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ABSTRACT 

 

Significant interest exists in understanding the shared metabolic dysregulation leading to obesity, 

diabetes, and cardiovascular disease (CVD).  Hence came the concept of the “metabolic syndrome” 

(MetS).  Reaven first described MetS in his 1988 Banting lecture as “Syndrome X”.  Reaven suggested 

that the syndrome hinged on the existence of insulin resistance and resulted in glucose intolerance, 

hypertension and dyslipidemia. The World Health Organization (WHO) produced the first formalized 

definition of the MetS in 1998.  Since then multiple definitions of the syndrome have been proposed, the 

most recent being the Harmonized Definition where 3 of the 5 risk factors are present: enlarged waist 

circumference with population-specific and country-specific criteria; triglycerides ≥ 150 mg/dL, HDL-C < 

40 mg/dL in men and < 50 mg/dL in women, systolic blood pressure ≥ 130 mm Hg or diastolic blood 

pressure ≥ 85 mm Hg and fasting glucose > 100 mg/dL, with the inclusion of patients taking medication 

to manage hypertriglyceridemia, low HDL-C, hypertension, and hyperglycemia. The National Health and 

Nutrition Examination Survey (NHANES) estimated the overall prevalence of MetS in adults (aged ≥ 20 

years) in the United States as 33% from 2003 to 2012.  The high prevalence is particularly alarming 

given that MetS also predisposes to a number of serious conditions beyond diabetes and CVD including 

non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), polycystic ovarian 

syndrome (PCOS), obstructive sleep apnea (OSA), cancer, and many other serious disease states.  

Hence, early identification and intervention are warranted. Lifestyle modification is the foundational 

intervention in treatment of MetS.  Specifically, a healthy low-calorie, low fat diet and moderate physical 

activity of at least 150 minutes/week, resulting in a weight reduction of 7%.  Obesity, hypertension and 

dyslipidemia may also be treated pharmacologically to meet individualized patient goals. Beyond the 

clinic imperative around MetS are its pathophysiologic underpinnings.  This review will focus on the 

investigative work into the proximal origins of the MetS.  Defects in insulin signaling occur in a shared 

environment of pro-inflammation, untoward adipokines coming from dysregulated fatty acid metabolism, 

as well as novel pathways involving the gut microbiota.  Collectively, MetS continues to exist as a fertile 

area of research yielding significant insights into early events leading to the most prevalent cause of 

human morbidity and mortality. For in depth review of all related aspects of endocrinology, visit 

www.endotext.org. 
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The metabolic syndrome (MetS) is a compilation of risk factors that predispose individuals to the 

development of type 2 diabetes (T2DM) and cardiovascular disease (CVD).  Reaven (1) first described 

MetS in his 1988 Banting lecture as “Syndrome X. ” Reaven suggested that insulin resistance clustered 

together with glucose intolerance, dyslipidemia, and hypertension to increase the risk of CVD.  The initial 

definition of metabolic syndrome included impaired glucose tolerance (IGT), hyperinsulinemia, elevated 

triglycerides (TG), and reduced high-density lipoprotein cholesterol (HDL-C). Hyperuricemia, 

microvascular angina, and elevated plasminogen activator inhibitor 1 (PAI-1) were later proposed as 

possible additional components of the same syndrome (1,2). Obesity was not included as part of 

Syndrome X as Reaven believed that insulin resistance, not obesity, was the common denominator. 

Reaven noted that all of the elements of Syndrome X could occur in non-obese individuals, and while he 

acknowledged that obesity could lead to a decrease in insulin mediated glucose uptake, he stressed that 

obesity was only one of the environmental factors that affect insulin sensitivity (3,4).  

 

The World Health Organization (WHO) produced the first formalized definition of the MetS in 1998. The 

working definition included impaired glucose tolerance (IGT), impaired fasting glucose (IFG) or diabetes 

mellitus and/or insulin resistance (as measured using a hyperinsulinemic euglycemic clamp study) 

together with two or more additional components. Additional components included hypertension (defined 

as a blood pressure ≥160/90 mm Hg), raised plasma triglycerides (≥150 mg/dl) and/or low HDL-C (<35 

mg/dl for men and <39 mg/dl for women), central obesity (defined either as body mass index (BMI) > 30 

kg/m2 or waist to hip ratio>0.90 for males and >0.85 for females) and microalbuminuria (5). Critics 

questioned the practicality of this definition given the need for a hyperinsulinemic clamp study. Others 

argued that measuring waist circumference was superior in terms of convenience to the waist to hip ratio 

with similar correlations to obesity. Additionally, there was a question about the value of including 

microalbuminuria in the definition as there was insufficient evidence of a connection with insulin 

resistance (5).  

 

These critiques led to the first revision of the definition of the syndrome in 1999 by the European Group 

for the Study of Insulin Resistance (EGIR). They renamed the syndrome the “insulin resistance 

syndrome” (IRS) as it included non-metabolic features. They excluded patients with diabetes because of 

the difficulty of measuring insulin resistance in these individuals. The need for hyperinsulinemic clamp 

studies was obviated by defining insulin resistance as a fasting insulin level above the 75th percentile for 

the population. Additional criteria (elements associated with increased risk of coronary artery disease by 

the Second Joint Task Force of European and other Societies on Coronary Prevention) were also 

included, namely obesity (defined as waist circumference ≥ 94 cm (37 inches) for men and ≥ 80 cm (32 

inches) for women), hypertension (now defined as a blood pressure ≥140/90 mm Hg) and dyslipidemia 

(with triglycerides ≥ 180 mg/dl or HDL-C ≤ 39). Additionally, microalbuminuria was omitted from the 

definition (6). 

 

The National Cholesterol Education Program (NCEP) Adult Treatment Panel III (ATP III) recognized that 

these multiple metabolic elements were cardiovascular risk factors and renamed the constellation of 

these metabolic risk factors as “The Metabolic Syndrome” (7). The criteria included any three of the 

following: obesity (defined as waist circumference ≥ 102 cm (40 inches) in males and ≥ 88 cm (35 

inches) in females (based on the 1998 National Institutes of Health (NIH) obesity clinical guidelines; 

pediatric definitions use standardized Z-scores rather than waist circumference (8)), hypertension 

(defined as blood pressure ≥ 130/85 mm Hg based on the Joint National Committee guidelines), fasting 

glucose > 110 mg/dL, triglycerides ≥ 150 mg/dL and HDL-C < 40 mg/dL.  Additionally, in this report MetS 



 

was recognized as a secondary target of risk reduction therapy after the primary target of LDL 

cholesterol (7).  

 

In 2003, the American Association of Clinical Endocrinologists (AACE) modified the ATP III criteria and 

restored the condition to the name “Insulin Resistance Syndrome,” again highlighting the central role of 

insulin resistance in the pathogenesis of the syndrome (9). This definition did not rely on strict diagnostic 

criteria. The components of the syndrome included some degree of glucose intolerance (but not overt 

diabetes), abnormal uric acid metabolism, dyslipidemia, hemodynamic changes (including hypertension), 

prothrombotic factors, markers of inflammation, and endothelial dysfunction. The AACE position 

statement also identified factors that increased the likelihood of developing the insulin resistance 

syndrome, including a diagnosis of CVD, hypertension, polycystic ovarian syndrome (PCOS), non-

alcoholic fatty liver disease (NAFLD) or acanthosis nigricans, a family history of T2DM, hypertension or 

CVD, a personal history of gestational diabetes (GDM) or glucose intolerance, non-Caucasian ethnicity,  

a sedentary lifestyle,  overweight/obesity (defined as BMI > 25 kg/m2 or waist circumference > 40 inches 

in men and > 35 inches in women) and age > 40 years (9).  

  

The International Diabetes Federation (IDF) aimed to create a straightforward, clinically useful definition 

to identify individuals in any country worldwide at high risk of CVD and diabetes and to allow for 

comparative epidemiologic studies.  This resulted in the IDF consensus definition of MetS in 2005 (10). 

Central obesity, as defined as BMI> 30 kg/m2 or if ≤ 30 kg/m2 by ethnic specific waist circumference 

measurements) was a requisite for the syndrome. Additionally, the definition required the presence of 

two of the following four elements: triglycerides ≥ 150 mg/dL, HDL-C < 40 mg/dL  in men or < 50 mg/dL 

in women, systolic blood pressure ≥ 130 mmHg or diastolic blood pressure ≥ 85 mmHg, fasting glucose 

> 100 mg/dL ( based on the 2003 ADA definition of IFG) (11) including diabetes and those with a prior 

diagnosis of or treatment of any of these conditions (10).  

 

In 2005, the American Heart Association (AHA)/ National Heart, Lung and Blood Institute (NHLBI) also 

suggested criteria for diagnosis of the metabolic syndrome. Their revised definition of the metabolic 

syndrome was based on the ATP III criteria and required three of any of the five following criteria: 

elevated waist circumference ( ≥ 102 cm (40 inches) in males and ≥ 88 cm (35 inches) in females) , 

triglycerides ≥ 150 mg/dL and HDL-C < 40 mg/dL in men and < 50 mg/dL in women, elevated blood 

pressure ≥ 130/85 mm Hg and elevated fasting glucose > 100 mg/dL (12). As suggested by the IDF, 

ethnic-specific waist circumferences were taken into account when using this definition. Additionally, 

impaired fasting glucose was defined as >100 mg/dl, which was also consistent with the IDF guidelines. 

 

Finally, in an effort to provide more consistency in both clinical care and research of patients with MetS, 

the IDF, NHBLI, AHA, World Heart Federation, and the International Association for the Study of Obesity 

published a joint statement in 2009 that provided a “harmonized” definition of MetS (13). According to 

this joint statement, a diagnosis of the MetS is made when any 3 of the 5 following risk factors are 

present (Table 1): enlarged waist circumference with population-specific and country-specific criteria; 

elevated triglycerides, defined as ≥ 150 mg/dL, decreased HDL-C, defined as < 40 mg/dL in men and < 

50 mg/dL in women, elevated blood pressure, defined as systolic blood pressure ≥ 130 mm Hg or 

diastolic blood pressure ≥ 85 mm Hg and elevated fasting glucose, defined as blood glucose  > 100 

mg/dL, with the inclusion of patients taking medication to manage hypertriglyceridemia, low HDL-C, 

hypertension. and hyperglycemia. This definition is frequently referred to as the current Harmonization 

definition.  

 



 

Table 1. Criteria for Diagnosis of the Metabolic Syndrome 

Measure Categorical Cut-Points 

        Waist circumference Population and country specific     
definitions 

        Triglycerides *           ≥ 150 mg/dL 

        High Density Lipoprotein Cholesterol (HDL-C)* Men < 40 mg/dL       Women < 50 mg/dL  

        Blood Pressure*           ≥ 130/ ≥85 

        Fasting Glucose*           ≥ 100 mg/dL 

*Drug treatment for elevated triglycerides, low HDL-C, elevated blood pressure or elevated glucose are 

alternate indicators 

 

It is important to note that in the current Harmonization definition, obesity is diagnosed using waist 

circumference and not BMI as waist circumference has been shown to better correlate with visceral 

adiposity and insulin resistance as well as the development of T2DM and CVD than does BMI (10,14,15). 

Subsequent to the establishment of the harmonized definition, waist to height ratio has been 

demonstrated to be superior to waist circumference and BMI as a screening tool for cardiometabolic risk 

factors (diabetes, hypertension, cardiovascular disease, and all outcomes) as well as predicting whole-

body fat percentage and visceral adipose tissue mass (16,17).  It is not clear if the definition of MetS will 

be revised over time to reflect these new findings. Additionally, in the current Harmonization definition, 

ethnic-specific waist circumference cut-off values are used, as it has been shown that certain ethnic 

groups, especially South Asian populations, have higher degrees of visceral adiposity for given waist 

circumference measurements compared to Europeans (10,13,18). 

 

PREVALENCE 

 

The prevalence of MetS vary greatly depending on criteria used to define MetS, the age, gender, 

ethnicity and environment of the population being studied and obesity prevalence of the background 

population studied (25). Regardless of which criteria are used, however, the prevalence of MetS is high 

and is on the rise in many Western societies(26).  

 

The National Health and Nutrition Examination Survey (NHANES) reported the overall prevalence of 

MetS in adults (aged ≥ 20 years) in the United States from 2003 to 2012 was 33% with the prevalence 

increasing with age, a finding that has been seen in other studies (24,25,27,28).  The NHANES report 

indicates the highest prevalence amongst Hispanics followed by non-Hispanic whites and blacks. Other 

studies have shown that American Indian, Hawaiian, Polynesian, and Filipino populations develop MetS 

more than individuals of European descent (27,29-33). Urban populations have higher rates of MetS 

than rural populations (34,35).  Similar to trends in Western societies, recent studies demonstrate rising 

rates of MetS in many developing countries (36,37). The development of these countries, bringing along 

a higher calorie diet and decreased physical activity, is thought to be largely responsible for the 

increased rate of MetS that is being observed (26,38,39). In summary, MetS affects a significant number 

of individuals worldwide.  

 

CLINICAL UTILITY 

 

The clinical utility of a diagnosis of MetS – vs. the individual components - has been studied extensively. 

Most recently, Pajunen and colleages compared the predictive ability of various definitions of MetS, 

namely the WHO, ATP III, IDF and new Harmonization definitions, found that all these definitions of MetS 

were significant predictors for incident CVD and T2DM. Additionally, the new Harmonization definition 



 

was found to be a better predictor of CVD endpoint than the sum of its components, as well as when 

compared to the Framingham risk score, but this was not the case for the prediction of T2DM (19).  

Importantly, extensive, frequently conflicting literature exists examining the ability of the various 

definitions of MetS to predict outcomes.  Further, skeptics argue that making the diagnosis of MetS does 

not change the clinical management of these patients, as treatment of patients with MetS starts with diet 

and exercise and most physicians would offer the same recommendations to a patient with any of the 

individual elements of MetS (20,21).  

 

In an attempt to settle some of the controversy, a WHO Expert Consultation was undertaken in 

November 2008. The panel concluded that MetS has limited practical utility as a diagnostic or 

management tool. They determined that MetS should not be applied as a clinical diagnosis, but rather 

should be considered a pre-morbid condition and that people with established diabetes or known 

cardiovascular disease should be excluded (22). They also stated that further attempts to redefine it are 

inappropriate in light of current knowledge and understanding (23). Despite the conclusions of the panel, 

the diagnosis of MetS is still commonly encountered in clinical practice as well as in the research arena 

and arguably applies to roughly one-third of the US adult population (24). It also predisposes to a 

number of serious conditions beyond diabetes and CVD including non-alcoholic fatty liver disease 

(NAFLD), non-alcoholic steatohepatitis (NASH), polycystic ovarian syndrome (PCOS), obstructive sleep 

apnea (OSA), cancer, and many others. 

 

PATHOGENESIS 

 

There are many different factors that contribute to the development of MetS. However, as initially 

proposed by Reaven, insulin resistance is thought to play a central role in connecting the different 

components of MetS and adding to the syndrome's development (1,40). Elevated free fatty acids (FFA) 

and abnormal adipokine profiles can both cause and result in insulin resistance and can manifest as 

MetS (41). In this section, we will discuss how these factors contribute to the development of the 

metabolic abnormalities that characterize insulin resistance and MetS.  

 

Insulin Action and Signaling 

 

Through its complex signaling cascades, insulin regulates glucose and fat metabolism. Pancreatic β-cells 

release insulin in response to increased circulating glucose levels and subsequently decreases plasma 

glucose concentrations by coordinately suppressing hepatic glucose production from amino acids and 

other intermediates of metabolism (gluconeogenesis) and glycogen (glycogenolysis), and enhancing 

glucose uptake into the muscle and adipose tissue by mobilization of the insulin-responsive glucose 

transporter 4 (GLUT4) (Fig. 1) (42). Through actions on hormone sensitive lipase, nuclear receptor 

PPARγ, and fatty acid synthase, insulin inhibits lipolysis, promotes adipogenesis and adipose tissue 

differentiation, and under conditions of chronic hyperinsulinemia paradoxically increases fatty acid 

synthase(41,43).  

 



 

 
Figure 1: Normal Insulin Action: In individuals with normal insulin sensitivity, the pancreatic β-

cells release insulin in response to increased circulating glucose levels (as seen in the 

postprandial state). Insulin then decreases the plasma glucose concentration by suppressing 

hepatic glucose output and enhancing glucose uptake into adipose tissue and by skeletal 

muscle. 

 

Insulin resistance is most simply defined by its end organ effects; a decreased ability of insulin to 

suppress lipolysis and hepatic glucose production, as well as facilitate glucose uptake from peripheral 

tissues. There are numerous factors thought to mediate insulin resistance and its adverse effects in 

MetS. Despite its widespread appreciation in metabolic disease, insulin resistance is still not fully 

understood and remains an area of intense scientific investigation. In the following section, we will review 

the ways in which known factors affect insulin resistance in MetS. 

 

It has been thoroughly documented that FFAs mediate many undesirable metabolic effects, especially 

insulin resistance (44). FFAs are thought to be increased in obesity secondary to increased fat mass. 

Additionally, under conditions of insulin resistance, insulin’s inhibitory effects on lipolysis are reduced, 

leading to a further increase in FFAs. Increased FFAs are not only a result of insulin resistance, but a 

cause as well, thus creating a vicious cycle. FFAs can lead to insulin resistance via a variety of 

mechanisms that include but are not limited to the Randle cycle, the accumulation of intracellular lipid 

derivatives such as diacylglycerol and ceramides, inflammatory signaling, oxidative stress and 

mitochondrial dysfunction.  

 

Randle et al. first demonstrated that an elevation in FFA in the diaphragm and heart was associated with 

an increase in fatty acid oxidation and impaired glucose utilization (45). Via the Randle cycle effect, 

increased FFAs and fatty acid oxidation lead to increased intracellular glucose content and decreased 

glucose uptake (46). Studies in rodents and humans have demonstrated that conditions of increased 

FFA either via lipid infusions or secondary to T2DM lead to impaired glucose uptake and utilization in 

insulin sensitive tissues (47). This occurs secondary to the inhibition of the insulin signaling pathway. 



 

 

As FFA levels increase, the capacity of the adipose tissue to take up and store FFAs can be exceeded. 

When this occurs, FFAs accumulate in tissues with limited ability for lipid storage, such as the liver and 

skeletal muscle. This phenomenon is known as ectopic fat deposition and is strongly associated with 

insulin resistance (48). Fatty acids accumulate in myocytes as fatty acid derivatives. Of these fatty acid 

derivatives, diacylglycerol (DAG), triacylglycerol, and ceramides directly correlate with insulin resistance. 

DAG interferes with normal insulin signaling by its interaction with a group of novel kinases, members of 

the protein kinase C family, that serine phosphorylate IRS, thereby impairing tyrosine phosphorylation 

and activation by insulin (41,48,49) Ceramide activates the enzyme protein phosphatase 2A, leading to 

dephosphorylation of AKT, thwarting insulin signaling and GLUT4 translocation to the cell membrane. 

This impairs insulin-mediated glucose uptake into the skeletal muscle (50).  

 

FFAs increase inflammatory signaling pathways through direct interaction with members of the Toll-like 

receptor (TLR) family and indirectly through the secretion of cytokines, namely tumor necrosis factor-α 

(TNF-α), and interleukins (IL), IL-1β and IL-6 (49). TLR are the pathogen recognition receptors of the 

innate immune system that function to facilitate the detection of microbes and transmit inflammatory 

signaling (51,52). In vitro, FFA can signal through TLR-2 and TLR-4 on macrophages, thereby inducing 

pro-inflammatory gene expression (52,53). Studies in mice with a loss of function mutation of the TLR-4 

receptor are protected from diet-induced obesity and saturated fatty acid-induced insulin resistance (54). 

Similarly, animal studies in which TLR-2 is either absent or inhibited, demonstrate a resolution of high fat 

diet induced insulin resistance (55,56). A recent study in humans corroborates the importance of TLR-2 

and TLR-4 in the development of FFA induced insulin resistance. Jialal and colleagues studied 

individuals with and without MetS (according to the NCEP ATP III definition) and found that those with 

MetS had increased expression and activity of TLR-2 and TLR-4 (51).  TLR-4 activity leads to activation 

of c-Jun N- terminal kinase (JNK) and Iκβ kinase (IKK), which results in degradation of the inhibitor κβ 

(Iκβα) and activation of Nuclear Factor- κβ (NF- κβ).  Through JNK and IKK activation, FFA lead to Ser 

phosphorylation of IRS-1 and impaired insulin signaling (57,58). Ding and colleagues assessed 1628 

Chinese adults and reported that levels of IL-6 and C-reactive protein were significantly associated with 

MetS (using the Harmonized definition) which also increased concurrent to the increased number of 

MetS components, further supporting that MetS is a pro-inflammatory state (59).  

 

In obesity, adipose tissue infiltration by macrophages is increased. This leads to a pro-inflammatory state 

as macrophages produce TNF-α, IL-6 and IL-1β (60,61). Along with FFA signaling through TLR, these 

macrophage-derived inflammatory cytokines activate JNK and IKK to further interfere with insulin 

signaling and action (61). Additionally suppressor of cytokine signaling (SOCS) proteins are induced 

downstream of these inflammatory cytokines which terminate insulin signaling by promoting the 

ubiquitination and proteasomal degradation of IRS (62). 

 

Reactive oxygen species (ROS) production increases with fat accumulation. FFAs activate ROS 

production by adipose tissue by stimulating NADPH oxidase and decreasing the expression of anti-

oxidative enzymes (63). When adipose tissues is exposed to oxidative stress, there is a decrease in the 

anti-inflammatory adipokine, adiponectin (to be discussed in greater detail below) (64). In MetS, there is 

increased ROS production as a result of elevated levels of inflammatory cytokines and decreased levels 

of adiponectin (65). Increased levels of ROS lead to hindered insulin signaling by inducing IRS 

phosphorylation and impairing GLUT4 translocation and gene transcription (66).  

 



 

It has been shown that there is a connection between mitochondrial dysfunction and insulin resistance in 

skeletal muscle that precedes the development of obesity and hyperglycemia. Animal studies 

demonstrate that mitochondrial number and function are intact, if not increased, under conditions of 

insulin resistance (67,68). On the other hand, studies in obese, insulin-resistant individuals as well as 

those with T2DM have skeletal muscle mitochondria that are fewer in size as well as number. It has also 

been shown that these individuals exhibit down-regulation of the genes involved in mitochondrial 

oxidative phosphorylation, the process by which mitochondria produce energy in the form of ATP (69-

72). Studies demonstrate that PPARγ coactivator-1α (PGC-1α), a transcriptional activator involved in 

mitochondrial biosynthesis, has diminished expression in patients with T2DM, obesity, or a family history 

of T2DM (73,74). Increased FFA uptake and their incomplete oxidation have also been implicated in 

mediating mitochondrial dysfunction in the skeletal muscle under insulin resistant conditions (75). 

Furthermore, mitochondrial dysfunction leads to increased oxidative stress and the formation of ROS, 

which further diminishes mitochondrial mass and function. 

 

As discussed above, increased FFAs in obesity and MetS are thought to lead to insulin resistance via 

several different mechanisms. These different mechanisms are not exclusive of one another and interact 

in such a way as to create a vicious cycle of insulin resistance.  

 

Adipokines  

 

Adipose tissue is an active endocrine organ that releases adipokines, bioactive mediators that affect 

metabolism (76). It has been demonstrated that individuals with MetS have an abnormal adipokine profile 

that affects insulin sensitivity (77).  

 

Adiponectin differs from other adipokines in that its level is inversely correlated with body adiposity and 

insulin resistance (78). The administration of recombinant adiponectin ameliorates insulin resistance in 

obese mice (78). Adiponectin transgenic mice demonstrate improvements in insulin sensitivity (79). 

Adiponectin increases insulin secretion in vivo and in vitro (80). In addition to its ability to improve insulin 

sensitivity in peripheral tissues, adiponectin has been shown to have effects on the central nervous 

system that affect food intake and energy expenditure (81). In humans, low levels of adiponectin have 

been strongly associated with insulin resistance, increased body adiposity, T2DM, and MetS (76). 

Genetic hypoadiponectinemia caused by a missense mutation leads to an increased propensity toward 

MetS (82). Longitudinal studies demonstrate that in individuals at high risk for developing T2DM, those 

with higher levels of adiponectin were less likely to develop T2DM than those with lower levels of 

adiponectin (83) . Adiponectin levels have even been proposed to be used as a cut-off for managing the 

risk of developing MetS in a study of male Japanese workers.  In a 3-year prospective cohort study, the 

risk of developing MetS, calculated by the accelerated failure-time model, demonstrated that the mean 

time to develop MetS declined with decreasing total adiponectin levels.  

 

Adiponectin modulates glucose metabolism through its interaction with its receptors, the adiponectin 

receptor 1 (AdipoR1) and adiponectin receptor 2 (AdipoR2). Binding of adiponectin to AdipoR1 and 

AdipoR2 results in the activation of signaling pathways affecting glucose and fatty acid metabolism. As a 

result of adiponectin signaling, AMP-activated protein kinase (AMPK) is phosphorylated, leading to 

increased glucose uptake in the muscle and reduced gluconeogenesis (84). Adiponectin also has anti-

inflammatory actions, suppressing TNF-α and IL-6 expression and anti-atherogenic effects, decreasing 

levels of pro-atherogenic small, dense low-density lipoprotein (LDL) and TG levels (76,85).  

 



 

In patients with insulin resistance, there is reduced responsiveness of the skeletal muscle, liver and 

adipose tissue to insulin. Insulin levels rise in an attempt to maintain euglycemia, and the result is 

hyperinsulinemia. Hyperinsulinemia has been shown to down-regulate the bioactive high-molecular 

weight form of adiponectin (86). Thus, the hyperinsulinemia in insulin resistance may decrease 

adiponectin further contributing to insulin resistance (77). Aside from the direct effects of insulin, changes 

that characterize the metabolic milieu of insulin resistance such as inflammation, oxidative stress and 

mitochondrial dysfunction have been shown to suppress adiponectin (77). This relationship is observed 

clinically in the same study by Ding and colleagues, showing a strong inverse association between 

adiponectin and HOMA-IR and an inverse trend between adiponectin and an increased number of MetS 

components (59). Hence, the association between insulin resistance and adiponectin appears to be 

complex and bidirectional. Further studies are necessary to better define this complicated relationship.  

 

Leptin, another important adipokine produced by adipocytes, exerts effects on appetite and energy 

expenditure. When leptin binds to its receptor, signaling pathways such as the Janus Kinase-Signal 

Transducers and Activation of Transcription (JAK/STAT) and IRS/PI3K are activated. The result is similar 

to what is observed when insulin binds the IR, in that anorexigenic pathways (involving POMC) are 

favored over orexigenic pathways (involving neuropeptides NPY and AgRP) (87). Studies suggest that 

leptin affects glucose metabolism independently of its effects on food intake. Studies in rodents suggest 

that leptin stimulated JAK/STAT signaling is important in food intake and energy expenditure while leptin 

mediated PI3K signaling plays a role in regulating glucose metabolism (88-90).  

 

Leptin also stimulates FFA oxidation in the liver, pancreas and skeletal muscle. Leptin opposes the 

action of insulin by decreasing insulin’s lipogenic effect on the adipocyte and depleting the triglyceride 

content of adipose tissue without increasing circulating FFA (91-93). Separate from its effects on lipid 

and glucose metabolism, leptin affects the immune system, by enhancing the production of inflammatory 

cytokines and by stimulating T–cell proliferation (94). 

 

While the absence of leptin leads to extreme obesity and insulin resistance, most obese individuals are 

not leptin deficient. Rather, they have increased levels of leptin but are immune to its appetite 

suppressant effects. This observation has given rise to the concept of leptin resistance in obesity (95). 

Similarly, elevated leptin levels have been observed in different populations with metabolic syndrome -

(96-98). Decreased sensitivity to leptin leads to increased triglyceride accumulation in adipose tissue, 

muscle, liver and pancreas, resulting in insulin resistance (76). An alternative perspective is the concept 

of hypothalamic leptin insufficiency, which states that in conditions of hyperleptinemia, the blood brain 

barrier prevents entry of leptin into the brain resulting in insufficiencies of leptin at important sites in the 

CNS (99). Regardless of whether the decreased responsiveness to leptin observed in obesity is due to 

leptin resistance or hypothalamic leptin insufficiency, the ability of leptin to activate hypothalamic 

signaling is decreased in obesity and insulin resistance (99).  

 

The role of resistin in MetS is not entirely understood. Resistin is an adipokine that has been seen to be 

increased in rodent models of obesity, leading to impaired insulin action and β-cell dysfunction (100). 

Resistin is highly associated with insulin resistance and T2DM in animal models (101). Resistin activates 

SOCS-3, which inhibits IR phosphorylation and downstream signaling proteins, leading to impaired 

insulin signaling (102). It also inhibits glucose uptake by skeletal muscle and the liver and enhances 

hepatic gluconeogenesis (101,103).  In humans, the relationship of resistin, MetS and its components 

are not as clear, however associations between the components of MetS have driven an interest in 

further understanding its potential role.  Resistin expression in humans differs from rodents in its low 



 

expression in white adipose tissue and regulation of concentration by peripheral blood mononuclear 

cells, macrophages and bone marrow cells (104). Its role in the inflammatory pathway has been well 

described, associated with upregulation of inflammatory cytokines and to induce monocyte-endothelial 

cell adhesions [127]. However, the role of resistin in insulin resistance has been controversial. (76). 

Increased resistin levels have been demonstrated in several studies with individuals with MetS but 

correlations have been more consistent in women than in men (105-107). Hence, more studies are 

necessary to better determine the role of resistin in MetS.  

 

Retinol Binding Protein-4 (RBP-4) is the vitamin A (retinol) transporter and is secreted from both adipose 

tissue and liver.  RBP-4 has been shown to be increased in the adipose tissue of mice with an adipose-

specific knockout of GLUT4 (108). RBP-4 levels are also elevated in humans with obesity, T2DM, 

impaired glucose intolerance and those with a strong family history of T2DM (109,110). The suggested 

mechanisms by which RBP4 can mediate insulin resistance include increased gluconeogenesis and 

impaired insulin action in the liver and muscle (108). However, there are other studies that do not support 

the relationship of RBP-4 with altered glucose metabolism (111,112). As with all other adipokines, further 

exploration is necessary to better define the role of RBP-4 in insulin resistance and MetS. 

 

Apelin, omentin and visfatin are other adipokines have been implicated in the pathogenesis of insulin 

resistance and MetS. However further study is necessary to better define the part they play in this 

process. Individuals with insulin resistance and MetS exhibit atypical adipokine profiles that not only 

result from insulin resistance but further contribute to its development and pathogenesis. 

 

Though there are many different factors that contribute to the development of MetS. Insulin resistance, 

via augmented FFA levels and irregular adipokine patterns, is largely responsible for the pathogenesis of 

the syndrome.  

 

Gut Microbiota 

 

There has been considerable interest in the gut microbiota and its relationship with inflammation and 

metabolism.  With limited ability to digest polysaccharides, the gut microbiota in mammals represents an 

important system significant influence on energy harvest and efficiency(113-115).  

 

In fact, mice raised in a germ-free environment, compared to conventionally raised mice, had lower body 

fat content and, following colonization with intestinal flora, there was an increase in body fat and hepatic 

triglyceride synthesis as well as the development of insulin resistance, independent of food intake and 

energy expenditure (113). Beyond alterations in energy harvest, the gut microbiota composition can also 

drive low level inflammation which has also been found to be a contributor to obesity and the metabolic 

syndrome (116,117). Interventional experiments with Roux en Y gastric bypass versus sham surgeries 

with subsequent microbiota transplant have further underscored the relationship of the microbiota with 

obesity (118). Observational human studies have noted differences in the microbial diversity in lean and 

obese subjects as well as in those with differences in microbial diversity based upon diet composition 

(119-121). Similar differences in microbiota composition have been seen in those with and without type 2 

diabetes mellitus (122). Furthermore, infusion of microbiota via gastrointestinal probe have demonstrated 

alterations in insulin sensitivity (123).  

 

The metabolic syndrome is a product of the complex intertwining of inflammation and insulin resistance; 

with its relationship to both of these, the gut microbiota has been demonstrated to have a strong 



 

influence on metabolic diseases. From observational to experimental data, the microbiota not only offers 

important insight into pathophysiology but also has the potential as a therapeutic target. 

 

TREATMENT  

 

Lifestyle modification is the foundational intervention in treatment of MetS. The Diabetes Prevention 

Program demonstrated that lifestyle intervention reduced the incidence of MetS by 41% compared with 

placebo. The intensive lifestyle intervention involved a healthy low-calorie, low fat diet and moderate 

physical activity of at least 150 minutes/week, resulting in a weight reduction of 7% (124). The 

recommended diet should include < 200 mg/day of cholesterol, < 7% saturated fat, with total fat 

comprising 25-35% of calories, low simple sugars and increased fruits, vegetables and whole grains (12). 

Smoking cessation should be instituted in all patients with MetS. Additionally, low dose aspirin is 

recommended in cases of moderate to high cardiovascular risk where no contraindication to aspirin 

therapy exists (12). For those patients in whom lifestyle intervention is not sufficient to treat their MetS, 

pharmacotherapy for the treatment of many of the components of MetS is available.  

 

Historically, many of the medications aimed to treat obesity have failed to gain approval or have been 

removed from the market by the FDA due to side effects and marginal success in weight reduction (125). 

However, in the last decade, an increasing number of pharmacotherapies have become FDA approved.  

Currently available FDA-approved pharmacotherapy for obesity includes phentermine, orlistat, 

phentermine/topiramate, locaserin, buproprion/naltrexone and liraglutide 3.0 mg.  Further, individuals 

with morbid obesity (BMI> 40 kg/m2 or >35 kg/m2 with comorbidities) may be candidates for bariatric 

surgery (126). Bariatric surgery has been demonstrated to be an effective treatment of obesity with 

improvements in weight, T2DM, hypertension, hyperlipidemia, and sleep apnea.  Resolution rates of 

each component reported in the literature are variable, the type of surgery highly influential on the 

resolution of comorbidities (127). Some studies demonstrate superiority of surgical to nonsurgical 

treatment in weight loss and MetS (128).   

  

There are no pharmacologic agents specifically approved for prediabetes or the prevention of T2DM. In 

the Diabetes Prevention Program, metformin was shown to lead to weight loss and a 31% decrease in 

the incidence of T2DM compared to patients receiving placebo (124). It has been suggested that GLP-1 

receptor agonists, agents now commonly used in the treatment of established T2DM, may have a role in 

prevention of T2DM, but more studies are needed. The American Diabetes Association recommends 

lifestyle modification over medication for the prevention of diabetes. However, they state that metformin 

therapy may be considered for the prevention of T2DM in individuals with IGT, IFG or HgA1c 5.7-6.4%, 

especially for those individuals with BMI> 35 kg/m2, those aged < 60 years, and those with a prior 

diagnosis of GDM (129,130). 

 

Elevated blood pressure is first approached with lifestyle modification. If this fails to bring the blood 

pressure to goal range <140/90 or <130/80 in patients with diabetes or CKD, medication should be 

added. First line medications include thiazide diuretics in uncomplicated individuals, angiotensin-

converting enzyme (ACE) inhibitors or angiotensin receptor blockers (ARBs) in those with diabetes, 

congestive heart failure or CKD, or beta blockers in individuals with angina (131). 

 

Drug therapy for dyslipidemia is generally approached with the use of HMG Co-A reductase inhibitors 

(statins). The primary objective in CVD risk reduction is to lower LDL-C values and the drug of choice for 

this purposes is statins, which have been shown not only to lower LDL-C, but also to modestly raise 



 

HDL-C and lower triglycerides (132). The second targets in lipid improvement to reduce CVD risk are 

HDL-C and triglycerides. Niacin is effective at raising HDL-C as well as lowering triglycerides and LDL-C. 

Fibrates are effective at lowering triglycerides but do not have the beneficial effects on HDL-C and LDL-

C. Omega-3 polyunsaturated fatty acids (n-3 PUFA) in fish oil can also be used to lower triglycerides with 

recent data from the REDUCE-IT trial demonstrating a reduced risk of ischemic events in patients with 

elevated triglycerides despite statin therapy receiving icosapent ethyl.   

 

CONCLUSION 

 

The metabolic syndrome is a collection of related risk factors that predispose an individual to the 

development of T2DM and CVD. It affects a large number of people worldwide and its prevalence is 

increasing. The diagnostic criteria for MetS have been harmonized for the purpose of providing more 

consistency in clinical care and research of patients with MetS. Insulin resistance remains at the core of 

the syndrome, as it did when it was first introduced by Reaven in 1988, and appears to contribute to the 

development of MetS, via elevated FFA levels and abnormal adipokine profiles. Insulin resistance has 

both metabolic and mitogenic effects and can result in the development of hyperglycemia and T2DM, 

hypertension, dyslipidemia, NAFLD, PCOS, OSA, sexual dysfunction, and cancer. In patients with MetS, 

lifestyle modification is imperative in decreasing the risk of CVD and treating many of the associated 

conditions. Treatment of the individual conditions is often also required. 
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