may ensue, with possible 
harmful consequences especially for those patients 
who subsequently undergo kidney transplantation. 
 
As regards the prevalence of parathyroidectomy, it 
was very high before the turn of the century. Moreover, 
it did not change significantly between 1983 and 1996. 
According to a survey from Northern Italy in 7371 
dialysis patients (378) it was 5.5% in all patients 
together but increased with duration of RRT, from 
9.2% after 10-15 years to 20.8% after 16-20 years of 
dialysis therapy. A subsequent survey from the US 
showed that parathyroidectomy rates were much 
lower in the first decade of the 21st century. It 
decreased from 7.9‰  in 2003 to a nadir of 3.3‰ in 
2005 - most likely due to the commercial introduction 
of cinacalcet -, then rose again to 5.5‰ through 2006, 
and subsequently remained stable until 2011 (379). 

The authors concluded that despite the use of multiple 
medical therapies the rates of parathyroidectomy in 
patients with secondary hyperparathyroidism did not 
decline in recent years. These findings are in contrast 
with a Canadian study (380) and the international 
Dialysis Outcomes and Practice Patterns Study 
(DOPPS) (381). The Canadian study, although 
restricted to a single province (Quebec), showed a 
sustained reduction in parathyroidectomy rates after 
2006. DOPPS reported that prescriptions of active 
vitamin D analogs and cinacalcet increased and that 
parathyroidectomy rates decreased. Difference in 
medical treatment modalities between geographic 
regions and different modes of data analysis may at 
least partially account for these apparent 
discrepancies. This is illustrated by the observation 
that parathyroidectomy rates in Japan fell abruptly 
after the advent of cinacalcet to approximately 2‰, 
with median serum iPTH around 150 pg/mL between 
1996 and 2011 (381). 
 
Parathyroidectomy was associated with higher short-
term mortality, but lower long-term mortality among 
4558 patients on dialysis in the US as compared to 
matched patients who did not undergo 
parathyroidectomy (382). However, that report did not 
contain information on serum PTH levels. Whether 
presently available therapeutic and prophylactic 
measures taken to attenuate secondary 
hyperparathyroidism play an important role in reducing 
cardiovascular morbidity and mortality among patients 
with ESKD remains a matter of debate. The EVOLVE 
trial points to better clinical outcomes with a more 
efficient control of hyperparathyroidism by cinacalcet 
than by optimal standard treatment but the results, 
although suggestive, must still be considered as not 
definitively conclusive (312,317).  
 
Surgical Versus Medical Management 
 
Whether surgical treatment is superior to medical 
treatment in controlling severe secondary 
hyperparathyroidism as regards hard clinical 
outcomes remains a matter of controversy. In the 
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absence of randomized controlled trials, one has to 
rely on the results of observational studies. Two recent 
reports are available, exclusively on patients receiving 
dialysis therapy. The first study was performed in 209 
patients in South Korea, either on hemodialysis or 
peritoneal dialysis (383). It showed that 
parathyroidectomy reduced the risk of new 
cardiovascular events by 86% compared to cinacalcet; 
however, all-cause mortality did not differ. However, 
the patients undergoing surgery had significantly 
higher iPTH levels than the patients on calcimimetic 
therapy (1,290 vs 719 pg/mL, P<0.001). The second 

study was performed in 3576 patients on hemodialysis 
in Japan (384). They were matched for serum iPTH 
levels (588 vs 566 pg/mL, P=NS). Here 
parathyroidectomy was associated with a lower risk of 
mortality compared with cinacalcet, particularly among 
patients with severe secondary hyperparathyroidism. 
It is impossible to draw firm conclusions from these 
two studies regarding the optimal treatment approach, 
all the more since no comparative information was 
provided on active vitamin D sterols as the other 
commonly used alternative medical treatment. 
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