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ABSTRACT 
 
In primary hypoparathyroidism with hypocalcemia and 
hyperphosphatemia, deficient parathyroid hormone 
(PTH) secretion most commonly occurs from surgical 
excision of, or damage to, the parathyroid glands. The 
term idiopathic hypoparathyroidism describes isolated 
cases when a cause is not obvious, and there is no 
family history. However, hypoparathyroidism is also a 
feature common to a variety of hereditable syndromes 
that may present de novo. Familial isolated 
hypoparathyroidism may show autosomal dominant, 
autosomal recessive, or X-linked inheritance. Genes 
involved include PTH, SOX3, CASR, GNA11 and 
GCM2. Parathyroid hypoplasia is a frequent feature of 
22q11.2 deletion syndrome with involvement of the 
TBX1 gene. The Hypoparathyroidism, Nerve 
Deafness, and Renal Dysplasia syndrome is due to 
haploinsufficiency of the GATA3 gene. Antibodies 
against parathyroid tissue are found in isolated 
hypoparathyroidism or combined with other endocrine 
deficiencies. Antibodies against the CASR occur in 
type 1 autoimmune polyglandular syndrome, due to 
mutations of the AIRE gene, or in acquired 
hypoparathyroidism. Disorders characterized by end-
organ resistance to PTH are described collectively by 
the term pseudohypoparathyroidism (PHP), and 

PHP1A and PHP1B are caused by maternally-
inherited changes at the imprinted GNAS complex 
gene that encodes the Gsα protein. Deleterious 
mutations of the PTH1R gene show resistance to PTH 
and PTHrP and present as Blomstrand lethal 
chondrodysplasia, Eiken syndrome, 
endochondromatosis, and primary failure of tooth 
eruption. Calcium and vitamin D are the standard 
therapy for the management of hypoparathyroidism, 
with hormone replacement [recombinant human 
PTH(1-84)] therapy recently becoming an option. 
Calcilytics, PTH analogs, and orally active small 
molecule PTH1R agonists may, in the future, join the 
treatment armamentarium.  
 
PRIMARY HYPOPARATHYROIDISM  
 
Primary hypoparathyroidism is caused by a group of 
heterogeneous conditions in which hypocalcemia and 
hyperphosphatemia occur as a result of deficient 
parathyroid hormone (PTH) secretion (1). This most 
commonly results from surgical excision of, or damage 
to, the parathyroid glands. However, autoimmune 
disease is also a significant factor in acquired cases, 
and genetic forms of hypoparathyroidism due to 
decreased PTH secretion are not rare (Table 1). 
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Table 1. Forms of Hypoparathyroidism having a Genetic Basis 
1. Isolated  
1.      1) Autosomal dominant 
1.               A) PTH mutation  
2.               B) CASR activating mutation (ADH1) 
1.                     a)  Bartter Syndrome Type V 
3.               C) GCM2 mutation (dominant negative) 
4.               D) GNA11 activating mutation (ADH2) 
2.        2) Autosomal recessive  
1.               A) PTH mutation  
2.               B) GCM2 mutation  
3.         3) X-linked  
2. Congenital multi-system syndromes*  
1.          1) DiGeorge 1 (22q11) & 2 (10p) 
2.           2) Barakat/HDR  
3.           3) Kenny-Caffey 1 & 2 and Sanjad-Sakati  
3. Metabolic disease  
1.            1) Mitochondrial neuromyopathies  
2.             2) Long-chain hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency  
3.             3) Heavy-metal storage disorders  
4. Autoimmune disease  
1.              1) Autoimmune polyendocrine syndrome type I (APS-1 / APECED)  
5. Parathyroid resistance syndromes  
1.               1) Pseudohypoparathyroidism  
2.               2) Blomstrand chondrodysplasia and related PTH receptor defects  
3.               3) Hypomagnesemia  

* Clarke et al. (2) list other potential syndromic associations with hypoparathyroidism, including: CHARGE 
(Coloboma, Heart defect, Atresia choanae, Retarded growth and development, Genital hypoplasia, Ear 
anomalies/deafness), Dubowitz, lymphedema, nephropathy & nerve deafness 

 
The signs and symptoms of hypoparathyroidism 
include evidence of latent or overt neuromuscular 
hyperexcitability due to hypocalcemia (Table 2). The 
effect may be aggravated by hyperkalemia or 
hypomagnesemia, but there is wide variation in the 
severity of symptoms. Patients may complain of 
circumoral numbness, paresthesias of the distal 
extremities, or muscle cramping, which can progress 
to carpopedal spasm or tetany. Laryngospasm or 
bronchospasm and seizures may also occur. Other 
less specific manifestations include fatigue, irritability, 
and personality disturbance. A comprehensive list of 
features associated with hypocalcemia can be found 

in the Endotext chapter, “Hypocalcemia: diagnosis 
and treatment” by Schafer & Shoback (3). 
 
Severe hypocalcemia may be associated with a 
prolonged QTc interval on electrocardiography, which 
reverses with treatment. More extensive 
cardiomyopathic changes may be seen. These include 
chest pain, elevated enzymes (CPK), left ventricular 
impairment, and T-wave inversion, suggestive of a 
myocardial infarction (4, 5) . Patients with chronic 
hypocalcemia may have calcification of the basal 
ganglia or more widespread intracranial calcification, 
detected by skull X-ray or CT scan. Also seen are 
extrapyramidal neurological symptoms (more often 
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with intracranial calcification), subcapsular cataracts, 
band keratopathy, and abnormal dentition. 
 

Table 2. Some Clinical Features of Hypocalcemia 
• Neuromuscular irritability  
• Paresthesias  
• Laryngospasm  
• Bronchospasm  
• Tetany  
• Seizures  
• Chvostek sign  
• Trousseau sign  
• Prolonged QT interval on ECG  

 
Increased neuromuscular irritability may be 
demonstrated by eliciting a Chvostek or Trousseau 
sign. A positive Chvostek sign is a prolonged reflex 
contraction of the facial muscle in response to a digital 
tap on the cheek just anterior to the ear. As with other 
hyperreflexias, up to 20% of normal individuals may 
demonstrate a slight positive reaction. A positive 
Trousseau sign is carpopedal spasm induced by 
inflation of a blood pressure cuff covering the upper 
arm to 20 mm Hg above systolic blood pressure for 
three minutes. This response reflects the heightened 
irritability of nerves undergoing pressure ischemia. 
 
In hypoparathyroidism, serum calcium concentrations 
are decreased and serum phosphate levels are 
increased. Serum PTH is low or undetectable. (The 
important exception is PTH resistance, discussed 
further below.) Usually, serum 1,25-dihydroxyvitamin 
D (1,25(OH)2D) is low, but alkaline phosphatase 
activity is normal. Despite an increase in fractional 
excretion of calcium, intestinal calcium absorption and 
bone resorption are both suppressed. The renal 
filtered load of calcium is decreased, and the 24-h 
urinary calcium excretion is reduced; nephrogenous 
cyclic AMP excretion is low and renal tubular 
reabsorption of phosphate is elevated.  
 
The terms idiopathic or isolated hypoparathyroidism 
have been traditionally used to describe isolated 
cases of glandular hypofunction when a cause is not 
obvious and there is no family history. However, 

hypoparathyroidism is a feature common to a variety 
of heritable syndromes that may present de novo. 
Hypoparathyroidism can occur because of a 
congenital hypoplasia/aplasia with or without other 
congenital anomalies such as dysmorphic facies, 
immunodeficiency, lymphedema, nephropathy, nerve 
deafness or cardiac malformation. Thus, in patients 
with hypoparathyroidism of uncertain onset, a careful 
examination of craniofacial features and assessment 
of endocrine, cardiac and renal systems should be 
performed to exclude a syndromic cause. Similarly, 
autoimmune hypoparathyroidism can occur as an 
isolated endocrine condition or with other glandular 
deficiencies in a pluriglandular autoimmune 
syndrome, requiring attention to multi-organ endocrine 
dysfunction. 
 
A significant number of patients with idiopathic 
hypoparathyroidism and hypercalciuria, but no other 
anomalies may be found to have de novo activating 
mutations of the CASR gene.  
 
Because of the implications for treatment, CASR 
molecular screening of patients with this presentation 
is recommended (6, 7). 
 
Familial Isolated Hypoparathyroidism  
 
Familial isolated hypoparathyroidism (FIH) may show 
autosomal dominant, autosomal recessive, or X-linked 
inheritance. 
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In a few instances of autosomal dominant disease, a 
mutation in the PTH gene (MIM# 168450 (8) - 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OM
IM) has been found. In one family, a missense 
mutation (C18R) in the signal sequence of the 
preproPTH precursor has been identified (9) and the 
mutant shown to be defective in vitro in processing 
preproPTH to proPTH, although, as patients had one 
normal gene copy, the autosomal dominant mode of 
inheritance remained unexplained. Then, further 
studies in transfected cells showed that the mutant 
was trapped in the endoplasmic reticulum (ER) 
promoting ER stress and apoptosis (10). In a family 
with autosomal recessive hypoparathyroidism, a 
different, homozygous, signal sequence mutation 
(S23P) segregates with affected status (11). This 
mutation may prevent proper cleavage of the signal 
peptide during processing of the nascent protein. In a 
girl with isolated hypoparathyroidism, a homozygous 
S23X signal sequence mutation was found predicting 
a truncated inactive PTH peptide (12). However, the 
circulating PTH level was not undetectable, 
suggesting some translational readthrough of the 
mutant preproPTH mRNA. A homozygous 
[Cys25]PTH(1-84) mutation that impairs PTHR1 
activation was identified in an idiopathic 
hypoparathyroid family (13). Elevated circulating PTH 
levels were found in some (but not all) assays thus 
defining a novel form of hypoparathyroidism. In 
another family with autosomal recessive 
hypoparathyroidism, a donor splice site mutation at 
the exon 2/intron 2 junction of the PTH gene was 
identified (14). The mutation leads to exon skipping 
and loss of exon 2 containing the initiation codon and 
signal sequence of preproPTH mRNA. The SOX3 
gene encodes a transcriptional factor likely involved in 
the embryonic development of the parathyroid gland 
(15). In two multigeneration families with X-linked 
recessive hypoparathyroidism exhibiting neonatal 
onset of hypocalcemia and parathyroid agenesis, the 
trait was mapped to a 906-kb region on distal Xq27 
that contains three genes including SOX3 but no 
intragenic mutations were found (MIM# 307700). An 
interstitial deletion-insertion involving chromosomes 
2p25.3 and Xq27.1 was found downstream of SOX3 

and was speculated to exert a positional effect on 
SOX3 expression (16). 
 
Gain-of-function mutations in the calcium-sensing 
receptor (CASR) gene (MIM#601199) have been 
identified in a number of families clinically diagnosed 
with autosomal dominant hypocalcemia type 1 (ADH1 
– MIM#515361) (17, 18). In the parathyroid gland, the 
activated CASR suppresses PTH secretion, and in the 
kidney, it induces hypercalciuria that may contribute to 
the hypocalcemia. In many cases of ADH1, the family 
history is positive, but de novo mutations are quite 
common (19, 20). Mosaicism for de novo mutation in 
an otherwise healthy parent has been described (21), 
and may explain some cases of apparently recessive 
disease. Most importantly, there are implications for 
counseling parents about the risks of recurrence. 
 
Almost all of the activating mutations are missense 
and appear almost equally divided between the 
amino-terminal third of the extracellular domain (ECD) 
and the transmembrane domain (TMD). Of special 
interest is the cluster of ECD mutations (A116T to 
C131W) that cause an increase in receptor sensitivity 
to extracellular calcium, suggesting that this region is 
critical for receptor activation. This cluster overlaps the 
two cysteine residues –cys-129 and cys-131– involved 
in the interface of the mature protein dimer (22). 
Further details can be found in the locus-specific 
database –http://data.mch.mcgill.ca/casrdb/ (23) and 
(24). 
 
Although Bartter syndrome subtype V is represented 
by only a handful of cases with heterozygous severe 
activating mutations in the CASR (MIM#601199), it 
provides additional insight into the functioning of the 
CaSR in the thick ascending limb (TAL) of the nephron 
(25-27). Bartter syndrome encompasses a 
heterogeneous group of electrolyte homeostasis 
disorders, the common features of which are 
hypokalemic alkalosis, hyperreninemia, and 
hyperaldosteronism. Bartter syndrome subtypes I–IV 
are autosomal recessive disorders due to inactivating 
mutations in the following ion transporters or channels 
active in the TAL: type I, the sodium potassium-
chloride cotransporter (NKCC2); type II, the outwardly 
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rectifying potassium channel (ROMK); type III, the 
voltage-gated chloride channel (CLC-Kb); type IV, 
Barttin, a chloride channel beta-subunit that is 
required for trafficking of CLC-Ka and CLC-Kb. 
Patients with the autosomal dominant Bartter 
syndrome subtype V have, in addition to the classic 
features of the syndrome, hypocalcemia, and may 
exhibit neuromuscular manifestations, seizures, and 
basal ganglia calcifications. NKCC2 and ROMK in the 
apical membrane (luminal side) of the TAL have been 
proposed to generate a transepithelial electrochemical 
gradient that drives passive paracellular transport of 
Na+, Mg2+, and Ca2+ from the lumen to blood (28). The 
CASR is situated in the basolateral membrane 
(antiluminal side) and, when activated, increases 20-
hydroxyeicosatetraenoic acid and decreases cAMP 
concentrations, both of which would inhibit ROMK and 
NKCC2 activities (28, 29). Thus, severe activating 
mutations of the CASR lead to the salt wasting of 
Bartter syndrome in addition to the hypercalciuric 
hypocalcemia of ADH1. 
 
Heterozygous gain-of-function missense mutations of 
GNA11 have been identified in ADH patients without 
detectable CASR activating mutations (30-33). The 
GNA11 activating mutations increase the sensitivity of 
the parathyroid gland and renal tubule to extracellular 
calcium concentrations. Autosomal dominant 
hypocalcemia and hypoparathyroidism due to CASR 
and GNA11 mutations are now designated as ADH 
type 1 (MIM#601198) and type 2 (MIM#615361) 
respectively. The human Gα11 protein (a Gq family 
member – MIM#139313) has 359 amino acids with an 
α-helical domain in the NH2-terminal region, a GTPase 
domain in the COOH-terminal region, and three switch 
regions (SR1-3) in the middle portion that change 
conformation based on whether GTP or GDP is bound 
(34). The R80C, R181Q, S211W, F341L, and V304M 
mutations found in hypocalcemic individuals are 
predicted by 3D modeling to alter the normal Gα11 
protein structure. Moreover, cells stably expressing 
the CASR and transfected with the mutants exhibit 
increased sensitivity to changes in extracellular 
calcium (30-33). 
 

Inactivating mutations in the CASR regulator, the 
adaptor protein 2 sigma subunit encoded by the 
AP2S1 gene, cause familial hypocalciuric 
hypercalcemia type 3 (35). The search for activating 
mutations in AP2S1 in familial and sporadic isolated 
hypoparathyroid patients negative for CASR or 
GNA11 mutations that would represent an additional 
genetic cause of ADH has thus far been negative (36, 
37). 
   
Recessively inherited FIH may occur with mutations of 
the glial cells missing-2 gene (GCM2; 
MIM#603716). The GCM2 gene localizes to 
chromosome 6p24.2 and encodes a transcription 
factor. It is expressed in the PTH-secreting cells of the 
developing parathyroid glands and is critical for their 
development in terrestrial vertebrates (38-40). A 
patient with neonatal hypoparathyroidism was found to 
be homozygous for a partial deletion acquired from 
both parents (41), and a pair of siblings with 
homozygous mutations has been reported (42). 
Additional studies have identified inactivating GCM2 
mutations in cases with autosomal recessive FIH (43, 
44). On the other hand, heterozygous mutations that 
cause dominant-negative GCM2 mutants have also 
been identified in patients with autosomal dominant 
hypoparathyroidism (43, 45, 46).  Additional recessive 
and dominant GCM2 mutations have been noted in 
this gene that continues to be expressed in the adult 
parathyroid [see (47)]. Nevertheless, it appears that 
the prevalence of genetic defects affecting GCM2 
function is not high in isolated hypoparathyroidism, as 
a recent study investigating 20 unrelated cases with 
this disorder (10 familial and 10 sporadic) failed to 
identify any GCM2 mutations segregating with the 
disease and/or leading to loss of function (48). Of 
further interest is that a genetic variant, Y282D that 
demonstrates significantly enhanced transcriptional 
activity relative to wild-type GCM2 associates with 
hyperparathyroidism in some cohorts of the sporadic 
primary disorder (49). Most recently, novel 
heterozygous active GCM2 variants that segregate 
with affected status in some kindreds with familial 
isolated hyperparathyroidism have been described 
(50). Thus, like CASR and GNA11, both gain-of-
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function and loss-of-function variants of GCM2 may 
contribute to calcemic disorders.  
 
Hypoparathyroidism with Syndromic 
Features  
 
Hypoparathyroidism due to parathyroid hypoplasia is 
a frequent feature of 22q11.2 microdeletions, the 
most common cause of DiGeorge syndrome 1 (DS1; 
MIM#188400) (51, 52) . This syndrome complex 
arises from a failure of the third and fourth pharyngeal 
pouches to develop, leading to agenesis or congenital 
hypoplasia of the parathyroid glands, thymus, and the 
anterior heart field. Patients with DS1 may typically 
present with neonatal hypocalcemic seizures due to 
hypoparathyroidism, severe infections due to thymic 
hypoplasia, and conotruncal heart defects (53). 
Because a microdeletion is involved, the identification 
of novel developmental genes in the 22q11 region has 
been keenly pursued. One of the genes is TBX1, 
encoding a DNA-binding transcription factor of the T-
box family known to have important roles in vertebrate 
and invertebrate organogenesis and pattern formation 
(54, 55). Mouse models with Tbx1 haploinsufficiency 
established the essential contribution of this factor to 
conotruncal development (56), and placed it in 
developmental context during organogenesis (57, 58). 
However, while the Tbx1 null mutant mice had all the 
developmental anomalies of DS1 – thymic and 
parathyroid hypoplasia, abnormal facial structures and 
cleft palate, skeletal defects and cardiac outflow 
abnormalities – Tbx1 haploinsufficiency in mice was 
associated with only defects of the fourth pharyngeal 
pouch responsible for the cardiac outflow 
abnormalities (59). cDNA microarray analyses of mice 
lacking Tbx1 have identified Gcm2 as one of the 
downregulated genes in the pharyngeal region, 
indicating that Tbx1 is upstream of Gcm2 (60). 
Furthermore, as Tbx1 is regulated by sonic hedgehog 
(Shh) (61), a Shh-Tbx1-Gcm2 parathyroid 
developmental pathway is indicated. 
 
The basis for the phenotypic differences between 
DGS1 patients who are heterogeneous for TBX1 loss 
and the Tbx1+/- mice is unclear but could reflect a 
species-specific gene dosage requirement together 

with roles of downstream genes regulated by Tbx1. 
Some patients may have late-onset DGS1 and 
develop symptomatic hypocalcemia in childhood or 
later with only subtle phenotypic abnormalities (62, 
63). Of note is that the age of diagnosis in rare families 
with DGS1 patients having TBX1 inactivating 
(missense or frameshift) mutations ranged from 7 to 
46 years in keeping with late-onset DGS1 (54).  
 
The 22q11.2 deletion syndrome (22q11.2DS) 
encompasses a wider spectrum of clinical conditions 
that includes isolated congenital heart disease and 
velocardiofacial (VCF) syndrome (52). Associated 
craniofacial abnormalities include cleft palate, 
pharyngeal insufficiency and mildly dysmorphic facies. 
In the VCF syndrome, anatomical anomalies of the 
pharynx are prominent and hypernasal speech due to 
abnormal pharyngeal musculature with or without cleft 
palate is typical. In most patients, some degree of 
intellectual deficit is present and there is strong 
predisposition to psychiatric illness (schizophrenia or 
bipolar disorder) in adolescents and adults (64, 65). 
Further information, both clinical and educational, can 
be found at web sites specifically devoted to this 
condition [see (66)]. 
 
The 22q11.2DS is due to one of the most common 
microdeletions (1 in 4000 live births), and it may go 
clinically unrecognized in its milder or variant forms. 
Most cases with hypoparathyroidism (~50% of cases) 
are the result of de novo deletion through meiotic non-
allelic homologous recombination, and driven by a 
unique cluster of low copy repeats designated LCR22 
A-H [see (66, 67) ]. Most commonly (~85% of cases), 
a deletion of ~3 Mb is found, encompassing proximal 
repeats A to D. Many of the others (~10% of cases) 
involve atypical nested deletions including those 
spanning LCR22 A to B. Thus, LSR22 A to B, which 
includes the TBX1 gene, is the primary site 
contributing to parathyroid dysgenesis. Detailed 
characterization and long-term follow-up for the 
hypoparathyroid component of this disorder is 
ongoing. 
 
Although most cases of DiGeorge syndrome are 
sporadic, as mentioned above autosomal dominant 
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inheritance is not unknown. In utero influences may be 
important determinants of the clinical picture, since 
there are instances of monozygotic twins with 
discordant phenotypes (68-70). Phenocopies occur 
with diabetic embryopathy, fetal alcohol syndrome, 
and retinoid embryopathy. In rare instances, it has 
been shown that a phenotypically normal parent can 
transmit a microdeletion to an offspring. Such parents 
have been found to carry a duplication of the 22q11 on 
the second chromosome, and the combination of 
duplication and deletion alleles in a parent generates 
a balanced state, termed “gene dosage 
compensation” (71, 72). 
 
Although the hypoparathyroidism affects about half of 
all carriers, it is usually not severe, and frequently 
treatment following neonatal hypocalcemia can be 
tapered or stopped in older children. However, the 
hypoparathyroidism may also remain asymptomatic 
until adolescence or emerge at times of stress, such 
as corrective cardiac surgery or severe infection, 
suggesting that continued surveillance of parathyroid 
gland reserve is important (73-75).   
 
Traditionally, diagnosis of 22q11.2DS is established 
with specific cytogenetic studies -- usually with locus-
specific fluorescence in-situ hybridization (FISH) 
testing. These tests will pick up many of the larger 
common deletions that involve regions of low-copy 
number repeats (LCRs). However, specific 
chromosomal array-based and MLPA analyses are 
now preferred, as they have been shown to have 
increased sensitivity for smaller deletions (66). 
Recently, the diagnostic power of next-generation 
sequencing has been harnessed to identify almost all 
of the microdeletions underlying sporadic and 
inherited forms of the disorder (52). Non-invasive 
prenatal screening and pre-implantation genetic 
diagnosis) are also clinically available (76). Because 
the clinical picture is so variable and the prevalence so 
high, testing for 22q11.2 microdeletion should be 
considered in the workup for any new hypoparathyroid 
case for which another cause is not found. Finally, 
distinct genetic defects can coexist with 22q11.2DS, 
as exemplified by the finding of concurrence of this 
syndrome in an adolescent with longstanding 

hypercalcemia who had familial hypocalciuric 
hypercalcemia type 3 due to an AP2S1 mutation (77). 
 
Clinicians will also want to be aware that a small but 
significant minority (~10%) of patients will have 
associated autoimmune disease, driven in part, 
perhaps, by the thymus-based defect in T cell function 
(64,79). Among the more common (non-endocrine) 
conditions are arthritis, celiac disease, and 
autoimmune hematologic disease, particularly 
idiopathic thrombocytopenic purpura. Autoimmune 
thyroid disease, with either hypo- or hyperparathyroid 
states, has been reported (78, 79), and serum TSH 
assay should be measured regularly. It has been 
suggested that the later-onset hypoparathyroid 
disease may be partly autoimmune in origin, not 
developmental. A survey of 59 Norwegian patients 
showed discordance of adult onset disease with 
neonatal hypoparathyroidism, but a significant 
correlation with parathyroid autoantibodies and the 
presence of autoimmune disease (78).  
 
The clinical features of DiGeorge syndrome, including 
hypoparathyroidism, also occur with other cytogenetic 
abnormalities, notably chromosome 10p 
haploinsufficiency (80, 81). Deletions of two non-
overlapping regions of chromosome 10p contribute to 
DiGeorge syndrome 2; DS2 at 10p13-14 (82), and the 
Barakat or HDR (Hypoparathyroidism, Nerve 
Deafness, and Renal Dysplasia) syndrome 
(MIM#146255) (83, 84) at 10p14-10pter (85, 86). The 
latter is due to haploinsufficiency of GATA3 
(MIM#131320), which encodes a dual zinc finger 
transcription factor (87) that is essential for normal 
embryonic development of the parathyroids, auditory 
system, and kidney. Since the original description, 
several additional GATA3 loss-of-function mutations 
have been described in HDR patients [e.g., (88-91)]. 
Heterozygous Gata3-deficient mice develop 
parathyroid abnormalities as revealed by challenge 
with a diet low in calcium and vitamin D that are due 
to dysregulation of the parathyroid-specific 
transcription factor, Gcm2. Gata3-/- embryos at E12.5 
lack Gcm2 expression and have gross defects in the 
fourth pharyngeal pouches, including absent 
parathyroid/thymus primordia (92). GATA3 
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transactivates the GCM2 promoter and, with GCM2, 
forms part of a transcriptional cascade essential for 
the differentiation and survival of parathyroid 
progenitor cells.   
 
In another congenital disorder, Kenny-Caffey 
syndrome, hypoparathyroidism is found variably 
associated with the typical picture of growth 
retardation, osteosclerosis, cortical thickening of the 
long bones, and delayed closure of the anterior 
fontanel (93-96). The original description of the 
syndrome was of the autosomal dominant form now 
identified as KCS-2 (MIM#127000) that is caused by 
heterozygous mutations in the FAM111A gene (97-
99). The full functions of FAM111A and how mutations 
in it cause the disorder are unclear. FAM111A has 
some homology to peptidases, and is involved with 
chromatin structure during DNA replication (100). KS-
2 is allelic to the lethal disorder, osteocraniostenosis 
(OCS, MIM#6023611). Hypocalcemia due to 
hypoparathyroidism was found in some OCS patients 
who survived the perinatal period (96). 
 
A recessively inherited form of Kenny-Caffey 
syndrome (KCS-1, MIM#244460) was noted to be 
similar to the recessive Sanjad-Sakati syndrome 
(MIM#241410) characterized by congenital 
hypoparathyroidism, seizures, growth and 
developmental retardation and characteristic 
dysmorphic features, including deep set eyes, 
depressed nasal bridge with beaked nose, long 
philtrum, thin upper lip, micrognatia and large, floppy 
ear lobes. Radiographs showed medullary stenosis 
reminiscent of Kenny-Caffey syndrome (96, 101). 
Linkage studies localized the recessive KCS-1 and 
Sanjad-Sakati syndromes to 1q42-43, and causative 
mutations in the tubulin chaperone E, TBCE, gene 
were identified in what is now known as 
Hypoparathyroidism, Retardation and 
Dysmorphism (HRD) syndrome (96, 102, 103) . This 
highlighted the role of TBCE that binds microtubules 
and proteasomes and protects against misfolded 
stress (104) in parathyroid development (105). 
 
Hypoparathyroidism due to Metabolic Disease  
 

Hypoparathyroidism is also a variable component of 
the neuromyopathies caused by mitochondrial gene 
defects (106). Among these are the Kearns-Sayre 
syndrome (ophthalmoplegia, retinal degeneration, 
and cardiac-conduction defects) (MIM#530000), the 
Pearson marrow pancreas syndrome (lactic acidosis, 
neutropenia, sideroblastic anemia, and pancreatic 
exocrine dysfunction) (107) (MIM#557000) and 
mitochondrial encephalomyopathy (MIM#540000). 
The molecular defects range from large deletions and 
duplications of the mitochondrial genomes in a large 
number of tissues (108, 109) to single base-pair 
mutations in one of the transfer RNA genes found only 
in a restricted range of cell types (MIM#590050). The 
role of these mitochondrial mutations in the 
pathogenesis of hypoparathyroidism remains to be 
clarified. However, mutations in HADHB, that encodes 
the β-subunit of mitochondrial trifunctional protein, 
cause infantile onset hypoparathyroidism and 
peripheral polyneuropathy (110). 
 
Long-chain hydroxyacyl-CoA dehydrogenase 
(LCHAD) deficiency (MIM#600890)  
is an inborn error of oxidative fatty acid metabolism 
that may be accompanied by hypoparathyroidism 
(111). Whether the parathyroid disease is directly 
related to the enzyme deficiency or secondary to the 
accompanying mitochondrial disease needs further 
study. 
 
Parathyroid insufficiency and symptoms of 
hypocalcemia are occasionally seen in inherited 
metabolic disorders leading to excess storage of iron 
(thalassemia, Diamond-Blackfan anemia, 
hemochromatosis) or copper (Wilson disease) 
(112). In most instances, there is similar dysfunction in 
other endocrine glands, and the parathyroid disease is 
usually mild. Nonetheless, recognition of the 
hypoparathyroid state may help explain otherwise 
non-specific symptoms and aid in overall management 
of these multisystem diseases. 
 
Autoimmune Hypoparathyroidism:  Acquired and 
Inherited Disorders  
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Antibodies directed against parathyroid tissue have 
been detected in up to 38% of patients with isolated 
hypoparathyroid disease, and over 40% of patients 
having hypoparathyroidism combined with other 
endocrine deficiencies (113, 114).  Subsequently, a 
survey of a parathyroid expression library led to the 
identification of one protein selectively associated with 
the autoimmune process, the NACHT leucine-rich-
repeat protein 5 (NALP5). Elevated antibody titers 
occur in half the patients with autoimmune 
hypoparathyroidism, with or without another 
autoimmune disease, but uncommonly in other 
conditions without hypoparathyroidism (114, 115).  
  
Antibodies against the extracellular domain of the 
parathyroid CASR were originally reported in more 
than half of patients with either type 1 autoimmune 
polyglandular syndrome (APS-1, also known as 
autoimmune polyendocrinopathy-candidiasis-
ectodermal dystrophy or APECED), MIM# 240300, 
(116) or acquired hypoparathyroidism associated 
with autoimmune hypothyroidism (117). This finding 
was confirmed in a subsequent study of 51 cases of 
idiopathic hypoparathyroidism, but there was a 13% 
positive rate in controls (118). Other studies of APS-1 
patients have also identified elevated CASR 
antibodies in some cases but at a lower frequency 
(119-121). Although some have suggested that CASR 
antibody assays are clinically indicated in acquired 
hypoparathyroidism (122), it remains to be seen 
whether the autoantibodies are of primary or 
secondary importance (114, 123). There is now good 
evidence that autoantibodies can be functional 
activators of CASR and thereby could induce 
hypoparathyroidism. While presently there may not be 
a convenient clinical test for this, patient sera have 
been demonstrated to activate the CASR transfected 
into HEK cells in vitro (124). In some hypoparathyroid 
patients, both autoimmune parathyroid destruction 
and suppression by CASR activation may co-exist 
(125).  
 
In APS-1, the most common associated 
manifestations are hypoparathyroidism with 
mucocutaneous candidiasis and Addison's disease. 
Additional features include pernicious anemia, chronic 

active hepatitis, alopecia, keratitis, gonadal failure, 
thyroid disease, pancreatic insufficiency, and diabetes 
mellitus (116). The phenotype is highly variable and 
patients may not express all elements of the basic 
triad, leading to the suggestion that the criteria used 
for molecular screening be relaxed (125, 126). The 
disease usually presents in infancy with chronic oral 
thrush, followed by hypoparathyroidism in the first 
decade, and then adrenocortical failure in the third. 
Interestingly, there is nearly 100% penetrance of 
hypoparathyroidism in females, but less than 60% in 
males, even though the adrenal hypofunction affects 
both sexes equally (119). Moreover, patients who 
develop the adrenal hypofunction first are less likely to 
be male and may never develop hypoparathyroidism. 
The responsible gene, called the autoimmune 
regulator (AIRE), maps to chromosome 21q22 and 
encodes a transcriptional regulator (127-129) . In the 
absence of AIRE protein, tissue-specific self-antigens 
are not expressed in the thymus and multiorgan 
autoimmunity develops, because negative selection of 
the T cells bearing the autoantigens is disrupted (130). 
Many patients with APS-1 can be shown to have 
autosomal recessive inheritance of the AIRE defect. In 
families with autosomal recessive mutations of AIRE, 
obligate heterozygotes may also have common 
autoimmune disorders but APECED is not seen (131). 
A phenocopy leading to acquired APS-1 may occur 
when the AIRE gene is silenced by thymic neoplasia 
(132). APS-1 has been associated with more than 300 
mutations of the AIRE gene, and updates can be found 
in the online mutation database 
(https://grenada.lumc.nl/LOVD2/mendelian_genes/ho
me.php?select_db=AIRE).  
 
PARATHYROID RESISTANCE SYNDROMES 
 
Pseudohypoparathyroidism  
 
Several clinical disorders characterized by end-organ 
resistance to PTH have been described collectively by 
the term pseudohypoparathyroidism (PHP). They are 
associated with hypocalcemia, hyperphosphatemia, 
and increased circulating PTH. Target tissue 
unresponsiveness to the hormone manifests as a lack 
of increased phosphate excretion and, in some cases, 
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cAMP excretion in response to PTH administration 
(133). The biochemical characteristics of the different 

forms of PHP are contrasted with those of 
hypoparathyroidism in Table 3. 

 
Table 3. Biochemical Characteristics of Hypoparathyroidism and Pseudohypoparathyroidism  
Defects  Serum PO4  PTH  25(OH)D  1,25(OH)2D  UcAMP*  UPO4*  Multiple 

Endocrine 
Defects  

Hypoparathyroidism  ↑  ↓  -  ↓  -  -  Yes/No**  
Pseudohypoparathyroidism  
     Type 1a  ↑  ↑  -  ↓  ↓  ↓  Yes  
     Type 1b  ↑  ↑  -  ↓  ↓  ↓  No/Yes#  
     Type 1c  ↑  ↑  -  ↓  ↓  ↓  Yes  
     Type 2  ↑  ↑  -  ↓  -  ↓  No  

↑, increased; ↓, decreased; -, normal; 
*Response to PTH infusion 
**, depending upon the etiology. 
#, variable, mild defects of the thyroid axis due to TSH resistance may be seen. 
 

Albright Hereditary Osteodystrophy  
 
Fuller Albright first recognized that the likely cause of 
the hypoparathyroid state in PHP is a constitutive 
absence of target tissue responsiveness (134). In 
many patients, the end-organ resistance is 
accompanied by a specific pattern of physical findings, 
called Albright hereditary osteodystrophy (AHO; 
MIM#300800). Typically, patients have short stature, 
round facies, brachydactyly, obesity, and ectopic soft 
tissue or dermal ossification(s) (osteoma cutis) (Figure 
1). In the calvaria, this may manifest as hyperostosis 
frontalis interna (135). Intracranial calcification(s), 
cataracts and band keratopathy, subcutaneous 

calcifications, and dental hypoplasia are also common 
but are likely the consequences of longstanding 
hypoparathyroid hypocalcemia (Table 4, see below 
Figure 1). The brachydactyly may be asymmetric or 
not, and may involve one or both hands or feet, but the 
pattern is quite distinctive (136, 137). The shortening 
tends to involve the first distal phalanx, with a 
thumbnail (or first toenail) that is wider than it is long. 
The fourth and fifth metacarpals (or metatarsals) are 
frequently shortened out of proportion to the others 
and the second metacarpal is often spared. 
Radiographic analysis of the hands (pattern profiling) 
may be helpful in assessment of the brachydactyly 
(Figure 1) (138). 
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Figure 1. Albright’s hereditary osteodystrophy (AHO) and characteristic skeletal abnormalities. A) A 
child with AHO exhibiting short stature, obesity, and round facies. B) The hand X-ray of a patient with 
AHO, displaying brachydactyly of the fourth and fifth metacarpal bones. C) Dimpling over the knuckles 
of a clenched fist (also known as Archibald sign), indicating the short metacarpals. D) Evidence of 
brachydactyly in the hand, reflecting the shortened fourth and fifth metacarpals and the distal phalanx 
of the thumb. Images are from: Levine, MA (139). 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.endotext.org/


 
 

 
www.EndoText.org 12 

Table 4. Incidence of signs and symptoms in PHP with AHOa 
 Percentage  
Short stature  80  
Obesity  50  
Craniofacial  
Round face  92  
bLenticular opacities  44  
Strabismus  10  
bDental hypoplasia  51  
bBasal ganglia calcification  50  
Thickened calvaria  62  
Mental deficit  75  
Brachydactyly  
Brachymetacarpia  68  
Brachymetatarsia  43  
Brachyphalangia  50  
Other connective tissue features  
Decreased bone density  15  
Ectopic ossification  56  
bSubcutaneous calcification  55  

a Taken from Drezner and Neelon (1995). 
b Features common to other forms of chronic hypoparathyroid hypocalcemia. 
 
Although affected patients are generally short as 
adults, their bone age as children may be advanced 
and growth accelerated (138). Patients with AHO may 
be predisposed to hypertension (140), conductive and 
sensorineural hearing loss (135, 141), cord 
compression due to spinal anomalies (142), and 
movement disorders due to basal ganglia calcification 
(143). The features of AHO may be subtle in infancy 
or early childhood; in a few, there is little to see even 
in adulthood. The round facies, short neck, and low, 
flat nasal bridge are often accompanied by central 
obesity (144). A study showed that the obesity 
phenotype occurs primarily in those patients who also 
have multiple hormone resistance, i.e., PHP1A (see 
below), and according to data from mice, a 
hypothalamic mechanism, rather than hypothyroidism, 
is the primary underlying cause (145, 146). 
Interestingly, a study showed that GNAS mutations 
are not uncommon in severe childhood-onset obesity 
in the absence of other typical PHP findings (147). 
 

Patients with brachydactyly, mental retardation, and 
other features closely resembling AHO have been 
found to carry microdeletions of chromosome 2q37; 
brachydactyly-mental retardation, BDMR; 
MIM#600430 (148). Genes important for skeletal and 
neurological development lie within this region. 
Haploinsufficiency of HDAC4 (MIM#605314), 
encoding a histone deacetylase that regulates gene 
expression during the development of many tissues 
including the bone, is responsible for the 
brachydactyly and the mental retardation in those 
patients (149). Isolated brachydactyly type E (BDE, 
MIM#113300) has been associated in sporadic cases 
with mutations in HOX13 (MIM#168470) (150) and 
mutations in the PTHLH gene (MIM#168470) on 
12p11.2 that encodes PTHrP have been implicated. In 
one family with autosomal BDE a cis-regulatory site 
downregulates PTHLH in translocation 
t(8;12)(q13;p11.2) and downregulates its targets 
ADAMTS-7 and ADAMTS-12 leading to impaired 
chondrogenic differentiation (151). Affected 
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individuals of one large family with BDE, short stature, 
and learning difficulties had an ~900 bp microdeletion 
encompassing PTHLH (152). Additional individuals 
with BDE and short stature from other different 
kindreds were found to have PTHLH missense, 
nonstop, and nonsense mutations (152). Different 
translocations affecting chromosome 12p have also 
been identified in two families with BDE, leading to 
increased abundance of a long noncoding RNA on 
chromosome 12q, which regulates the expression of 
PTHLH in cis and of the SOX9 gene located on 
chromosome 17q in trans (153). BDE is associated 
with hypertension in some cases, in which the disease 
is inherited in an autosomal dominant manner (termed 
HTNB). Missense mutations in PDE3A, a gene 
encoding a cAMP/cGMP phosphodiesterase, have 
been recently found in several unrelated families with 
HTNB. These mutations cause increased cAMP 
hydrolytic activity and thus lead to diminished cAMP 
signaling (154). Some patients with AHO-like features 
have been described, who also showed platelet Gs 
hypofunction. Those patients were found to have IGF2 
hypermethylation and SNURF hypomethylation, as 
well as imprinting defects within GNAS, the gene 
encoding the stimulatory G protein alpha-subunit 
(Gsα; see below) (155). 
 
PHP1A  
 
PHP1A patients are characterized by AHO, PTH 
resistance, and evidence of target organ resistance to 
other hormones. Patient-derived cells are found to 
have a reduction in the activity of the Gsα subunit, 
which is part of the membrane-associated 
heterotrimeric stimulatory G-protein complex - 
transducing signals between G-protein coupled 
receptors and adenylate cyclase (156-158). Adenylyl 
cyclase catalyzes the synthesis of the second 
messenger cAMP, and therefore, PHP1A patients 
tend to have a deficiency in cAMP generation, 
particularly in certain tissues. As explained above, this 
deficiency is clear when measuring cAMP excretion in 
response to PTH administration. 
 
The GNAS gene (MIM#168470) encoding the Gsα 
protein maps to 20q13.2-13.3 and has at least 4 

alternative transcriptional start sites (Figure 2) and an 
antisense transcript, GNAS-AS1 (159). The three 
upstream exons and the preceding promoter regions 
are genetically imprinted, i.e., methylated in an allele 
specific manner. The promoter of the Gsα transcript, 
which uses exon 1, is unmethylated. Unlike the other 
alternative GNAS products, Gsα expression is biallelic 
except in a small set of tissues, where Gsα is derived 
predominantly from the maternal allele (160-164) . 
This tissue-specific monoallelic Gsα expression 
affects the penetrance of the PHP phenotype. The 
maternal transmission of the hormone resistance in 
PHP1A (165) can be explained by the silencing of the 
paternal Gsα allele, which would otherwise allow 
expression of 50% of Gsα protein (166). Thus, the full 
expression of a coding GNAS mutation, which occurs 
in maternally transmitted cases, leads to AHO plus 
hormone resistance (PHP1A). On the other hand, if 
the same mutation is inherited paternally, it causes 
AHO alone. The latter is termed 
pseudopseudohypoparathyroidism (PPHP). Thus, 
PHP1A and PPHP can be found in the same families. 
Note that a systematic nomenclature and 
classification, “inactivating PTH/PTHrP signaling 
disorder” (iPPSD), has been suggested for PHP1A, 
PPHP, and related disorders arising from abnormal 
PTH and/or cAMP signaling, accounting for the 
underlying genetic/epigenetic abnormalities and 
associated phenotypes (167). 
 
Despite clinical evidence supporting imprinting in 
portions of the kidney tubule, it has been difficult to 
confirm this experimentally in humans (168). The 
imprinting of GNAS is complex and involves multiple 
differentially methylated regions (DMR) (159). 
Moreover, it is tissue-specific and may vary with 
developmental stage, although key imprinting of the 
A/B (also referred to as 1A) DMR is thought to be a 
primary event that occurs during gametogenesis and 
is maintained thereafter (169). Ablation of the Gsα 
ortholog in mice (Gnas) has confirmed that maternal, 
but not paternal, transmission of the deleted allele 
results in PTH resistance. The homozygous deletion 
of Gnas is embryonic lethal (160). Comparison of Gsα 
expression in mice with maternally vs paternally 
disrupted Gsα expression also demonstrated that Gsα 
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expression is predominantly maternal in the renal 
cortex, but not in renal medulla (160, 170) . PTH 
resistance is delayed until after infancy in most PHP1A 

patients, and a study using mice demonstrated that 
the silencing of the paternal Gsα allele develops 
postnatally (171). 

 

 
Figure 2. Simplified view of the GNAS region and its transcripts. The normal allele-specific methylation 
and expression patterns of the four alternate first exons of GNAS which splice onto exon 2 to produce 
transcripts encoding NESP55, XLαs, 1A (referred to as A/B in humans), and Gsα (which uses exon 1). 
NESP55 and XLαs promoters are oppositely imprinted: NESP55 is expressed from the maternal allele 
and its promoter region is methylated on the paternal allele, whereas XLαs is expressed from the paternal 
allele and its promoter is methylated on the maternal allele. Gsα is paternally silenced in some tissues 
e.g., renal proximal tubule cells, indicated by the dashed arrow. NESP55 protein is unrelated to Gsα, and 
its entire coding region is located within its first exon. In contrast, XLαs and Gsα proteins have identical 
COOH-terminal domains (encoded by exons 2-13), while their unique NH2-terminal domains are encoded 
within their respective first exons. Exon A/B (1A) does not have a translational start site but is 
transcriptionally active. Loss of exon A/B imprinting (methylation) is associated with decreased Gsα 
expression in renal proximal tubules and some other hormone-responsive tissues and is the typical 
cause of PHP1B. (figure from Liu et al., 2000, with permission). 
 
A variety of inactivating mutations in the Gsα-coding 
portion of the GNAS gene have been identified in 
PHP1A patients (172, 173). The spectrum includes 
missense mutations, point mutations impairing 
efficient and accurate splicing, and small 
insertion/deletion mutations. The 4-bp deletion in exon 
7 (DGACT 188/190) has been observed in multiple 
unrelated cases, suggesting that this may be a hot 
spot (174, 175). Several other mutations have also 
been observed in more than one kindred, indicating 
that additional susceptibility regions may exist. The 
identification of de novo germline mosaicism (176) is 
consistent with the view that most sporadic cases 
harbor new mutations, but the separation of such 
sporadic cases from familial ones, in which there is 
suppression of phenotype due to imprinting, may be 
difficult without detailed molecular studies. 
 

PHP1A cases have been described in which no 
mutations of the GNAS gene have been found by 
nucleotide sequence analysis of exons encoding Gsα. 
This may be because the mutation is in a regulatory 
region of the gene not yet examined, or it may be that 
a large deletion prevents amplification of the mutant 
allele for subsequent analyses. In cases without 
identified GNAS coding mutations, an assessment of 
Gsα bioactivity in erythrocytes is helpful in ruling out 
regulatory region mutations or large deletions. A 35-kb 
deletion spanning exons 1 through 5 has been 
identified by using comparative genome hybridization 
in a patient with PHP1A in whom coding mutations had 
been ruled out, but a marked reduction of erythrocyte 
Gsα activity demonstrated (177). 
 
Typically, PHP1A is associated with multiple hormone 
resistance, including thyroid stimulating hormone 
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(TSH) and gonadotropins, causing hypothyroidism 
and gonadal failure, respectively. Because the 
hypothyroidism may express before hypocalcemia is 
observed (178), early surveillance of thyroid function 
is warranted. However, thyroid replacement from birth 
does not appear to prevent the mental deficit typical of 
PHP1A. In women, the hypogonadism is partial (179), 
and thus, oral contraceptives may help regulate the 
menstrual cycle. Estrogen can antagonize bone 
resorption, leading to an exacerbation of 
hypocalcemia (180), but placental 1,25-
dihydroxyvitamin D synthesis likely obviates this effect 
altogether in pregnancy so women are frequently 
normocalcemic at that time (181). Abnormalities of the 
somatotropin axis have also been reported, with 
documentation of subnormal growth hormone release 
following stimulation by L-arginine or growth hormone-
releasing hormone (182, 183). 
 
The tissue-specific silencing of the paternal Gsα allele 
also plays a key role in the development of the 
additional hormone resistance phenotypes, as 
monoallelic Gsα expression has been demonstrated in 
the thyroid, the ovaries, and the pituitary (161-164). 
Studies have revealed that obesity also develops 
primarily in patients who inherit the inactivating Gsα 
mutations from their mothers (184). Gsα is not 
imprinted in the white adipose tissue (185), but the 
investigations of mice in which Gsα is ablated 
conditionally in the brain showed that Gsα is also 
monoallelic in certain parts of the hypothalamus (145, 
146), thus explaining the imprinted mode of 
inheritance of the obesity phenotype. This likely 
reflects impaired signaling downstream of the 
melanocortin receptor type-4 (MC4R), given that it 
signals via G proteins including Gsα and that 
inactivating MC4R mutations are causal for 
dominantly inherited morbid obesity (186, 187). 
Indeed, almost all GNAS mutations identified in a large 
cohort of children with severe obesity impaired MCR4 
signaling in cell-based assays (147). In mice, ablation 
of the maternal but not paternal Gnas allele in the 
dorsomedial nucleus of the hypothalamus leads to 
obesity (145), similar to the findings in mice with the 
conditional MC4R deficiency in this part of the brain 
(188). Like obesity, it has been noted that cognitive 

impairment, a typical AHO feature, also develops 
primarily after maternal inheritance of the inactivating 
Gsα mutation (189), although the underlying 
mechanisms behind the parental-specific inheritance 
of this phenotype have yet to be defined. 
 
PHP1B  
 
PHP1B is typically not associated with AHO or a 
generalized reduction in Gsα expression (190-192). 
PHP1B patients show a defect in renal PTH signaling, 
but an apparently normal response to PTH in bone 
(193, 194). Affected individuals are therefore 
functionally hypoparathyroid but show normal skeletal 
architecture and development. Due to unimpaired 
PTH responsiveness in bone, however, signs of 
hyperparathyroid bone disease (osteitis fibrosa 
cystica) are occasionally observed, complicating the 
picture (195). Biochemical abnormalities suggestive of 
thyroid stimulating hormone resistance are also seen 
in some patients (164). In fact, sometimes, PHP1B 
cases can present first with hypothyroidism (196, 197). 
A study also demonstrated short stature and growth 
hormone deficiency in monozygotic twins with PHP1B 
(198). Abnormalities of renal uric acid handling have 
been documented (199, 200). However, clinically 
significant hormone resistance is restricted to PTH in 
most cases. Because the hormone resistance is 
mostly limited to PTH, it was thought at one time that 
these findings could be explained by a defect in the 
type-1 parathyroid hormone receptor (PTH1R, 
MIM#168468). Sequence analyses, however, found 
no mutations in protein-coding exons or gene 
promoter regions of the gene (201-203), and studies 
of PHP1B families show no linkage to PTHR1 (204, 
205). 
 
Most cases of PHP1B are sporadic, but a familial form 
of PHP1B with an apparent autosomal dominant mode 
of inheritance also exists (AD-PHP1B). In four AD-
PHP1B kindreds, linkage to chromosome 20q13.3 
was established, the same region which includes the 
GNAS locus (204). In these families, the pattern of 
transmission suggested paternal imprinting, and 
inheritance is therefore the same as for PHP1A. A 
further 13 PHP1B subjects were studied, some of 
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whom had bone responsiveness to PTH (166). All 
lacked methylation of the alternate exon A/B, an 
epigenetic defect that is postulated to inhibit 
expression of the functional exon 1-containing Gsα 
transcript in renal tissues only (Figure 2). Thus, the 
loss of methylation of the maternal exon A/B allele 
leads to the silencing of the maternal as well as 
paternal Gsα allele, causing PTH resistance 
specifically in renal proximal tubule cells. A genetic 
analysis indicated that mutations in a regulatory region 
some distance from the GNAS coding exons were 
likely to account for the unique imprinting defect(s) 
associated with PHP1B (206). A search for the 
mutation revealed the presence of a 3 kb 
microdeletion that segregated with the disease in 12 
kindreds with AD-PHP1B and also occurred in 4 
sporadic cases (207). The deletion, flanked by direct 
repeats, removes 3 exons of the STX16 gene, which 
encodes syntaxin-16. Two other deletions within 
STX16 and larger deletions spanning both STX16 and 
its telomeric neighbor NPEPL1 have been identified in 
AD-PHP1B kindreds (208-211). In all these cases, 
maternal, but not paternal, inheritance of the STX16 
deletion led to PTH resistance. Because STX16 is 
apparently not imprinted (208), loss of one copy of this 
gene is not predicted to underlie the PHP1B 
pathogenesis. Interestingly, two large deletions 
ablating NESP55 without any overlap with STX16 as 
the cause of PHP1B in families in whom affected 
individuals showed isolated loss of A/B methylation 
(211, 212). Note that the NESP55 region showed an 
apparent gain of methylation due to the deletion of the 
maternal allele. 
 
In two other PHP1B kindreds, nearly identical 
deletions of the NESP55 DMR including exons 3 and 
4 of the antisense transcript segregated with the 
disease (213). In this instance, however, the A/B DMR 
was not the only region to lose the differential 
methylation required to allow maternal expression of 
Gsα in the kidney. Maternal methylation was also lost 
in the regions of the XLαs and GNAS-AS1 promoters. 
Another kindred with these widespread epigenetic 
defects of GNAS has been described (214). The 
affected individuals in this kindred carried a maternally 
inherited deletion that removed antisense exons 3 and 

4 with flanking intronic regions but not the NESP55 
exon. Additional genomic deletions or rearrangements 
in the chromosomal regions comprising GNAS have 
also been identified and proposed to underlie the 
GNAS methylation abnormalities in some AD-PHP-Ib 
cases (215-219). 
 
These PHP1B deletions point to two different 
imprinting control regions (ICRs) for the GNAS 
complex locus: one within the STX16 gene and the 
other at the NESP55 DMR. The ICR defined by the 
deletion at the neighboring STX16 gene seems to be 
in a different location in the mouse, because the 
targeted ablation of the region homologous to the 3-kb 
deletion caused neither Gnas methylation defects nor 
PTH resistance in mice (220). Recently, genome-wide 
methylation analysis of embryonic stem cells indicated 
that the A/B region is modestly hypomethylated 
compared to differentiated cells (221, 222), suggesting 
that this imprinted region differs from most other 
imprinted loci and is regulated critically in the early 
embryo. Subsequently, a study showed that deleting 
either the maternal STX16-ICR or the maternal 
NESP55-ICR results in significant further A/B 
hypomethylation in human embryonic stem cells 
(hESCs) (223). Moreover, while wild-type hESCs 
recovered their methylation following a transient 
inhibition of the maintenance DNA methyltransferase 
DNMT1 (mimicking the global demethylation process 
in the preimplantation embryo), the cells with 
maternally deleted STX16- or NESP55-ICR failed to 
regain methylation (223). This study also showed that 
the shortest region of overlap among the PHP1B-
causing STX16 deletions was shown to harbor a 
pluripotent cell-specific enhancer element for the 
NESP55 promoter on the maternal allele (223). Taken 
together with a mouse study implicating NESP55 
transcription in the regulation of maternal GNAS 
imprints (224), these findings strongly suggest that the 
GNAS exon A/B imprint is controlled, at least partly, in 
the early embryo by the NESP55 transcript that relies 
on the long-range enhancer within STX16. Thus, 
perturbation of this mechanism appears to be the 
underlying cause of the GNAS methylation defects 
observed in familial PHP1B cases. 
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Sporadic PHP1B cases also show broad GNAS 
epigenetic defects that involve A/B. In some of these 
cases, paternal uniparental disomy of different 
chromosome 20 segments have been reported as the 
likely cause of PHP1B in several such cases (225-
229). The cause of the epigenetic defects and PTH 
resistance, however, remains unknown for most cases 
of sporadic PHP1B. GNAS methylation defects have 
been identified in some cases with hypomethylation at 
multiple maternally methylated imprinted regions (230-
233). In fact, some of those cases show both PTH 
resistance and the clinical features resulting from the 
methylation changes of the other loci, such as 
Beckwith-Wiedemann Syndrome. 
 
A recent study revealed that, in addition to the exon 
A/B DMR, methylation at a new GNAS region close to 
the GNAS-AS1 promoter (termed GNAS-AS2), is lost 
in patients who carry STX16 deletions (234). Note that 
this region is also affected in those cases that display 
broad GNAS methylation changes. Recently, two 
distinct subdomains with the GNAS-AS2 region have 
been identified, and a patient with partial loss of A/B 
methylation showed gain-of-methylation in one 
subdomain and no alteration in the other (235). The 
effect of methylation changes at GNAS-AS2 has yet to 
be determined at the level of gene expression, and 
their pathophysiologic significance is unclear. Two 
distinct PHP1B families have been recently described 
to carry maternal retrotransposon insertions in the 
large intron between exon XL and A/B of the maternal 
GNAS allele (236, 237). These cases had apparently 
normal levels of GNAS-AS2 methylation (235, 237), 
reflecting, perhaps, that the deleterious genetic 
alteration is located downstream of this DMR. The 
mechanism by which these retrotransposons cause 
A/B hypomethylation may entail perturbation of 
NESP55 transcription. The inserted sequence 
comprises multiple polyadenylation signals 
(AAUAAA), which may truncate the transcript 
prematurely, and one of the studies showed that the 
level of NESP55 transcript was reduced in patient-
derived induced pluripotent cells (236).  
 
A study compared the clinical phenotypes of PHP1B 
patients who show isolated A/B loss of methylation to 

those with broad GNAS methylation defects (238). No 
clinical differences could be established according to 
the pattern of GNAS epigenetic defects, although 
serum PTH levels were significantly higher in females 
with broad GNAS methylation defects than females 
with isolated loss of 1A methylation. Another study 
also found an intrauterine growth advantage for both 
AD-PHP-1b and sporadic PHP-1b cases, but the 
results indicate that the sporadic cases are not as 
markedly growth accelerated as AD-PHP-1b cases at 
birth (239). 
 
Contrary to the classical understanding that AHO 
features are unique to PHP1A, some studies have 
identified patients with PTH resistance and AHO 
features who show GNAS epigenetic defects rather 
than Gsα coding mutations (200, 240-242). Thus, 
there may be some overlap between the clinical and 
molecular features of PHP1A and PHP1B. It is 
possible that the AHO features observed in patients 
with GNAS epigenetic defects result from a genetic 
mechanism that is similar to the mechanism 
underlying the hormone resistance in PHP1A patients, 
i.e., due to monoallelic Gsα expression in additional 
tissues. 
 
A PHP1B family with a novel Gsα mutation, deletion of 
isoleucine-382 in the carboxyl terminus has been 
described (243). In transfected cells this mutation led 
to uncoupling from the PTHR1 and isolated PTH 
resistance but not from other receptors, including TSH 
receptor. However, the same mutation showed 
uncoupling from multiple receptors, questioning the 
role of this mutation in the pathogenesis of PHP1B in 
this family. Such mutations within Gsα coding exons 
are likely to be a rare cause of PHP1B (166).   
 
PHP1c and PHP2 
 
Patients with PHP1c have multiple hormone 
resistance but normal Gsα activity. The defect may be 
in other components of the receptor-adenylate cyclase 
system, such as the catalytic unit, but some PHP1c 
cases have been reported to carry Gsα coding 
mutations (244). These mutations render the Gsα 
protein unable to mediate cAMP generation in 
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response to receptor activation but do not affect basal 
adenylate cyclase stimulating activity or the ability to 
be activated by non-hydrolyzable GTP analogs (244-
246). Thus, some forms of PHP1c appear to be an 
allelic variant of PHP1A. Finally, patients with PHP2 
have a normal urinary cAMP response to PTH but an 
impaired phosphaturic response (247). The defect 
could be in the cAMP-dependent protein kinase 
(PKA), one of its substrates or targets, or in a 
component of the PTH-PKC signaling pathway. 
 
Impaired PTH-induced phosphaturia with normal 
nephrogenous cAMP formation (i.e., PHP2) appears 
as the least common form of PHP.  PHP2 is a sporadic 
disorder, but a familial form of PHP2 has been 
reported (248). In addition, a self-limited form of this 
disease in newborns has also been described, 
suggesting that it is transient in nature (249-251).  The 
etiology and pathophysiological mechanisms behind 
this PHP variant remain unknown.  Because patients 
show adequate nephrogenous cAMP generation in 
response to exogenous PTH, molecular defects 
downstream of cAMP production are implicated, such 
as protein kinase A (247).  Accordingly, a study (252) 
has discovered a heterozygous mutation of the gene 
encoding the regulatory subunit of PKA (PRKAR1A) in 
three patients with multiple hormone resistance and 
acrodysostosis, a form of skeletal dysplasia that 
includes severe brachydactyly type-E and other 
skeletal findings that resemble AHO (also known as 
Maroteaux-Malamut syndrome (253, 254).  Several 
other variants of PRKAR1A have also been identified 
in other patients with a similar phenotype (255-258). 
These mutations, including the recurrent mutation 
R368X leading to the truncation of the C-terminal 14 
residues, impair cAMP binding to the regulatory 
subunit, thereby blocking the activation of PKA (252, 
259-261). In addition to acrodysostosis, patients 
carrying this mutation display evidence for target 
organ resistance to PTH, thyrotropin, growth 
hormone-releasing hormone, and gonadotropins, but 
these findings are accompanied by elevated basal 
plasma and urinary cAMP levels and with an 
apparently normal cAMP response to exogenous PTH 
administration. In certain other patients with 
acrodysostosis, but mostly without hormone 

resistance, it has been shown that the disease is 
caused by missense mutations in PDE4D, which 
encodes a cAMP phosphodiesterase (258, 262, 263). 
Given that PDE4D is an enzyme that reduces the 
intracellular cAMP concentration, the PDE4D 
mutations are likely to be gain-of-function (264).  The 
type of acrodysostosis caused by PRKAR1A 
mutations has been termed acrodysostosis-1 
(MIM#101800), while the one caused by PDE4D 
mutations acrodysostosis-2 (MIM#614613). In 
addition, another subtype of cAMP 
phosphodiesterase, PDE3A, is affected in another 
disorder characterized by severe hypertension and 
brachydactyly type-E with short stature (154, 265), 
underscoring the importance of cAMP signaling in 
skeletal development and the regulation of vascular 
tone. 
 
Other Phenotypes Associated with GNAS 
Mutations 
 
In contrast to the PHP phenotype associated with 
inactivating GNAS mutations, a different form of 
sporadic bone disease, (polyostotic fibrous 
dysplasia) results from de novo GNAS mutations that 
cause constitutive Gsα activity (266). A more severe 
form of this disease (panostotic fibrous dysplasia) 
with hyperphosphatasia and hyperphosphaturic 
rickets has also been described (267, 268) . Patients 
carrying these activating mutations are mosaic for 
mutant and wild-type cells, indicating that the mutation 
is acquired during postzygotic development. These 
mutations affect the arginine residue at position 201 
(exon 8) and, rarely, the glutamine at 227 (exon 9), 
and inhibit the intrinsic GTP hydrolase activity of Gsα, 
thereby leading to constitutive activity. Such 
constitutively activating mutations of GNAS are also 
found in a variety of endocrine and non-endocrine 
tumors, such as growth hormone-secreting adenomas 
(269) . A missense mutation in exon 13 (A366S) 
results in a Gsα protein that is unstable at 37°C, but 
constitutively active at lower temperatures (270, 271). 
Affected patients have PHP due to PTH resistance 
and precocious puberty (testotoxicosis) due to 
hormone-independent constitutive activation of 
luteinizing hormone receptors at lower ambient 
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temperatures in the testes. Another Gsα mutant 
carrying Ala-Val-Asp-Thr amino acid repeats in the 
guanine-binding domain has been described in a 
patient with neonatal diarrhea and PTH resistance 
(272). In this instance, the mutant protein is unstable 
and localized to the cytoplasm rather than plasma 
membrane, which explains the hormone resistance. 
On the other hand, this mutation increases the rate of 
GDP-GTP exchange and, thus, confers overactivity. 
The increased activity of Gsα seems to be evident 
during the neonatal period in the gut, where the mutant 
localizes to the plasma membrane, thus explaining the 
diarrhea phenotype. Additional cases with missense 
Gsα mutations have been reported, presenting with 
clinical findings that likely reflect both gain and loss of 
Gsα function (273, 274).  
 
Inactivating GNAS mutations have also been identified 
in patients with congenital osteoma cutis and 
progressive osseous heteroplasia (POH), 
suggesting that these connective tissue conditions are 
another variant in the phenotypic spectrum of GNAS-
related disease (275-278). No genotype-phenotype 
correlation has been revealed regarding these 
disorders, as the same mutation can be associated 
with either typical AHO features or severe ossifications 
that involve deep connective tissues and skeletal 
muscle (279). Nonetheless, patients with POH inherit 
the GNAS mutation from their fathers or acquire this 
mutation de novo on the paternal GNAS allele. This 
parent-of-origin specific inheritance of POH was 
established by analyzing 18 unrelated kindreds with 
this disorder (280). In a single, three generation, 
kindred, the inheritance of the mutation from males led 
to POH, while the inheritance of the same mutation 
from females led to typical AHO. It thus appears likely 
that alterations in the activity of a paternally expressed 
GNAS product, such as XLαs, contribute to the 
pathogenesis of POH. However, POH-like features 
have also been seen in some patients with maternally 
inherited GNAS mutations (281). A study revealed that 
the distribution of POH lesions follows 
dermomyotomes and shows a tendency for one-
sidedness, suggesting that post-zygotic second hits 
may contribute to the development of these lesions on 

top of the inherited heterozygous mutations of GNAS 
(282). 
 
Differential Diagnosis and Genetic Counseling 
 
Patients with dysmorphic features resembling AHO 
may require careful endocrinologic work-up to confirm 
and delineate the form of PHP that is present. Similar 
studies of family members may also be warranted, 
since the biochemical and clinical features vary within 
families. If PHP1A with AHO is established, genetic 
counseling may aid in understanding the 
multisystemic nature of the disorder, particularly in 
relation to the patient's growth and development, and 
later-onset connective tissue complications. For either 
PHP1A or PHP1B, extensive counseling may be 
required to adequately explain the various implications 
of paternal imprinting for the parent-specific 
recurrence risks in offspring. Germline mosaicism has 
been reported (176) , which is clearly important in 
assessing risks for recurrence in future sibs of a 
singleton family. Given the recently described 
complexities in the molecular, biochemical, and 
physical features of PHP1A and PHP1B, molecular 
testing is critical for achieving a clear diagnosis and 
validating the inheritance pattern in any given family. 
 
THE PARATHYROID HORMONE RECEPTOR AND 
SKELETAL DYSPLASIAS  
 
PTHR1 is a family B G protein-coupled receptor that 
signals through multiple different G proteins including 
Gsα (283). It responds to two ligands, PTH and the 
PTH-related peptide (PTHrP). It would thus be 
predicted that deleterious mutations might show 
resistance to PTH, as well as evidence for a defect of 
PTHrP action. Functional polymorphisms in the 
PTHR1 are associated with adult height and bone 
mineral density (284), emphasizing the role that the 
receptor and its ligands play in endochondral bone 
formation. Inactivating or loss-of-function mutations in 
the PTHR1 have been implicated in the molecular 
pathogenesis of Blomstrand lethal 
chondrodysplasia (BLC; MIM#215045), and other 
skeletal dysplasias and dental abnormalities (285). 
The rare, recessive BLC is characterized by short-
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limbed dwarfism with craniofacial malformations, 
hydrops, hypoplastic lungs and aortic coarctation 
(286-290). The bones show accelerated endochondral 
ossification and deficient remodeling. The Blomstrand 
disease has been subdivided into type I, which refers 
to the severe (classical) form, and type II, which refers 
to a relatively milder variant, and the difference 
between severity is attributed to complete or 
incomplete inactivation of the PTHR1, respectively 
(291, 292). A milder form of recessively inherited 
skeletal dysplasia, known as Eiken syndrome 
(MIM#600002), has also been linked to mutations of 
PTHR1 (293). Dominantly acting PTHR1 mutations 
have been identified in endochondromas of patients 
with enchondromatosis (Ollier's disease - 
MIM#166000), a familial disorder with evidence of 
autosomal dominance characterized by multiple 
benign cartilage tumors, and a predisposition to 
malignant osteocarcinomas (294, 295). As many 
patients with Ollier’s disease do not have PTHR1 
mutations, it is likely that the condition is genetically 
heterogeneous (296). Dominantly inherited 
symmetrical enchondromatosis is associated with 
duplication of 12p11.23 to 12p11.22 that includes the 
PTHLH gene encoding PTHrP suggesting that 
abnormal PTHR1 signaling may underlie this unusual 
form of endochondromatosis (297). In addition, some 
cases of autosomal dominant nonsyndromic primary 
failure of tooth eruption (PFE) are due to loss-of-
function mutations in the PTHR1 that are dominantly 
acting, leading to haploinsufficiency of the receptor 
(298-302) . 
 
HYPOMAGNESEMIA  
 
In humans, hypomagnesemia leads to a suppression 
of parathyroid hormone release and some degree of 
peripheral resistance. Although the exact molecular 
mechanism underlying the suppression of the 
parathyroid gland in hypomagnesemia is unknown, it 
is important to recognize that laboratory testing in 
cases of hypocalcemia with reduced PTH should 
include measurement of serum magnesium, 
particularly in newborns (303). Primary 
hypomagnesemia with secondary hypocalcemia 
(HSH) is an autosomal recessive disorder 

characterized by neuromuscular symptoms in infancy 
due to extremely low levels of serum magnesium and 
moderate to severe hypocalcemia. Homozygous 
mutations in the magnesium transporter gene 
transient receptor potential cation channel member 6 
(TRPM6) cause the disease. HSH, a potentially lethal 
condition, can be misdiagnosed as primary 
hypoparathyroidism (304). Long-term prognosis after 
treatment with high dose of oral magnesium 
supplementation is good. Hypomagnesemia is also 
associated with long-term use of proton-pump 
inhibitors that decrease the luminal pH of the intestine 
by acting on the enterocyte apical TRPM6/7 channels 
(305, 306).  
 
MANAGEMENT OF HYPOPARATHYROIDISM  
 
Calcium and Vitamin D.  
 
The goal of treatment in hypoparathyroid states is to raise 
the serum calcium sufficiently to alleviate acute symptoms 
of hypocalcemia and prevent the chronic complications 
(307, 308). The calcium concentration required for this 
purpose is generally in the low-normal range. It is equally 
important to ensure that treatment does not result in 
hypercalcemia, as even transient hypercalcemia could lead 
to nephrocalcinosis and renal failure.  Acute or severe 
symptomatic hypocalcemia is best treated with intravenous 
calcium infusion. Initial doses of 2 to 5 millimoles of 
elemental calcium as the gluconate salt can be given over a 
10 to 20 minute period, followed by 2 millimoles elemental 
calcium per hour as a maintenance dose, to be adjusted 
according to symptoms and biochemical response. Care 
must be taken to ensure that the infusion does not 
extravasate, as this can lead to severe tissue damage. Where 
possible treatment through central access is preferred. 
Ionized or total calcium levels should be monitored 
frequently. Doses in children 5 to 14 years of age need to be 
adjusted for body weight, while neonates and infants require 
age-specific dosing. If present, hyperphosphatemia, 
alkalosis and hypomagnesemia should be corrected 
concomitantly. Post-surgical hypocalcemia after thyroid or 
parathyroid surgery is now rarely severe and usually 
transient with appropriate management (309). However, the 
occasional patient can represent a significant problem, 
particularly if the indication for surgery is chronic 
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hyperparathyroidism, and the post-operative 
hypoparathyroid state is permanent (310). The long-term 
effects of standard therapy, hypercalciuria, nephrolithiasis, 
nephrocalcinosis, ectopic tissue calcification and mood 
changes, remain a concern (311). 
 
The mainstay of chronic treatment is oral calcium and 
activated vitamin D (calcitriol), which should be started as 
soon as possible to allow reduction and discontinuation of 
the intravenous calcium. Oral calcium comes in several 
forms, but calcium carbonate is generally the least 
expensive. A total of 20 to 80 millimoles elemental calcium 
daily (2 to 8 g calcium carbonate per day) is generally 
effective, but should be given in divided doses and adjusted 
on the basis of gastro-intestinal tolerance, relief of 
hypocalcemic symptoms, and appropriate biochemical 
response. Vitamin D is preferably administered as calcitriol 
(0.25 to 1.0 micrograms per day), but, with some conditions, 
pharmacological doses of cholecalciferol or ergocalciferol 
or calcidiol may be less expensive and equally efficacious 
(312). Cholecalciferol and ergocalciferol doses are more 
difficult to titrate, and given their long duration of action, 
any overdoses can result in sustained toxicity. It is, 
therefore, appropriate to institute a starting dose of 25,000 
IU/day and titrate upwards (to 100,000 IU/daily) with an 
assessment of serum and urinary parameters afterward with 
follow-up at 6 and 12 months, even if the patient is 
relatively asymptomatic. However, the use of active vitamin 
D (calcitriol or alphacalcidol) is recommended given that 
the lack of PTH along with the accompanying 
hyperphosphatemia reduces renal conversion of 25-
hydroxyvitamin D to active vitamin D (307, 308). Serum 
calcium and 24-hour urinary excretion should be carefully 
monitored when therapy is started and continued until the 
dosing is stabilized. Hypercalciuria that occurs as treatment 
is initiated, even prior to the normalization of the serum 
calcium, may warrant an assessment of nephrocalcinosis by 
renal ultrasound. Consequently, only a low-normal serum 
calcium concentration may be attainable, but many patients 
feel well enough that there is no need to entirely normalize 
the serum calcium. In this way, the risk of renal failure due 
to chronic hypercalciuria − especially problematic in 
patients with CASR activating mutations (6, 7) − is 
minimized. Even after normalization or near-normalization 
of serum calcium, a significant number of patients report 
problems with fatigue, exhaustion, and mood disturbances 

(e.g., depression, anxiety, hostility, and paranoid ideation) 
not in keeping with the degree of hypocalcemia, suggesting 
that there may be non-calcitropic effects of PTH not 
remedied by maintenance of normocalcemia alone (311). In 
an epidemiological and health-related quality of life study 
from Norway, postsurgical hypoparathyroid patients scored 
worse than those with nonsurgical hypoparathyroidism or 
pseudohypoparathyroidism (313), providing further support 
for the notion of direct effects of PTH on mood. 
 
In pseudohypoparathyroidism, calcitriol (and not other 
forms of vitamin D) should be used for the treatment, 
because the PTH resistance in the proximal tubule does not 
allow for the efficient synthesis of 1,25(OH)2D from 25-
hydroxyvitamin D.  In pseudohypoparathyroidism type 1A, 
there is also a degree of PTH resistance in the bone due to 
haploinsufficiency of Gsα.  However, in 
pseudohypothyroidism type 1B, the bone is fully sensitive 
to PTH, so monitoring serum PTH levels during treatment 
is critical with the aim of normalizing or reducing PTH 
levels as much as possible (314, 315). Hypercalciuria as a 
result of the calcitriol and calcium treatment is a lesser 
concern in pseudohypoparathyroidism because PTH actions 
in the distal tubule are still functional, preventing excess 
loss of calcium in the urine and providing greater protection 
against nephrocalcinosis.  
 
Hormone Replacement Therapy   
  
Hormone replacement has been advocated as a 
potentially superior form of treatment for decades but 
only recently have preparations of recombinant human 
hormone –– teriparatide (PTH 1-34), full-length 
parathyroid hormone (PTH 1-84), and abaloparatide 
(PTHrP analog) — become available. In 2015, the 
U.S. Food and Drug Administration (FDA) approved 
recombinant human (rh) PTH (1-84) for the 
management of hypoparathyroidism (316). This 
provided an additional therapeutic option for the 
management of those patients who demonstrate poor 
control with the standard calcium and active vitamin D 
supplemental therapy. The FDA indication was for 
subjects with hypoparathyroidism of any etiology, 
except ADH, but including postsurgical cases. The 
FDA did not limit the duration of its use but approved 
rhPTH(1-84) with a “black box” warning because of the 
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history of rat osteosarcoma and PTH use (317). 
However, no evidence for this in primates or in clinical 
use has been forthcoming (318), and the ‘black box’ 
warning has since been withdrawn (319). 
 
The use of PTH in hypoparathyroidism was 
demonstrated initially with the amino-terminal 
fragment of PTH, teriparatide [PTH(1–34)] (320). 
Beneficial control in children and in adults occurred 
when teriparatide was administered daily, with better 
control when the peptide was administered in twice-
daily dosing regimens (320-324). With a pump delivery 
system by which teriparatide could be administered 
continuously (325, 326), urinary calcium excretion fell, 
and markers of bone turnover normalized. A smaller 
daily dose was required with pump delivery vs multiple 
daily dosing regimens. An open-label trial of PTH(1–
34) in adult subjects with postsurgical 
hypoparathyroidism showed improvement in quality of 
life (327). Beneficial effects on calcium homeostasis 
have also been demonstrated in specific ADH cases 
with activating CaSR mutations (328, 329). 
 
The full-length PTH (1-84) mimics the secreted 
product of the parathyroid gland, and its longer 
biological half-life (than PTH(1-34) makes once-daily 
dosing feasible in the treatment of hypoparathyroidism 
(330-332). Studies by several groups have noted a 
substantial reduction in the requirement for calcium 
and active vitamin D (333-335); only transient 
reductions in urinary calcium excretion (331); a 
tendency for lumbar spine bone mineral density (BMD) 
to increase and that of the distal one-third radius to fall 
(334); a rapid increase in bone turnover, assessed by 
circulating markers and dynamic histomorphometric 
analyses of bone that achieves a new steady state that 
is higher than baseline values within 2–3 years (336); 
and improvements in quality of life in some studies 
(333, 337). 
 
In a placebo-controlled 24-week clinical trial of rhPTH 
(1-84) in 130 hypoparathyroid patients the primary 
endpoints of a reduction by 50% in calcium 
supplements and in active vitamin D along with 
maintenance of the serum calcium were met in over 
half of the study subjects (338). There was a greater 

percentage of subjects in whom active vitamin D could 
be eliminated entirely while taking no more than 500 
mg of oral calcium daily. The drug was titrated from 50 
to 100 μg/d, with just over half of the subjects needing 
the highest dose. The rhPTH(1-84) reduced serum 
phosphate levels, improved the calcium-phosphate 
product, and maintained 1,25(OH)2D and serum 
calcium levels in the normal range (339). In addition, 
therapy with a long-acting prodrug of PTH(1-34), 
TransCon PTH (palopegteriparatide), in 
hypoparathyroidism has been shown to improve 
scores in quality-of-life measures (340). However, 
despite these early positive results, the inconvenient 
route of administration, daily or twice daily 
subcutaneous injection, leads to most patients opting 
for conventional treatment with oral calcium and 
calcitriol. 
 
The manufacturer of rhPTH(1-34) has recently 
decided to discontinue this product at the end of 2024 
due to an unresolved supply issue 
(https://www.takeda.com/newsroom/statements/2022
/discontinue-manufacturing-natpar-natpara/). In 
addition, the use of teriparatide or aboloparatide for 
hypoparathyroidism has not been approved by the 
FDA. Therefore, no available FDA-approved hormone 
replacement therapies currently exist for the 
management of this disorder.      
 
Calcilytics   
 
Calcilytics are small molecule allosteric modulators of 
the CASR that antagonize the calcium-sensing 
receptor and promote PTH secretion and are a 
promising alternative for disorders with intact but 
hypofunctioning parathyroid glands (341). Calcilytics 
inhibit the activation of the CASR in both the 
parathyroid and renal tubule, and thus, they not only 
promote PTH secretion but also increase renal 
calcium reabsorption and are, therefore, of potential 
interest for the treatment of ADH1. In contrast, clinical 
studies in patients with ADH1 treated with PTH(1-34) 
led to better control of blood calcium levels (324), but 
the effects of the activated CASR in the kidney led to 
continued increases in urinary calcium excretion, 
different from patients with postsurgical 
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hypoparathyroidism (326, 329). Thus, while FDA 
approval was given for PTH treatment of 
hypoparathyroidism, ADH1 was excluded from the 
indication.  
 
In cell culture experiments studying activating CASR 
mutants, calcilytics normalize the left-ward shift of the 
calcium response curve (342, 343). The utility of 
calcilytics was further demonstrated in studies of mice 
harboring activating Casr mutations. In one study, two 
knock-in mouse models of ADH1 with activating 
mutations in the Casr were generated. Daily oral 
administration of the calcilytic JTT-305/MK-3442 to 
these mice increased serum PTH and calcium levels 
and reduced urinary calcium excretion (310). 
Intraperitoneal injection of the calcilytic NPS2143 in 
the nuf mouse model of ADH1, transiently increased 
circulating PTH and calcium levels without increasing 
urinary calcium levels (342). In a preliminary clinical 
study, IV administration of the calcilytic NPSP795 to 
five patients with ADH1 increased their plasma PTH 
levels and decreased their fractional urinary calcium 
excretion (344). Calcilytics comprise two main classes 
of compounds; the amino alcohols (e.g., NPS2143, 
NPSP795, JTT-305/MK-5442) and the quinazolinones 
(e.g., ATF936 and AXT914) (341). While both classes 
of compounds corrected the gain-of-function 
properties of several of the ADH1 CASR mutations 
tested in vitro, a subset of mutations involving 
NPS2143 binding sites within the transmembrane 
domain of the CASR are not fully corrected with 
NPS2143 but are normalized with the quinazolinone 
drugs (ATF936 and AXT914) (345-347). Whether this 
is reflected in mouse model studies and clinical 
situations remains to be determined. 
 
Cases of hypoparathyroidism presenting as ADH but 
without CASR mutations have been found to have 
activating mutations of the gene encoding Gα11, the 
alpha-subunit of the heterotrimeric G protein that 
couples the CASR to signaling pathways (348, 349). 
The syndrome has been designated ADH2. Even 
though Gα11 is downstream of the CASR, in vitro 
studies showed that the calcilytic NPS2143 rectifies 
the altered Ca2+ signaling of the overactive mutants 
(350). Knock-in mice harboring an ADH2 Gα11 

activating mutation faithfully replicate ADH2 (351). 
Treatment with the calcilytic NPS2143 or a Gα11/q-
specific inhibitor, YM-254890 (352), increased 
circulating PTH and calcium levels in the 
heterozygous mutant mice (351). Thus, calcilytics, by 
blocking the renal CASR, may have potential use for 
treating ADH1 and ADH2, as well as other forms of 
hypoparathyroidism. 
 
Other Therapies   
 
If the serum calcium attainable with oral calcium and 
calcitriol is below the normal range and the patient remains 
symptomatic, then a trial of a thiazide diuretic may be 
considered, with the aim of reducing the hypercalciuria to 
raise the serum calcium further. The argument for efficacy 
seems greatest for responsive forms of autosomal dominant 
hypocalcemia due to activating CaSR mutations, since the 
thiazide-sensitive transporter, SLC12A3 (MIM#600968), is 
a downstream target of and is suppressed by activated CaSR 
in the kidney. For reasons that are not clear, however, 
thiazides work well in only a subset of patients (353). It is 
critical to monitor serum potassium and magnesium levels, 
as thiazide use can increase renal losses of these cations 
with resulting hypokalemia and hypomagnesemia. Some 
authorities suggest thiazides should not be used in APS1 
patients with adrenal insufficiency and in ADH1 patients 
with Bartter syndrome type V (307, 308). 
 
As the serum calcium is normalized, elevated serum 
phosphate concentrations generally decline, but phosphate-
binding gels such as aluminum hydroxide are occasionally 
helpful in reducing hyperphosphatemia at the beginning of 
therapy or in cases where there is persistent 
hyperphosphatemia. Patients who develop intracranial 
calcifications may experience seizures related to chronic 
neuropathic changes, and it may be necessary to add 
appropriate anti-epileptic medication(s). In all chronically 
hypocalcemic patients, ocular assessments should be 
performed periodically. 
 
In cases with documented abnormalities of the 
somatotropin axis, the growth hormone replacement 
therapy is effective but has to be initiated as soon as 
possible (315, 354, 355). 
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