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ABSTRACT 

 

Severe obesity represents a major risk factor for the development of type 2 diabetes mellitus 

(T2DM). Due to the strong association of obesity and diabetes, the term “diabesity” was 

coined, suggesting a causal pathophysiological link between both phenomena. The majority 

of individuals with T2DM are obese, highlighting the pivotal role of increased adiposity as a 

risk factor for diabetes. However, only a relatively small fraction of obese individuals will 

develop T2DM. On a population level, the link between obesity and its secondary 

complications is well described. However, the molecular mechanisms underlying these 

complications are still poorly understood. Three main hypotheses have been developed in 

recent years to bridge the gap between epidemiology and pathobiochemistry: (1) The 

“inflammation hypothesis” asserts that obesity represents a state of chronic inflammation 

where inflammatory molecules produced by infiltrating macrophages in adipose tissue exert 

pathological changes in insulin-sensitive tissues and β-cells. (2) The “lipid overflow 

hypothesis” predicts that obesity may result in increased ectopic lipid stores due to the 

limited capacity of adipose tissue to properly store fat in obese subjects. Potentially harmful 

lipid components and metabolites may exert cytotoxic effects on peripheral cells. (3) The 

“adipokine hypothesis” refers to the principal feature of white adipose cells to function as an 

endocrine organ, and to secrete a variety of hormones with auto- and paracrine function. 

Expanding fat stores can cause dysfunctional secretion of such endocrine factors, thereby 

resulting in metabolic impairment of insulin target tissues and eventually failure of insulin 

producing β-cells. For complete coverage of all related areas of Endocrinology, please visit 

our on-line FREE web-text, WWW.ENDOTEXT.ORG. 

 

INTRODUCTION 

 

Severe obesity represents a major risk factor for the development of type 2 diabetes mellitus 

(T2DM), a disease characterized by insulin resistance, insulin hyposecretion and 

hyperglycaemia.1-3  According to statistics, already 415 million people worldwide were 

affected by diabetes in 2015 (estimated) and this number is expected to rise to 642 million by 

http://www.endotext.org/
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2040.4 Due to the strong association of obesity and diabetes, the term “diabesity” was 

coined, suggesting a causal pathophysiological link between both phenomena.5,6 

 

SIZE MATTERS (NOT ONLY)! 

 

The majority (~80%) of individuals with T2DM are obese, highlighting the pivotal role of 

increased adiposity as a risk factor for diabetes. However, only a relatively small fraction of 

obese individuals develops T2DM.7 In fact, most obese, insulin-resistant individuals do not 

develop hyperglycemia, indicating that their pancreatic β-cells still produce and secrete 

sufficient amounts of insulin in order to compensate for the reduced efficiency of insulin 

action in the periphery.1,8,9 Thus, in addition to an increased adipose mass, additional factors 

are likely to determine the risk for β-cell dysfunction and the susceptibility for β-cell 

destruction and diabetes. Nevertheless, despite recent advances in the understanding of 

body weight regulation and insulin action, the risk factors that determine which obese, non-

diabetic individuals will eventually develop diabetes still remain unknown. 

 

ROLE OF FAT DISTRIBUTION 

  

Obesity results from a period of a positive energy balance during which adipocytes store 

excess triglycerides, resulting in cell hypertrophy and hyperplasia. However, fat depots do 

not expand uniformly as they accumulate lipids, and the adverse effects of excess fat storage 

have been frequently attributed to intra-abdominal (i.e. visceral) fat tissue.  Using a variety of 

measures (oral glucose tolerance test, intravenous glucose tolerance test, euglycemic 

hyperinsulinemic clamps), selective excess of visceral adipose tissue (visceral adiposity) has 

been linked to insulin resistance in humans.10-19 Interestingly, no relationship between 

visceral fat and impaired glucose metabolism has been observed in studies with non-obese 

individuals.20,21 On the other hand, other studies found that abdominal subcutaneous fat 

correlates with insulin sensitivity as well as visceral fat in euglycemic clamps, thus 

challenging a unique role for the visceral fat depot in modulating insulin sensitivity.22,23 

However, in another study, Klein and coworkers reported that large-volume abdominal 

liposuction of subcutaneous fat did not improve insulin sensitivity of liver, skeletal muscle, 

and adipose tissue (as assessed by euglycemic-hyperinsulinemic clamps), at least not within 

12 weeks post surgery.24 In accordance to these results, removal of visceral fat has been 

found to improve insulin sensitivity in humans,25,26 supportive of a causal role of intra-

abdominal fat for the insulin resistance in obese individuals. However, the relationship 

between the amount of visceral fat and insulin sensitivity has been controversially discussed 

throughout recent years and a number of clinical studies show that surgical removal of this 

fat depot (e.g. via omentectomy) did not lead to improved whole-body glycemia or even BMI 

of the patients.27-30 Interestingly, a number of adipose-tissue related sub-phenotypes have 

been identified, one of these the so-called “TOFI” (“thin on the outside, fat on the inside”) 

subjects. These patients present a normal BMI (< 25 kg/m2) but increased abdominal obesity 

and therefore exhibit an increased risk to develop insulin resistance and T2DM.31,32 In 

contrast to TOFI, the so-called “fat-fit” subjects show no gross impairments of glucose 

metabolism despite their elevated body adiposity (BMI ≥ 30 kg/m2).32,33 

 

Visceral fat is defined as adipose tissue located inside the peritoneal cavity—within the 

parietal peritoneum and transversalis fascia, excluding the spine and paraspinal muscles. As 

such, appropriate techniques for precise measurements of visceral fat, however, have been 

controversial. In humans, the amount of abdominal visceral fat is determined by a number of 
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different techniques, including anthropomorphic measurements (waist-hip-ratio, waist 

circumference, abdominal sagittal diameter), computed tomography (CT), magnetic 

resonance imaging (MRI), and ultrasound. Comparative measurements using CT and MRI 

have revealed a fairly high correlation between both methods.34-36 In the recent years, Dual-

energy X-ray absorptiometry (DXA) has emerged as reliable technique to measure body 

composition with high-precision, low X-ray exposure, and short-scanning time.37,38 In studies 

that included these imaging techniques and common clinical measurements, the abdominal 

sagittal diameter was found to be the most specific predictor of visceral adipose volume, but 

measurements of waist circumference and sagittal diameter are also highly correlated. Even 

though waist circumference varies considerably between sexes and among different ethnic 

groups, it has been proposed as a crude, but efficient, anthropomorphic readout for 

abdominal adiposity.39,40 And lastly, the amount of visceral fat is correlated to total body fat 

even though considerable variation in individual fat distribution has been reported,41-44 Thus, 

despite the lack of a ”gold standard” for the quantitative assessment of regional fat 

distribution in humans, most of the evidence suggests a specific association between 

visceral fat with an increased risk for insulin resistance and diabetes. 

 

TO BE (FAT) OR NOT TO BE 

 

Interestingly, deficiency of fat tissue (lipodystrophy) predisposes to similar metabolic 

complications as an excess of fat in obesity, such as insulin resistance, T2DM, and hepatic 

steatosis (reviewed in Refs 45 and 4645,46). Moreover, fat transplantation into lipodystrophic 

mice ameliorated the diabetic phenotype of the animals either partially or completely, 

implicating that the failure to properly store lipids in depots is causal for lipodystrophic 

diabetes.47 Also in normal lean animals, fat transplantation has been shown to result in 

beneficial metabolic effects.48,49 Thus, adipose tissue may have both beneficial and adverse 

effects on whole-body metabolism, depending on where it accumulates. 

 

OBESITY-INDUCED DIABETES: FACTORS AND MECHANISMS  

 

On a population level, the link between obesity and its secondary complications is well 

described. However, the molecular mechanisms underlying these complications are still 

poorly understood.50 Even though the evidence indicates a detrimental role of visceral fat in 

terms of insulin sensitivity, relatively little is known about distinct physiological and 

biochemical properties of fat tissue derived from different anatomic locations. On the one 

hand, transplantation experiments with fat tissue from different adipose depots in mice have 

not conclusively revealed intrinsic differences between subcutaneous and visceral fat.47,49 On 

the other hand, factors that have been attributed to confer differential metabolic effects of 

subcutaneous versus visceral fat include increased portal release of FFA and glycerol from 

omental/mesenteric fat directly to the liver, and also differences in endocrine and metabolic 

functions of fat depots.   

 

Three main hypotheses have been developed in recent years to bridge the gap between 

epidemiology and pathobiochemistry: 

 

(1) The “inflammation hypothesis” asserts that obesity represents a state of chronic 

inflammation where inflammatory molecules produced by infiltrating macrophages in adipose 

tissue exert pathological changes in insulin-sensitive tissues and β-cells.  
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(2) The “lipid overflow hypothesis”, also known as “Adipose Tissue Expandability 

Hypothesis” predicts that obesity may result in increased ‘ectopic’ lipid stores (lipid that 

accumulates outside the normal depots, such as in the organ tissue of the liver, muscle, and 

pancreas) due to the limited capacity of adipose tissue to properly store fat in obese 

subjects. Potentially harmful lipid components and metabolites may exert cytotoxic effects on 

peripheral cells, including liver and β-cells, thereby impairing function, survival, and 

regeneration. 

 

(3) The “adipokine hypothesis” refers to the principal feature of white adipose cells to 

function as an endocrine organ, and to secrete a variety of hormones with auto- and 

paracrine function. It has been proposed that expanding fat stores in obesity cause 

dysfunctional secretion of such endocrine factors, thereby resulting in metabolic impairment 

of insulin target tissues and eventually failure of insulin producing β-cells.  

 

In the following, these three hypotheses are briefly discussed. 

 

The “Inflammation Hypothesis” 

 

Inflammatory processes are thought to play a key role in the development of obesity-related 

insulin resistance and type 2-diabetes. In adiposity there are fundamental changes in 

adipose tissue secretory functions51. An excess of adipose tissue produces a number of pro-

inflammatory cytokines leading to a state of chronic subclinical inflammation associated with 

both insulin resistance and type-2 diabetes.52 The term “metaflammation” describes this low-

grade, chronic inflammation orchestrated by metabolic cells in response to excess nutrients 

and energy.53 

 

How does a spill-over of these inflammatory products into circulation finally lead to insulin 

resistance? Weisberg et al54 described that macrophages accumulate in adipose tissue of 

obese subjects and suggested that these macrophages are derived from the circulation. 

Further studies indicated that adipose tissue macrophages (ATMs) that accumulate during 

diet-induced obesity (DIO) are not only an important source of adipose tissue inflammation 

but also mediate insulin resistance in adipocytes.55 The amount of macrophages in adipose 

tissue correlates positively with two indices of adiposity: Body mass index (BMI) and 

adipocyte size. The exact mechanisms underlying ATM recruitment and activation are still 

not fully understood. One factor potentially responsible for obesity-induced inflammation by 

increasing ATM recruitment is Macrophage Migration Inhibitory Factor (MIF), a chemokine-

like inflammatory regulator directly associated with the degree of peripheral insulin 

resistance.56 Adipose tissue macrophages are considered to be a major reservoir of pro-

inflammatory molecules in adipose tissue54. These cytokines exert various functions in the 

pathogenesis of the disease progression (Figure 1). Some of the most important 

inflammatory factors are described below. 

 

Figure 1. The “inflammation hypothesis.” Pathophysiology of obesity-induced chronic 

inflammation and peripheral insulin resistance. 
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DAG, diacylglycerol; IL-1, interleukine-1; MCP-1, monocyte chemotactic protein-1; TNF

tumor necrosis factor alpha; Toll-like receptor 4, TLR-4; Details in the text.  

 

Tumor Necrosis Factor Alpha: 

Tumor necrosis factor alpha (TNF-α) is a pluripotent cytokine primarily produced from 

macrophages.57 Its expression was shown to be elevated in different mouse and rat models 

of obesity and diabetes.58 In vitro, TNF-α suppresses the expression of most adipose-specific 

genes in murine adipocytes, including the enzymes involved in lipogenesis.59 It was also 

shown that TNF-α induces insulin resistance, in part through its ability to inhibit intracellular 

signaling from the insulin receptor.60 Moreover, addition of TNF-α to cells in vivo increased 

the intracellular concentration of ceramides.61 Ceramides can directly induce DNA 

fragmentation and apoptosis. In skeletal muscle, diacylglycerols and ceramides operate as 

lipotoxic mediators engaging serine kinases that disrupt the insulin signaling cascade and 

diminish insulin sensitivity.62 Further, it was discovered that ceramides are able to induce 

lipoapoptosis in β-cells.63 In addition, TNF-α was shown to induce the formation of reactive 

oxygen species (ROS).64 Production of ROS increased selectively in adipose tissue of obese 

mice, causing dysregulated production of adipocytokines (fat-derived hormones), including 

adiponectin, plasminogen activator inhibitor-1, interleukin-6 (IL-6), and monocyte chemotactic 

protein-1.65 However, clinical studies with Etanercept, a neutralizing protein for circulating 

TNF-α failed to demonstrate an improvement of insulin sensitivity in humans,66,67 indicating 

that acute reduction of systemic TNF-α may not be sufficient to induce metabolic benefits in 

the periphery. 

 

TNF-Like Weak Inducer of Apoptosis: 
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TNF-like weak inducer of apoptosis (TWEAK) belongs to the TNF superfamily and was 

shown to have pro-inflammatory action in adipocytes mediated by the nuclear factor-κB 

(NFκB) and ERK but not JNK signaling pathways.68 The cytokine promotes the secretion of 

MCP-1 and RANTES and up-regulates CCl21 and CCL19 expression. Whereas expression 

levels of membrane-bound TWEAK (mTWEAK) and its receptor Fn14 are increased during 

obesity, the amount of soluble TWEAK (sTWEAK) was decreased, thereby enhancing the 

pro-inflammatory activity elicited by TNF-α.69,70 

 

Monocyte Chemotactic Protein-1: 

The pro-inflammatory chemokine monocyte chemotactic protein-1 (MCP-1) attracts 

leukocytes to inflamed sites and is regulated by NFκB. 71 Monocyte chemotactic protein-1 

represents the first discovered and most extensively studied human CC chemokine and is 

also known as CCL2 (Chemokine (C-C motif) ligand 2). CC chemokines are characterized by 

the conserved position of four cysteine residues responsible for protein stabilization.56 Insulin 

was found to induce expression and secretion of MCP-1 substantially both in vitro in insulin-

resistant adipocytes and in vivo in insulin-resistant obese mice (ob/ob). It was suggested that 

elevated MCP-1 levels may induce adipocyte dedifferentiation and contribute to pathologic 

states associated with hyperinsulinemia and obesity, including type 2 diabetes.72 Expression 

and plasma concentration of MCP-1, however, were shown to be increased both in 

genetically obese diabetic (db/db) mice and in wildtype mice with high-fat diet-induced 

obesity, leading to the assumption that  increased MCP-1 expression contributes to the 

macrophage infiltration of adipose tissue and, finally, to the development of insulin 

resistance.73 Monocyte chemotactic protein-1 has been developed into one of the most 

important targets for a variety of therapeutic approaches to improve diabetic vascular 

conditions over the years.74 

 

Interleukin-6: 

The role of the cytokine interleukin-6 (IL-6) in the regulation of lipid metabolism is 

controversial.75 If produced in large amounts by adipose tissue, IL-6 causes insulin 

resistance in adipocytes and skeletal muscle.76 Contrary to the expectations, IL-6-deficient 

mice develop obesity. However, excess body weight was only reported in very mature 

animals.77 Interestingly, chronic exposure of IL-6 produces insulin resistance in skeletal 

muscle, whereas short-term exposure as consequence of exercise has beneficial effects on 

insulin sensitivity.78 Thus, despite the evidence of IL-6 as a major player in the regulation of 

metabolism, the role of this cytokine in the pathogenesis of insulin resistance and diabetes 

remains incompletely understood. 

 

Interleukin-1: 

Interleukin-1 (IL-1) is a cytokine that is also secreted by stimulated macrophages and has 

many actions that overlap those of TNF-α. For instance, IL-1 increases hepatic triglyceride 

secretion and serum triglyceride levels.79 Common polymorphisms of the IL-1 gene that 

influence IL-1 activity are also associated with fat mass in humans.80 Pro-inflammatory 

pathways in adipose tissue have been shown to be directly activated by free-fatty acids 

(FFA). In turn, the inflammatory status of macrophages is linked to body fat content. In lean 

mice, macrophages in WAT are in their active M2 state and produce immunosuppressive 

factors. However, in obese mice, macrophages are in a pro-inflammatory M1 state (F4/80+, 

CD11b+, CD11c+), highly responsive to the pro-inflammatory effect of FFA that bind the Toll-

Like Receptors (TLRs).81 Increased cytokine release via TLRs as a consequence of FFA 

binding was proposed as potential pathomechanism causing insulin resistance.82 
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Interestingly, in a clinical study, blockade of IL-1 receptor with Anakinra, a recombinant IL-1 

receptor antagonist, improved HbA1c levels and proinsulin-to-insulin ratio but had no effect on 

systemic insulin sensitivity.83 

 

Toll-Like Receptor-4: 

Toll-like receptors are membrane-spanning, non-catalytic receptors that respond to different 

microbial antigens, therefore representing an important factor of the innate immunity.84 Toll-

like Receptor-4 (TLR-4) is thought to be another important factor in fatty acid-induced insulin 

resistance. Scherer and coworkers were the first ones that found it expressed on 3T3-L1 

adipocytes and activated by lipopolysaccharides (LPS).85 Characterization of TLR-4 as the 

main endogenous sensor for LPS in adipocytes supports the relevance of fat tissue in 

immune processes.86 Additionally, TLR-4 was recently shown to be directly activated by 

dietary saturated fatty acids, thereby promoting inflammatory aspects of the metabolic 

syndrome and atherosclerosis.87 In addition, stimulation of TLR-4 with activation of the Erk 

pathway was shown to upregulate IL-6 as well as MCP-1 release in adipose tissue. 

Therefore, it can be suggested that activation of TLR-4 in adipocytes induces inflammation 

and, as a consequence, promotes the progression towards diabetes. This mechanism 

provides new evidence for a coupling of visceral adipose dysfunction with the development 

insulin resistance and T2DM.88 

 

Summary: 

Inflammation is thought to be a major factor in the development of insulin resistance and 

diabetes. Increased secretion of adipocyte-derived inflammatory cytokines and fatty acids 

are directly linked to impaired insulin sensitivity in obesity.89 However, inflammatory 

processes do not account exclusively for the development of insulin resistance since there 

are studies showing subjects with T2D but without any alterations in inflammatory markers.90 

Inflammation alone can therefore not explain how obesity affects insulin sensitivity and 

certainly not why only a small fraction of obese individuals develop T2DM. 

 

The “Lipid Overflow Hypothesis” 

 

Healthy adipose tissue is characterized by the ability to expand passively to accommodate 

periods of nutrient excess. In contrast, adipose tissue in polygenic mouse models of obesity-

induced diabetes, as well as in obese humans, may fail to fully accommodate excessive 

nutrient loads.91-93 If the adipose tissue expansion limit is reached, lipids can no longer be 

stored appropriately in adipose tissue and consequently “overflow” to other peripheral tissues 

such as skeletal muscle, liver, and pancreas.94,95 Subcutaneous adipose tissue (SAT) 

represents the largest adipose tissue depot and, in addition, is considered the least 

metabolically harmful site for lipid storage. The SAT can expand either by increasing the size 

of the cells (hypertrophic obesity) and/or by recruiting new cells (hyperplastic obesity). In 

contrast to the hyperplastic response, which seems to be protective against SAT dysfunction, 

hypertrophic obesity is associated with increased T2D risk.96,97 The storage of this ectopic fat 

in non-SAT tissues is directly linked to the progression of insulin resistance and type-2-

diabetes.98,99 Thus, fat accumulates in tissues that are not adequate for lipid storage, and as 

a consequence, lipid metabolites might accumulate within those tissues that inhibit insulin 

signal transduction (Figure 2).   

 

Figure 2: The “lipid overflow hypothesis.” Pathophysiology of obesity-induced ectopic 

lipid stores that cause peripheral insulin resistance and impaired β-cell function.  
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CPT-1, carnitine palmitoyltransferase 1; DAG, diacylglycerol; GLUT2, facilitated glucose 

transporter, member 2 (SLC2A2); HAD, β-hydroxyacyl dehydrogenase; IRS1, insulin 

receptor substrate 1; MafA, pancreatic beta-cell-specific transcriptional activator MafA; PKC, 

Protein kinase C; Details in the text.  

 

This hypothesis is supported by several rodent models of lipodystrophy. These animals are 

extremely lean but often suffer from marked insulin resistance, diabetes, 

hypertriglyceridemia, hepatosteatosis, and low HDL (high-density lipoprotein)-cholesterol 

levels – a metabolic profile similar to that observed in obesity-related metabolic 

syndrome.100,101 Moreover, recent studies demonstrate a lipodystrophy-like phenotype also in 

the general human population since subjects who are of normal weight but metabolically 

unhealthy (∼20% of the normal weight adult population) have a greater than 3-fold higher 

risk of all-cause mortality and/or cardiovascular events.46 Leptin replacement in patients with 

generalized lipodystrophy can serve as efficient therapy to improve insulin sensitivity by 

reducing ectopic fat accumulation, especially in the liver.102-104 

 

Thus, an increased fatty acid flux from normal fat depots towards non-adipose tissues (NAT), 

e.g. skeletal muscle, heart, liver, and pancreatic β-cells appears to be a critical factor in 

mediating lipotoxicity. Among the substances known to impair insulin signaling, the most 

prominent examples include diacylglycerols (DAGs) and ceramides, which have both been 

shown to impair insulin action in a number of peripheral tissues.105-107 

 

Lipotoxicity- Skeletal Muscle and Adipocytes: 

Skeletal muscle insulin resistance is associated with high levels of stored lipids in skeletal 

muscle cells.108 A high lipid accumulation and/or lower triglyceride turnover can induce 

lipotoxicity within the skeletal muscle cell.109 Lipid infusion can induce peripheral and hepatic 

insulin resistance in rats and humans.110,111 There are multiple regulatory sites controlling the 

complex process of fatty acid (FA) metabolism in skeletal muscle. Long-chain FA (LCFA) 

oxidation involves lipolysis and LCFA release from the adipose tissue, delivery of FFA to the 

skeletal muscle, transport across the plasma membrane, lipolysis of intramuscular 
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triacylglycerol (IMTG), activation with addition of a coenzyme A thioester (LCFA-CoA), 

transport across the mitochondrial membranes and ultimately oxidation.112 Obese individuals 

display a disturbed lipid oxidation in skeletal muscle. This leads to accumulation of fatty acids 

and therefore to enhanced levels of triglycerides, fatty acyl CoA, diacylglycerols, and 

ceramides.113-115 Accumulation of these metabolites may be able to impair insulin signaling 

through different mechanisms, such as increased serine phosphorylation of the insulin 

receptor and insulin receptor substrate 1 by Protein kinase C (PKC) β and reduced serine 

phosphorylation of AKT.116,117 Besides disturbances in the insulin signaling cascade, several 

other factors could be involved in the direction of LCFA or LCA-CoA towards esterification 

rather than oxidation in obesity and type-2 diabetes. It has long been debated whether 

reduced mitochondrial function is the cause of, or secondary to, insulin resistance and T2D. 

Numerous studies, however, have shown that the activity of the key enzymes of fatty acid 

oxidation, citrate synthase (CS) and β-hydroxyacyl dehydrogenase (HAD) are significantly 

reduced in skeletal muscle in obesity and type 2 diabetes.118-121 Additionally, it has also been 

shown that the activity of carnitine palmitoyltransferase 1 (CPT1) in muscle was also reduced 

in association with obesity,122 and that mitochondrial oxidative capacity is low in insulin-

resistant subjects.123 Carnitine palmitoyltransferase 1 converts acyl-CoA molecules to their 

acyl carnitine derivatives prior transport of the mitochondrial inner membrane.124 

 

Plasma non-esterified free fatty acids (NEFAs) are suggested to contribute to the 

development of insulin resistance, since they have been shown to activate the inflammatory 

nuclear factor kappa-B (NFκB) pathway in human muscle biopsies.125,126 In humans, it was 

demonstrated that free fatty acids induce insulin resistance by inhibition of glucose 

transport.127 In addition to the negative impact on insulin sensitivity, there is very recent 

evidence that lipid droplet (LD) formation is also impaired by an overflow of lipids. It has been 

shown that LD formation requires some of the same components of the machinery involved 

in regulated fusion of vesicles including the two soluble N-ethylmaleimide-sensitive-factor 

attachment protein receptor (SNARE) proteins SNAP23 and syntaxin-5. SNAP23 has been 

shown to be an essential factor for trafficking of GLUT4-containing vesicles to the plasma 

membrane, and a more recent study found that SNAP23 is also involved in LD formation in 

adipocytes.128 Interestingly, the study reported that excessive LD formation inhibited GLUT4 

translocation by competing for SNAP23 and that overexpression of Snap23 in these cells 

restored insulin sensitivity. Thus, SNAP23 might constitute a link between glucose and lipid 

metabolism, respectively. 

 

Lipotoxicity- Pancreatic Beta Cell: 

The development of type 2 diabetes is caused by a combination of insulin resistance and 

impaired pancreatic β-cell secretion.129 With progression from euglycemia to type 2 diabetes, 

β-cells progressively fail to compensate for the increase insulin demand in peripheral tissues. 

The pathogenesis is thereby characterized by different stages, leading from compensatory 

insulin resistance to decompensated hyperglycemia.130 In manifest type 2 diabetes, β-cells 

are exposed to both high doses of glucose (glucotoxicity) and lipids (lipotoxicity), 

respectively.131 Lipotoxicity, manifests as incorporation of large amounts of triglycerides in 

pancreatic islets, leading to β-cell death.132 

 

While rodents are often preferred models to study disease progression, polygenic mouse 

models more closely resemble human physiology and preferred over the monogenic models 

such as in defective leptin signaling (db, ob).133,134 New Zealand Obese (NZO) mice develop 

a polygenic disease pattern of obesity, insulin resistance, and type 2 diabetes.134,135 The 
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onset of hyperglycemia is characterized by an elevated proliferation rate and hypertrophy of 

the β-cells136 leading to β-cell failure in most of the male animals.137 The disease progression 

is characterized by a gradual loss of glucose transporter 2138 and the transcription factor v-

maf musculoaponeurotic fibrosarcoma oncogene family, protein A (avian) (MafA).139 

Interestingly, NZO mice fed a carbohydrate-free high fat diet become obese and insulin 

resistant but are protected from β-cell failure.139-141 In contrast mice fed a diet rich in both 

carbohydrates and fat rapidly develop diabetes, indicating that the additive toxicity of an 

overflow of carbohydrates and lipids is important for the progression of β-cell 

failure.139,140,142,143 

 

Summary: 

Inability to store fat (lipodystrophy) or overflow of excess lipids from normal fat depots 

contributes to “ectopic” deposition of lipids and their metabolites in organs important for 

glucose metabolism, including muscle, liver, and the pancreas. Numerous studies have 

demonstrated involvement of these lipid metabolites in the development of insulin resistance 

and diabetes.  Moreover, recent evidence indicates that hyperglycemia is a critical factor 

contributing to lipid-induced beta cell failure and diabetes. Thus, many leading scientists 

consider type 2 diabetes, a disorder with manifestations of abnormal glucose metabolism, to 

be at its most fundamental molecular level a disorder of lipid metabolism. 

 

The “Adipokine Hypothesis”  

 

Adipose tissue is not only a storage compartment for triglycerides but also a major endocrine 

and secretory organ, which releases a wide range of factors (adipokines) that signal through 

paracrine and hormonal mechanisms.144 Some of these secreted molecules are involved in 

inflammatory processes, such as TNF-α, IL-1β, IL-6 and MCP-1 as described above. The 

expanding volume of adipose tissue during obesity raises circulating levels of these 

inflammatory markers and is therefore thought to contribute to insulin resistance145 and the 

development of T2DM (Figure 3). 

 

Figure 3: The “adipokine hypothesis.” Pathophysiology of obesity-induced 

dysfunction of adipokines in adipose cells contributing to peripheral insulin 

resistance.  
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AdipoR2, adiponectin receptor 2; AMPK, AMP-activated protein kinase; PEPCK, 

phosphoenolpyruvate carboxykinase; RBP4, retinol binding protein 4; Details in the text.  

 

More than 100 different factors secreted by adipocytes have been identified over the past 

years, and it seems likely that this number will increase further due to the progress in 

analytical chemistry.146 Some of the prominent members of hormones produced by the 

adipose tissue are described below. 

 

Leptin: 

Leptin was the first adipokine discovered to influence body fat mass. It is predominantly 

secreted from white adipose tissue and exerts its main function by repressing food intake 

and promoting energy expenditure through sites of action in the central nervous system.147 

The leptin receptor is expressed in the arcuate, ventromedial, dorsomedial, and lateral 

hypothalamic nuclei, which are known to regulate food intake.148 Mutation of both the leptin 

gene (ob) as well as the leptin receptor gene (db) leads to severe obesity, hyperphagia and 

insulin resistance in mice.149 The ob mutation was first hypothesized in 1950, when animal 

caretakers of the Jackson Laboratory observed the spontaneous occurrence of an obese 

phenotype in a mouse.150 but was not described as a non-sense mutation in the leptin gene 

until more than 40 years later.151 

 

Expression and secretion of leptin is correlated with the amount of body fat and adipocyte 

size.152 Humans with mutations in both alleles of either leptin or the leptin receptor are obese, 

but these homozygous mutations are extremely rare.153 To the contrary, the vast majority of 

obese individuals display high plasma leptin levels in proportion to their increased body fat. 

Consequently, attempts to treat obesity by leptin administration have been mostly 

unsuccessful due to an apparent leptin resistance of these patients.154 Nevertheless, leptin 

improves insulin sensitivity by several mechanisms. In the liver and in skeletal muscle, leptin 

enhances glucose homeostasis by decreasing intracellular lipid accumulation155 and, in 

skeletal muscle, by direct activation of AMP-activated protein kinase (AMPK)156. In addition, 

leptin is able to inhibit insulin secretion by both, a direct effect on pancreatic β-cells, and an 



 12 

indirect mechanism via activation of the SNS (sympathetic nervous system) by the CNS 

(central nervous system).157-160 

 

Adiponectin: 

Adiponectin represents another important adipokine that has to be considered in the 

pathogenesis of insulin resistance and type 2 diabetes. Up-regulation of this collagen-like 

plasma protein secreted by adipocytes or its receptor is known to improve insulin sensitivity 

and endothelial function.52,161,162 Adiponectin has been closely linked to diseases such as 

obesity, the metabolic syndrome, type 2 diabetes mellitus, dyslipidemia and essential 

hypertension through its anti-inflammatory effects.163,164 In obesity and diabetes, adiponectin 

biosynthesis is impaired, and in vitro studies demonstrate suppression of adiponectin 

expression by various inflammatory and oxidative stress factors.165,166  

 

Adiponectin regulates glucose and lipid metabolism by targeting the liver and skeletal muscle 

through two transmembrane receptors (AdipoR1 and AdipoR2). While AdipoR1 is most 

abundant in skeletal muscle, AdipoR2 is predominantly expressed in the liver.167 

Improvement of insulin sensitivity is reached through activation of AMPK as well as 

increased expression of PPARα target genes.168 Adiponectin also has a key role in 

differentiation of subcutaneous preadipocytes and in the central regulation of energy 

homeostasis.161,169 

 

Resistin: 

Resistin expression and secretion differs between humans and rodents. In rodents, resistin is 

predominantly secreted from mature adipocytes with some weak expression in pancreatic 

islets and hypothalamus. In contrast, humans express resistin primarily in macrophages 

where it is thought to be involved in the recruitment of other immune cells, and in the 

secretion of pro-inflammatory factors.170 Because of these interspecies differences, it may 

have a less important role in humans during the pathogenesis of insulin resistance and 

diabetes. However, insulin-resistant mice display increased resistin levels and treatment with 

 and improves insulin 

sensitivity, lowers plasma resistin levels.52,171 In addition, some studies describe a role for 

resistin in the regulation of hepatic glucose production.172  

 

Opposed to adiponectin, resistin decreases AMPK phosphorylation in liver, which leads to 

suppression of fatty acid oxidation and stimulation of glucose production.173 In vitro data from 

cultured adipocytes demonstrated a decreased insulin-stimulated glucose transport and 

disturbed adipocyte differentiation after resistin treatment.174,175 In humans, resistin is thought 

to impair insulin signaling by upregulating expression of the lipid phosphatase PTEN.170 

 

Retinol Binding Protein 4: 

Retinol binding protein 4 (RBP4) is predominantly expressed in adipose tissue and the liver 

and was first linked to the pathogenesis of insulin resistance when Abel and coworkers 

described that RBP4 was highly expressed in adipocytes of insulin resistant GLUT4-

knockout mice.176 In addition, injection or overexpression of RBP4 in mice led to impaired 

insulin sensitivity. On the molecular level, RBP4 was shown to induce hepatic expression of 

the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK) and to inhibit 

insulin signaling in skeletal muscle.177 Thus, at least in rodents, increased serum RBP4 leads 

to impaired glucose uptake in skeletal muscle with concomitant increase of hepatic glucose 

production.178 
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In humans, RBP4 influence on glucose homeostasis is less clear. Retinol binding protein 4 

levels are elevated in plasma from obese and diabetic subjects.179 However, in larger groups 

a definitive correlation between RBP4 and measures of insulin sensitivity could not be 

demonstrated.180 

 

Visfatin: 

Visfatin, also known as nicotinamide phosphoribosyltransferase (NAMPT) and pre-B-cell 

colony enhancing factor 1 (PBEF1), is predominantly expressed in visceral adipose tissue, 

from which the name visfatin was derived. As an adipokine, the protein had been also found 

in the bloodstream where it has been shown to exert insulin-like functions. In mice, 

administration of visfatin was shown to lower blood glucose levels, whereas mice with a 

mutation in visfatin had increased levels of circulating glucose.181 However, subsequent 

studies have produced conflicting results regarding the association between visceral fat 

mass and plasma visfatin in humans.182,183 and the initial study was, in part, retracted.184 

Despite these inconsistencies, a positive correlation between visfatin gene expression in 

visceral adipose tissue and BMI was seen in some human studies, as well as a negative 

correlation between BMI and visfatin gene expression in subcutaneous fat.182,185 In summary, 

the provided evidence of a direct link between visfatin action and human type 2 diabetes 

mellitus is still weak and its role in obesity and insulin resistance remains to be elucidated.52 

 

Vaspin: 

Visceral adipose tissue-derived serpin or serpinA12 (Vaspin) was originally identified as an 

adipokine predominantly secreted from visceral adipose tissue. In humans, obesity and 

T2DM are associated with elevated vaspin serum concentrations and expression levels in 

adipose tissue, suggesting a compensatory role in response to diminished insulin signaling in 

obesity. In obese mice, Vaspin administration improves glucose tolerance, insulin sensitivity, 

and reduces food intake.186,187 The exact cellular mechanisms of Vaspin action have yet to be 

elucidated, but a recent study demonstrated that Vaspin inhibited TNF-α- and IL-1-mediated 

activation of NF-κB and its downstream signaling molecules in a concentration-dependent 

manner and thereby protected endothelial cells from inflammation caused by pro-

inflammatory cytokines.188 Moreover, a single-nucleotide polymorphism (rs2236242) was 

described to be positively associated with type 2 diabetes in 2759 participants in the KORA 

F3 study bearing an increased risk of diabetes independent of obesity, suggesting a link 

between vaspin and glucose metabolism.189 

 

Omentin-1: 

Omentin was described as a novel adipokine which is mainly produced by visceral adipose 

tissue and exhibits insulin-sensitizing action. Circulating levels of omentin are reduced in the 

obese state and in patients with T2DM. The beneficial effects of omentin are thought to be 

caused by a vasodilatation of blood vessels and attenuation of C-reactive protein-induced 

angiogenesis, potentially via the nuclear factor B signaling pathway, a potent pro-

inflammatory signaling pathway.190 In addition, omentin has been shown to block TNFα-

induced JNK and NF-κB activation.191 As with adiponectin, circulating levels of omentin are 

lower in obesity and also inversely correlated with measures of insulin resistance (HOMA-IR) 

and lower serum omentin concentrations were found in individuals with impaired glucose 

tolerance and type 2 diabetes compared to healthy individuals.192 However, it has to be 

elucidated whether the association of circulating omentin levels with the risk of T2DM is 

independent of BMI or can entirely be explained by obesity. In addition, further studies are 
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needed to distinguish entirely between adiponectin and omentin action and whether omentin 

also shows a counter-regulatory increase in pro-inflammatory conditions.193 

 

Apelin: 

The peptide apelin is expressed among several tissues and secreted by adipocytes. Apelin 

gene expression levels are increased in adipose tissue from mouse models of obesity and 

hyperinsulinemia. Moreover, obese and hyperinsulinemic patients demonstrate elevated 

plasma levels of apelin. However, apelin plasma levels depend on several factors, including 

blood glucose levels and plasma triglyceride concentration.194 Currently, apelin is being 

considered as a biomarker and drug target, but its role in the development of both obesity 

and type 2 diabetes needs to be clarified with convincing clinical studies.195,196 

 

Cardiotrophin-1: 

Cardiotrophin-1 (Ctf1) is expressed in different tissues and secreted as an adipokine. 

Targeted disruption of cardiotrophin-1 in mice leads to obesity and insulin resistance.197 

However, studies in humans have yielded contradictory results regarding cardiotrophin-1 

levels and its association with obesity.198 The role of cardiothrophin-1 in the regulation of 

metabolic circadian rhythms is the focus of current research.199 

 

WNT1-Inducible Signaling Pathway Protein-1: 

Wnt1-inducible signaling pathway protein-1 (Wisp1) was recently described as a new 

adipokine. Its expression and secretion are increased in the course of differentiation of 

human adipocytes. Changes in body weight regulate both expression of Wisp-1 in adipose 

tissue and plasma levels of secreted Wisp-1.200 Interestingly, Wisp-1 serum levels are 

elevated in obese patients affected with polycystic ovary syndrome (PCOS) and in patients 

with gestational diabetes mellitus.201,202 

 

Micro RNA (miRNA)- Containing Exosomes: 

Micro RNA’s are small, noncoding sequences of RNAs that control a multiplicity of gene 

expression processes in diverse organs. In adipose tissue, miRNA’s are important regulators 

of cellular metabolism such as cell differentiation and lipid storage. Expression of miRNAs is 

altered in patients with obesity and type 2 diabetes.203,204 Interestingly, the action of miRNAs 

is not restricted to the cells of their original expression. Adipocyte-specific targeted disruption 

of the miRNA-processing enzyme Dicer in mice decreased the number of circulating 

exosomal miRNAs. Dicer (-/-) mice manifest glucose intolerance and insulin resistance, 

presumably mediated via increased fibroblast growth factor 21 (FGF21) plasma levels. There 

is evidence for a direct effect of circulating miRNAs derived from adipose tissue on FGF21 

translation in the liver.205 In addition, a recent study showed that adipose tissue macrophages 

secrete miRNA-containing exosomes. Transfer of exosomes from obese to lean mice led to 

increased glucose intolerance and insulin resistance, and vice versa. The authors identified 

miRNA-155 as a potential target acting via the peroxisome proliferator-activated receptor 

gamma.206 

 

Fatty Acid Esters Of Hydroxy Fatty Acids: 

Recently, a novel family of lipids, the so-called fatty acid esters of hydroxy fatty acids 

(FAHFAs), has been identified. These branched fatty acid esters can be found in a variety of 

tissues with highest amounts in adipose tissues.  A specific group of FAHFAs, the PAHSAs 

(Palmitic acid esters of hydroxy-stearic acids), have been shown to have beneficial metabolic 

effects. Circulating PAHSA levels are reduced in insulin resistant people, and serum levels 
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correlate highly with insulin sensitivity. Moreover, treatment of obese mice with PAHSAs 

leads to improved glucose tolerance and increased insulin secretion. In adipocytes, PAHSAs 

signal through the omega-3 fatty acid receptor GPR120 to enhance insulin-stimulated 

glucose uptake.207 The production of FAHFAs in adipose tissue is tightly linked to the 

abundance of the insulin-responsive glucose transporter 4 (GLUT4) and the ability of 

adipocytes to transport glucose into the cell. Increased glucose uptake activates the nuclear 

transcription factor carbohydrate response element binding protein (CREBP), thereby 

enhancing lipogenesis and the synthesis of FAHFA’s.208 In addition, PAHSAs have been 

demonstrated to exert anti-inflammatory effects by repressing macrophage-induced tissue 

inflammation.209 

 

Summary: 

Adipocyte-derived factors such as adipokines and cytokines may provide direct links 

between obesity and the onset and progression of type 2 diabetes. Recent advancements in 

analytical technologies, in particular mass spectroscopy methods, may lead to further future 

discoveries of novel adipokines and cytokines that play roles in regulating intra-organ cross 

talk and metabolism. 

 

GENETIC SUSCEPTIBILITY FOR OBESITY AND INSULIN RESISTANCE  

 

Genetic Factors 

 

Genetics clearly plays an important role in conferring the risk for the development of 

metabolic diseases. Variant genes determine the individual susceptibility towards known risk 

factors and may explain why only a fraction of obese individuals develop T2DM whereas the 

majority of diabetics are obese. In recent genome-wide association studies (GWAS’s), 

numerous variant genes were identified that predispose to diabetes or obesity.210,211 

However, due to the relatively small contribution of the individual single nuclear 

polymorphisms (SNPs) to the overall disease risk, the predictive value of the gene variants is 

relatively small, and the pathophysiological relevance of many of these SNPs remains to be 

clarified. When combined, the genes identified so-far by GWAS explain only 15-20% of the 

heritable variance of metabolic diseases.212,213 An example of contradictory results of 

GWAS’s versus functional in vivo data represents the fat mass and obesity associated (FTO) 

gene. In different GWAS’s, SNPs located in the first intron of the FTO gene were associated 

with an altered body mass index,214,215 whereas Fto knockout mice develop postnatal growth 

retardation and exhibit a reduced body length.216 In contrast, no association of FTO was 

detected for height in humans.214,217 Although new in vivo data exist that reflect the human 

pathophysiology more precisely, the discrepancies of the GWAS’s and functional approaches 

remain apparent.218 

 

Thus, even though many studies have confirmed FTO and TCF7L2 as two major genes 

implicated in obesity and diabetes in humans, respectively, GWAS’s have provided only 

limited mechanistic insights into the pathophysiology of these diseases.214,219-221 Novel 

approaches combining classical familial linkage analysis methods with whole-genome 

sequencing (WGS) are currently emerging as an important and powerful analysis method, 

especially since rare variants, which are not well interrogated by GWAS’s, could be 

responsible for a substantial proportion of complex human diseases.222,223 

 

Perspectives: Positional Cloning to Identify Novel Genes In (and Out) of the Adipocyte  
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Polygenic mouse models have proven to be important tools to investigate molecular 

mechanisms that link obesity and T2DM. Despite novel advancements in the sequencing 

technology, the most successful strategy to identify and characterize new risk alleles is 

represented by a positional cloning approach.224,225 This approach capitalizes on a 

combination of breeding of multiple recombinant congenic mouse lines and of expression 

profiling of critical genomic regions that confer the phenotype. Using this approach, nine 

gene variants were identified as candidates for type 2 diabetes and/ or obesity during the last 

years. Sorcs1 encodes for a protein of largely unknown function that binds to a transcription 

factor responsible for islet vascularization.226  Lisch-like factor was described to be 

responsible for reducing β-cell mass and β-cell replication rates.227 Zfp69, a zinc-finger 

transcription factor, was described as causal gene for the diabetogenic Nidd1 quantitative 

trait locus (QTL) derived from the lean SJL (Swiss Jim Lambert) mouse strain and 

responsible for the distribution of lipids between different organs. Recently, it was shown that 

Zfp69 modulates hepatic insulin sensitivity in mice.93,228,229 Ifi202b, a member of the Ifi200 

family of interferon inducible transcriptional modulators modulates fat accumulation through 

expression of adipogenic genes such as 11β-HSD1.230,231 Syntaxin-binding protein 5-like 

(Stxbp5l) or tomosyn-2 was identified in an F2 intercross from the BTBR T (+) tf (BTBR) 

Lep(ob/ob) and C57BL/6 (B6) Lep(ob/ob) mouse strains as a key negative regulator of 

insulin secretion.232 The same crossbreeding approach yielded Tsc2 as a gene underlying a 

QTL for nonalcoholic fatty liver disease (NAFLD) on chromosome 17. It was demonstrated 

that Tsc2(+/-) mice exhibited an increase in lipogenic gene expression levels in the liver in an 

insulin-dependent manner.233 The gene encoding the bile acid transporter Slco1a6 has been 

presented as a candidate gene for altered transport of taurocholic acid (TCA), resulting in 

broad gene regulation in pancreatic islets.234 In an NZO-based crossbreeding approach, one 

of the components of the KATP channel in pancreatic β-cells, Abcc8, was identified as 

causative factor in early-phase glucose-mediated insulin secretion.235 Lastly, Tbc1d1, a Rab-

GAP protein that is presumably involved in GLUT4 vesicle sorting in skeletal muscle was 

identified as causal variant for the Nob1 obesity QTL derived from a crossbreeding of lean 

SJL with obese NZO (New Zealand obese) mice.91,236,237 Interestingly, both QTL, Nidd1 and 

Nob1 exhibit strong epistatic interaction as well as interaction with dietary fat in an outcross 

model of NZO and lean SJL mice.91,93,238 and both Zfp69 and Tbc1d1 genes are directly 

responsible for fat storage and fatty acid oxidation, respectively. This underscores the 

importance of altered lipid partitioning as a common denominator in the pathogenesis of 

obesity-driven diabetes.  

 

All nine positionally cloned genes were located within consensus QTL regions, i.e. loci that 

have been linked to diabetes-related traits in multiple crossbreeding experiments. In fact, our 

meta-analyses of 77 published genome-wide linkage scans with hundreds of QTL strongly 

indicated the presence of consensus regions for metabolic traits in the mouse genome, and 

these hotspots could provide guidance for identifying novel gene variants involved in the 

development of the disease.239,240 Nevertheless, generation and refinement of novel 

polygenic mouse models is important since complex genetics seems to contribute 

significantly to the pathogenesis of the human disease 241 Moreover, diverse genetic tools 

such as the generation of Chromosome Substitution Strains (CSSs) and combination of 

classical breeding approaches with high-throughput genotyping, sequencing and genetic 

engineering technologies, and information repositories highlight the power of the mouse for 

genetic, functional, and systems studies of complex traits and disease models.242 
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SUMMARY 

 

Although immune system, ectopic fat, and macro/micronutrients all contribute in part to the 

susceptibility for diabetes in the obese state, most of the underlying molecular mechanisms 

are still poorly understood. The identification of susceptibility genes mediating the 

progression of type 2 diabetes is crucial to prevent the massive epidemics of the disease. 

Future research will be focused not only on gene-gene interactions but also on the interplay 

of genetic and environmental risk factors.  
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