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ABSTRACT 
 
At least 10% of diabetes cannot be attributed to the most common forms, Type 1 or Type 2 
diabetes. Maturity-Onset Diabetes of Young (MODY) can be diagnosed in (non-obese) patients 
with diabetes at a young age, often less than 25 years, who have a strong autosomal dominant 
family history of diabetes. Patients are generally heterozygous for the different mutations as the 
homozygous conditions result often in permanent neonatal diabetes.  The genetic defects behind 
MODY and neonatal diabetes cause impaired insulin synthesis or secretion or a reduced beta cell 
mass due to mutations in genes that are important for beta cell biology.  Currently there are more 
than 10 genes associated with these disorders, and more genes are likely to be identified.  
 
GENETIC DEFECTS OF BETA-CELL FUNCTION 
 
Table 1. Genetic Defects of Beta-Cell Development and Function 
HNF-1 alpha -diabetes 
Glucokinase diabetes 
HNF-4 alpha diabetes 
Pdx1 diabetes 
HNF-1 beta diabetes 
NeuroD1 diabetes 
KLF11 diabetes 
CEL diabetes 
Pax4 diabetes 
Insulin diabetes 
BLK diabetes 
ABCC8 gene/ Sur1 diabetes 
KJCN11 gene/ Kir6.2 diabetes 
Neonatal diabetes (permanent or transient) 



 
AUTOSOMAL DOMINANT DISEASE  
 
Historically, before the current epidemic of teenage T2DM (1,2), many patients diagnosed with 
T2DM or T1DM were found to have a form of diabetes with a strong family history of diabetes, 
which was labeled Maturity-Onset Diabetes of Young (MODY) in 1965. Although some of them 
phenotypically resemble T2DM, these individuals are not typically obese and have onset of 
disease at a young age, generally less than 25 years. Inheritance of the diabetes in these 
individuals is autosomal dominant with up to 85-95% penetrance. Patients are generally 
heterozygous for the different mutations as the homozygous conditions result often in permanent 
neonatal diabetes.  The genetic defects cause impaired insulin synthesis or secretion or a reduced 
beta cell mass due to mutations in genes that are important for beta cell biology (3).  Currently 
there are at least 13 genes associated with this disorder, although more genes are likely to be 
identified in the future (4). Instead of MODY the specific genetic defects are included in the names 
of the monogenic forms. 
 
Hepatocyte Nuclear Factor (HNF-4A) Diabetes (Formerly MODY 1)  
 
This is the first MODY to be described. HNF-4α belongs to the nuclear receptor superfamily of 
transcription factors and is found in the liver, intestine, kidney, and pancreatic islets. Although it 
binds DNA as a zinc finger motif there is no defined ligand. It is involved in the regulation of genes 
required for glucose transport and metabolism (5,6). Patients with HNF4-α diabetes are seldom 
diagnosed before adolescence. A diagnostic clue can be low triglycerides (0.5- 0.8 mmol/l) (7,8) 
and the patient may also have been LGA as a newborn and have had a neonatal hyperinsulinemic 
hypoglycemia (9). Fasting plasma glucose can be quite normal for several years although 
postprandial glucose and HbA1c is high. Eventually HNF-4A patients require either oral 
hypoglycemic agents or insulin treatment. Exocrine pancreatic insufficiency can be present. 
 
Glucokinase (GCK) Diabetes (Formerly MODY 2)  
 
Heterozygous inactivating mutations in glucokinase cause defects in function (10,11,12,13). This 
glycolytic enzyme has a low affinity for glucose and controls the rate-limiting step of glucose 
metabolism. It is referred to as the glucose sensor of the β-cell as it controls glucose-mediated 
insulin release. More than 60 different mutations have been described and all ethnic groups can be 
affected. The clinical disease manifests as mild fasting hyperglycemia with onset during infancy but 
high postprandial glucose levels are very rare even later in life. Severe hyperglycemia and vascular 
complications are rare in GCK diabetes (14). Treatment consists basically of dietary (avoiding large 
quantities of carbohydrate) and lifestyle interventions. Homozygotic inactivating GCK mutations 
lead to permanent neonatal diabetes (15). 
 
HNF-1A Diabetes (Formerly MODY 3)  
 
Mutations in HNF-1A are a common cause of MODY (6,16). HNF-1A is part of the homeodomain-
containing superfamily of transcription factors. It has a DNA binding motif, and is involved in the 
genetic control of development and its expression is partly controlled by HNF-4-alpha (17,18). 
HNF-1A is expressed in the liver, kidney, intestine, and pancreatic islets (19). Over 90 different 
mutations have been identified and these occur in all ethnic groups, though it is more common in 
those of European origin (20). Similar to (HNF-4A) diabetes, fasting plasma glucose can be quite 



normal for several years although postprandial glucose and HbA1c is high. Glucosuria is often part 
of the clinical presentation, and diabetic complications are often present. Besides diet intervention, 
most patients will do well on sulfonylurea treatment. 
 
Pdx1 (a.k.a. Insulin Promotor Factor IPF-1) Diabetes (Formerly MODY4)  
 
Only a few families have been identified with this disorder (21). Pdx1 is a homeodomain-containing 
transcription factor that is expressed in the endoderm already before the pancreatic anlage is 
identifiable (22).  It regulates the development of beta and delta cells (23) and therefore it is not 
surprising that homozygotic  or two different heterozygotic mutations lead to pancreatic agenesis 
and neonatal diabetes (24,25) while single heterozygotic mutations associate with beta cell 
dysfunction and type 2 like diabetes (21,26). The average age at diagnosis is 35 years (variation 
between 16-76 years), yet not all mutation carriers develop diabetes (27).  
 
HNF-1-Beta Diabetes (Formerly MODY 5)  
 
This form of diabetes is caused by heterozygotic mutations in TCF2 gene encoding HNF-1beta, 
and is characterized by progressive non-diabetic renal dysfunction of variable severity, pancreatic 
atrophy and genital abnormalities (28,29). It is also called RCAD i.e. renal cysts and diabetes.  
HNF-1beta is expressed in the liver, kidney, intestine, stomach, lung, ovary and pancreatic islets 
(30). Recently, complete deletion of HNF-1b and 17q12 microdeletion syndrome have been 
considered to be the same genetic disorder (31). Half of the carriers develop diabetes and are 
usually treated with insulin because of pancreatic atrophy. 
 
Neuro D1 Diabetes (Formerly MODY6)  
 
NeuroD1 (Beta2) is a basic-loop-helic transcription factor involved in pancreatic and neuronal 
development. Interestingly, heterozygotic Neuro D1 mutation leads to diabetes at the age of 20-40 
years (32,33) while mutations in both alleles result in neonatal diabetes with neurological 
abnormalities and learning disabilities (34). 
 
KLF11 Diabetes (Formerly MODY7)  
 
Krüppel-like factor (KLF)-11 is a zinc-finger transcription factor and in regulates transcription of 
Pdx1 and insulin genes (35,36). Mutations of KLF-11 result in a type 2-like diabetes.  
 
CEL Diabetes (Formerly MODY8)  
 
Carboxy ester lipase (CEL) is expressed in pancreatic acinar cells and its mutations result in 
pancreatic atrophy, fibrosis and lipomatosis together with exocrine insufficiency and later also 
endocrine dysfunction and diabetes (37). Patients usually need insulin treatment and pancreatic 
enzyme replacement therapy. 
 
Pax4 Diabetes (Formerly MODY9)  
 
Pax4 is a crucial transcription factor of pancreatic beta and delta cells (38), and its deletion in 
mouse models leads to lack of beta and delta cells and death from diabetes soon after birth. In 



humans, Pax4 gene mutations have been detected in only a few patients with a phenotype similar 
to type 2 diabetes and it has also been associated with ketosis-prone diabetes (39,40).  
 
Insulin Diabetes (Formerly MODY10)  
 
Over 25 mutations have been reported in the preproinsulin gene leading to diabetes at various 
ages (41-43). The treatment is generally insulin although some patients manage with metformin or 
diet intervention. Interestingly, only a few patients develop late-complications. 
 
BLK Diabetes (Formerly MODY11)  
 
Mutations in the B-lymphocyte kinase (BLK) have been reported to cause a dominantly inherited 
diabetes in three families (44). BLK is a nonreceptor tyrosine-kinase of the src family of proto-
oncogenes and it regulates insulin synthesis and secretion in beta cells through transcription 
factors Pdx1 and Nkx6.1.  
 
ABCC8 Gene/ SUR1 Diabetes (Formerly MODY12)  
 
SUR1 is encoded by the ABCC8 gene and it is a part of the K-ATP-channel (45).  Its activating 
homo- and heterozygous mutations cause neonatal diabetes, but heterozygous mutations can also 
cause MODY in patients whose clinical features are similar to those with HNF1A/4A diabetes (46). 
The correct molecular diagnosis is important as the patients can be treated with sulfonylureas. 
 
KJCN11 gene/ Kir6.2 Diabetes (Formerly MODY13)  
 
Kir6.2 is encoded by KJCN11 gene and it is a part of the K-ATP-channel (45). Similar to SUR1, its 
activating homozygous mutations cause neonatal diabetes, but heterozygous mutation has been 
associated with a large spectrum of diabetes phenotypes in a French family and was not totally 
penetrant (47). The age at diagnosis varied from childhood to adulthood and the treatment from 
diet to OHA or insulin. 
 
Table 2. MODY Characteristics 

MODY type Frequency (% from MODYs) Age at diagnosis (y) Hyperglycemia 

GKC 15-20 newborn or older Mild 

HNF-4A  5 From puberty Progressive 

HNF-1A almost 60 From puberty Progressive 

HNF-1B 2 > 20 Progressive 

Pdx1 < 1 > 35 Progressive 



Ins 2 Infant to adult Varies 

CEL < 1 > 30  N.A 

NeuroD < 1 20-30  Progressive 

KLF11 < 1 20-30 Variable 
Pax4 < 1 > 20 Progressive 
Kir6.2 < 1 From early puberty to 

adulthood 
Variable 

SUR1 < 1 From early puberty to 
adulthood 

Variable 

 
Table 2. MODY Characteristics 
MODY Types Complications Other Features Treatment 
GKC Very rare Mild hyperglycemia 

already from newborn, 
homozygote: PNDM 

Diet 

HNF-4A  as T1D Neonatal 
hyperinsulinemia, LGA, 
low triglycerides 

OHA or insulin  

HNF-1A as T1D reduced renal glucose 
threshold 

OHA or insulin  

HNF-1B as T1D Renal anomalies, renal 
insufficiency, pancreatic 
hypoplasia, genital 
anomalies 

OHA or insulin  

Pdx1 NA Homozygote: pancreatic 
agenesis 

Diet or OHA or insulin  

Ins Mild but can be as T1D Can also present as 
PNDM 

Diet or OHA or insulin  

CEL NA Exocrine insufficiency, 
lipomatosis 

OHA or insulin  

NeuroD NA Homozygote: PNDM 
and neurological 
abnormalities 

OHA or insulin  

KLF11 NA NA. OHA or insulin  
Pax4 NA NA. Diet or OHA or insulin  
Kir6.2 NA Homozygote: neonatal 

diabetes 
Diet or OHA or insulin  

SUR1 NA Homozygote: 
permanent neonatal 
diabetes; heterozygote: 
transient neonatal 
diabetes 

OHA (sulfonylurea) 



 
 
Permanent and Transient Neonatal Diabetes  
 
Neonatal diabetes (NDM) is a diabetes that manifests during the first six months of life and it can 
be divided into permanent (PNDM) and transient (TNDM) forms.  In this age group the most likely 
etiology is monogenic instead of autoimmune, and the diabetes can present either as isolated or a 
part of a syndrome (48-51). The incidence of NDM is estimated to be 1: 260000 (52).  Recently, 
Flanagan et al. reported from a cohort of 147 of PNDM patients from consanguineous pedigrees 
that 75% had mutations in non-transcription factor genes (ABCC8 11%, EIF2AK3 40%, GCK 17%, 
INS 16%, KCNJ11 8%, SLC19A2 5%, SLC2A2 2%), and 7.5% in developmentally important 
pancreatic transcription factors (PDX1, PTF1A, GLIS3, RFX6, NEUROD1, NKX2.2, MNX1) (53). 
Furthermore, mutations in other pancreatic transcription factor genes (PAX6, NEUROG3, GATA4, 
GATA6, STAT3, FOXP3) have been identified in patients with neonatal diabetes (54-60).  
It is important to get the exact molecular diagnosis behind NDM since the patients can be treated 
life-long with sulfonylureas instead of insulin in case of SUR1 or Kir6.2 mutations (38).  

Most of TNDM is caused by abnormalities of an imprinted locus on chromosome 6q24 that results 
in the overexpression of the paternally expressed gene. Approximately 5% of these cases are due 
to recessive ZFP57 mutations, causing hypomethylation at the TNDM locus and other maternally 
imprinted loci (e.g. PEG3/ZIM2 and GRB10) and 25% are caused by mutations in either KJCN11 
or ABCC8 genes (61). 
 

 
 
Figure 1. Mutation in genes governing beta cell development and function reduce beta cell 
mass and impair insulin secretion resulting in diabetes (modified from Folias & Hebrok, Nat 
Rev Endocrinol 2014) (62).  
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