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ABSTRACT 
 
Very low HDL-C levels (<20mg/dL) may be due to 
severe elevations in triglycerides, very poorly 
controlled diabetes, inflammation, infections, 
malignancy, liver disease, and certain medications 
such as anabolic steroids. Additionally, variants in 
multiple genes that each have a small effect but 
cumulatively lead to a decrease in HDL-C can result 
in very low HDL-C levels. Finally, rare monogenic 
disorders such as familial hypoalphalipoproteinemia, 
Tangier disease, and lecithin acyltransferase (LCAT) 
deficiency can lead to very low HDL-C levels. In this 
chapter we discuss the lipid abnormalities and clinical 
features of these monogenic disorders causing very 
low HDL-C levels. An elevated concentration of apo 
A-I and apo A-II is called hyperalphalipoproteinemia 
(HALP). HALP is classified as moderate (HDL-C 
levels between 80 and 100 mg/dL) or severe (HDL-C 
levels > 100 mg/dL). HALP is a heterogeneous 
condition caused by a variety of genetic and 
secondary conditions (for example ethanol abuse, 
primary biliary cirrhosis, multiple lipomatosis, 
emphysema, exercise, and certain drugs such as 
estrogens). In many individuals HALP has a 
polygenic origin. Monogenic HALP includes CETP 
deficiency, hepatic lipase deficiency, endothelial 
lipase deficiency, and loss of function mutations in 

SRB1. In this chapter we discuss the lipid 
abnormalities and clinical features of these 
monogenic disorders causing HALP. 
 
LOW HDL CONDITIONS 
 
The inverse relationship between HDL-C and ASCVD 
risk is well established but it should be recognized 
that while this association is consistently observed 
recent genetic and cardiovascular outcome studies 
suggest that this association is not causal (1). 
However, as discussed below major reductions in 
HDL-C induced by specific monogenic disorders may 
increase the risk of ASCVD.  
 
Isolated low HDL-C levels can occur; however, it is 
more commonly found in association with 
hypertriglyceridemia and/or elevated apo B levels, 
typically as part of the obesity/metabolic syndrome 
(2). Patients with very low HDL-C (<20 mg/dL) in the 
absence of severe hypertriglyceridemia, very poorly 
controlled diabetes, inflammation, infections, 
malignancy, liver disease, anabolic steroids, or a 
paradoxical response to PPAR agonists are very rare 
(<1% of the population) (3,4). These individuals may 
have a very rare monogenic disorder associated with 
marked HDL deficiency, including familial 
hypoalphalipoproteinemia, Tangier disease, and 



 

 

www.EndoText.org   2 
 

lecithin acyltransferase (LCAT) deficiency. Table 1 
summarizes the genetic, lipid, and clinical features of 
these monogenic low HDL conditions. Inheritance is 
autosomal co-dominant with heterozygotes having 
decreases in HDL-C levels approximately midway 

between normal and homozygotes (3). In some 
individuals the decrease in HDL-C can be polygenic 
i.e., variants in multiple genes that each have a small 
effect but cumulatively lead to a decrease in HDL-C 
(5). 

 
Table 1. Characteristics of Monogenic Low HDL Syndromes 
 Effected genes Lipids Clinical features 
Familial 
hypoalpha-
lipoproteinemia 

apo A-I/apo C-III/ apo 
A-IV 
apo A-I/apo C-III 
apo A-I 

Apo AI undetectable, 
marked deficiency in 
HDL-C, low – normal 
triglycerides, normal 
LDL-C 

Xanthomas 
Premature ASCVD 
Corneal 
manifestations 

Tangier 
disease 

ABCA1 HDL species exclusively 
preß-1, HDL-C <5 mg/dL 
LDL-C low (half normal) 

Hepatosplenomegaly 
Enlarged tonsils 
Neuropathy 
ASCVD (6-7th 
decade) 

LCAT 
deficiency 

LCAT HDL-C <10 mg/dL 
apo A-I 20-30 mg/dL  
<36% cholesteryl esters 
Low LDL-C 
Presence of Lp-X 
particles 

FLD develop corneal 
opacities (“fish eye”), 
normochromic 
anemia and 
proteinuric end stage 
renal disease 
 
FED only develop 
corneal opacities 

Inheritance is autosomal co-dominant with heterozygotes having decreases in HDL-C levels approximately 
midway between normal and homozygotes (3). FLD- Familial Lecithin: Cholesteryl Ester Acyltransferase 
Deficiency; FED- Fish Eye Disease 
 
Familial Hypoalphalipoproteinemia   
 
Familial hypoalphalipoproteinemia is a 
heterogeneous group of apolipoprotein A-I (apo A-I) 
deficiency states. This disorder is the rarest cause of  
monogenic severe HDL deficiency (6). These various 
conditions are characterized by the specific 
apolipoprotein genes that are affected on the apo A-
I/C-III/A-IV gene cluster (3). The genes for these 3 
apolipoproteins (apo A-I, apo C-III, and apo A-IV) are 
grouped together in a cluster on human chromosome 
11. In patients with apo A-I/C-III/A-IV deficiency, 

apoA-1 is undetectable in the plasma and is 
associated with marked deficiency in HDL-C, low 
triglyceride levels (due to apo C-III deficiency), and 
normal LDL-C levels (3). Heterozygotes have plasma 
HDL-C, apo A-I, apo A-IV, and apo C-III levels that 
are about 50% of normal (3). This condition is 
associated with aggressive, premature ASCVD. 
Additionally, there is evidence of mild fat 
malabsorption due to deficiency of apo A-IV. Patients 
with apo A-I/C-III deficiency have undetectable apo 
A-I and a similar lipid profile as those with apo A-I/C-
III/A-IV deficiency (3). This condition is also 
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associated with premature ASCVD. It is distinguished 
from the former by presence of planar xanthomas 
and absence of fat malabsorption (since apo A-IV is 
present). Familial apo A-I deficiency is itself a 
heterogeneous group of disorders associated with 
numerous Apo A-I mutations (3). Common 
manifestations include undetectable plasma Apo A-I, 
marked HDL deficiency with normal LDL-C and 
triglyceride levels, xanthomas (planar, tendon, and/or 
tubero-eruptive depending on the specific gene 
mutation), and premature ASCVD. Some forms of the 
disease are also associated with corneal 
manifestations, including corneal arcus and corneal 
opacification. One of the interesting manifestations of 
familial apo A-I deficiency is that levels of apo A-IV 
and apo E containing HDL particles are only 
modestly reduced, with preserved electrophoretic 
mobility and particle size (7).  
 
It is notable that familial hypoalphalipoproteinemia is 
associated with an increased risk of premature 
ASCVD presumably due to the marked deficiency in 
Apo A-I and HDL. Given the increased ASCVD risk 
associated with Apo A-I deficiency, treatment is 
directed towards aggressive reduction of LDL-C and 
non-HDL-C levels and reducing other cardiovascular 
risk factors. 
 
Some mutations in Apo A-I are associated with low 
HDL-C levels and hereditary amyloidosis and are the 
second most frequent cause of familial amyloidosis 
(6,8). Note that HDL-C levels are not always 
decreased in patients with familial amyloidosis 
secondary to Apo A-I mutations. The N-terminal 
fragment of the mutated protein is found in the 
amyloid fragments.  
 
Tangier Disease  
 
Tangier disease is due to mutations in the gene that 
codes for ATP-Binding Cassette transporter A1 
(ABCA1) and is inherited in an autosomal co-
dominant manner (9,10).  Fredrickson first reported 

this condition in two patients who hailed from Tangier 
Island in the Chesapeake Bay, for which the disorder 
is named. ABCA1 facilitates efflux of intracellular 
cholesterol from peripheral cells to lipid poor A1, the 
key first step of reverse cholesterol transport (11). As 
such, this disorder is characterized by severe 
deficiency of HDL-C (HDL-C <5 mg/dL) and the 
presence of only the preß-1 HDL fraction of HDL 
(10). The poorly lipidated Apo A-I is rapidly 
catabolized by the kidney. These patients also 
demonstrate moderate hypertriglyceridemia and low 
LDL-C levels (10). The decrease in LDL-C is likely 
due to absence of the transfer of cholesterol from 
HDL to LDL. Studies have also suggested that an 
increase in LDL uptake by the liver also occurs (12). 
The increase in triglycerides may be due to the 
failure of HDL to provide co-factors that increase 
lipoprotein lipase activity. Additionally, ABCA1 
deficiency in the liver increases triglyceride secretion 
and hepatic angiopoietin-like protein 3 secretion 
which could inhibit lipoprotein lipase activity leading 
to an increase in triglycerides (12,13).  
 
Since ABCA1 deficiency impairs free cholesterol 
efflux from cells, there is accumulation of cholesterol 
esters in many tissues throughout the body (10). 
Classically, patients present with 
hepatosplenomegaly and enlarged yellow-orange 
hyperplastic tonsils, however, a wide spectrum of 
phenotypic manifestations is now appreciated with 
considerable variability in terms of clinical severity 
and organ involvement (9,10). Peripheral 
neuropathies are also a common complication and 
may be relapsing-remitting or chronic progressive 
(9,10). Tangier disease patients appear to have an 
increased risk of premature ASCVD, though not as 
pronounced as those with familial 
hypoalphalipoproteinemia (3,9,14). When the non-
HDL-C levels are greater than 70mg/dL patients with 
Tangier disease are at higher risk of ASCVD 
whereas when the non-HDL-C levels are less than 
70mg/dL ASCVD is low (9). Less common 
complications include corneal opacities and 
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hematological manifestations such as 
thrombocytopenia and hemolytic anemia (9,10). 
 
Individuals who are heterozygous for ABCA1 
mutations have HDL-C levels that are variable but 
approximately 50% of normal with normal levels of 
preß-1 HDL but a deficiency of large α-1 and α-2 
HDL particles (10). Cholesterol efflux capacity in 
heterozygotes has been reported as ~50% of normal. 
A mutation in one ABCA1 allele has been associated 
with increased risk of ASCVD in some studies and 
with no increase in ASCVD risk in other studies (15-
20). Different mutations in ABCA1 result in varying 
HDL-C levels and phenotypes, which might explain 
the difference in ASCVD risk (21).  
 
While Tangier patients manifest characteristically low 
HDL-C and Apo A-I, this lipid/lipoprotein phenotype is 
not adequate to make the diagnosis. ABCA1 gene 
sequence analysis is the preferred test to make the 
diagnosis of Tangier disease (10). Alternatively, non-
denaturing two-dimensional electrophoresis followed 
by anti-apo A-I immunoblotting demonstrates only 
preβ1-HDL.  
 
Currently, there is no specific treatment for Tangier 
disease (10). In fact, HDL-C raising therapies such 
as niacin and fibrates have proven ineffective in 
patients with this condition (22). Even HDL infusion 
was not beneficial (23). The major clinical issue in 
Tangier patients is disabling neuropathy; however, 
there is no effective intervention to manage this 
complication (10). Aggressive LDL-C lowering and 
treatment of other risk factors for atherosclerosis is 
recommended (10). 
 
LCAT Deficiency   
 
LCAT is an enzyme that is bound primarily to HDL, 
with some also found on LDL (24,25). It facilitates 
cholesterol esterification by transferring a fatty acid 
from phosphatidyl choline to cholesterol (24,25). The 
hydrophobic cholesteryl esters are then sequestered 

in the core of the lipoprotein particles. LCAT is critical 
in the maturation of HDL particles. LCAT deficiency is 
an autosomal co-dominant disorder that manifests as 
either familial LCAT deficiency (FLD) or fish-eye 
disease in homozygotes (FED) (24,25). In FLD, 
mutations in LCAT lead to the inability of LCAT to 
esterify cholesterol in both HDL and LDL, whereas in 
FED, mutations in LCAT lead to the inability of LCAT 
to esterify cholesterol in HDL but the ability of LCAT 
to esterify cholesterol in LDL is preserved (24,25). 
Patients with FLD have virtually no cholesterol esters 
in the circulation while patients with FED have 
subnormal levels of cholesterol esters carried in apo 
B containing lipoproteins (24,25). Heterozygotes 
having decreases in HDL-C levels approximately 
midway between normal and homozygotes.   
 
Individuals with FLD develop corneal opacities (“fish 
eye”), normochromic hemolytic anemia (due to 
cholesterol enrichment of red blood cell membranes), 
mild thrombocytopenia, and proteinuric end stage 
renal disease, which is the major cause of morbidity 
and mortality (24,25). The corneal opacities begin 
early in life and some patients may need corneal 
transplants. The rate of development of renal disease 
is variable but in a large cohort renal failure occurred 
at a median age of 46 years (26). Patients with FED 
generally only manifest corneal opacities (24,25).  
 
The lipid and lipoprotein profile in patients with FLD 
usually demonstrates low HDL-C levels (frequently 
<10 mg/dL) (24,27). In one cohort patients with FED 
tend to have higher HDL-C levels but in a large 
systematic review HDL-C levels were similar in 
patients with FLD and FED (24,27). LDL-C levels 
tend to be low in FLD and FED while triglyceride 
levels are increased (24,27). Lipoprotein X (Lp-X) 
particles are present in patients with FLD but not in 
patients with FED (24). Lp-X is a multilamellar vesicle 
with an aqueous core. It is primarily composed of free 
cholesterol and phospholipid with very little protein 
(albumin in the core and apolipoprotein C on the 
surface) and cholesteryl ester.  
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Given the association of Lp-X and kidney disease 
only with FLD (and not FED) and animal studies 
demonstrating the nephrotoxicity of Lp-X, it is likely 
that increased levels of Lp-X results in renal 
dysfunction in patients with FLD (25,28). Lp-X 
particles accumulate in the mesangial cells in the 
glomerulus and are thought to induce inflammation 
and breakdown of the basement membrane leading 
to proteinuria. It is notable that after renal 
transplantation in patients with FLD there is 
recurrence of renal damage in the transplanted 
kidney (26). 
 
It is unclear as to whether LCAT deficiency is 
associated with an increased risk of ASCVD (25,29). 
Atherosclerosis imaging studies have yielded 
divergent data and the number of patients with FLD 
or FED studied is limited (25,29). In one study 
carriers of FLD mutations (i.e., heterozygotes) had a 
decrease in ASCVD while carriers of FED mutations 
had an increase in ASCVD (30). This may have been 
due to higher LDL-C levels in the carriers of FED 
mutations (30).  
 
Current management of FLD focuses on managing 
the renal dysfunction. The associated kidney disease 
is traditionally managed with angiotensin-converting 
enzyme inhibitors, angiotensin receptor blockers, and 
a low-fat diet (25). Whether lipid lowering drugs are 
beneficial is unknown. Possible future therapies 
include enzyme replacement therapy with 
recombinant human LCAT, liver-directed LCAT gene 
therapy, small peptide or molecule activators of 
LCAT, and HDL mimetics (31,32). Infusions of 
recombinant human LCAT has improved the anemia 
and most parameters of renal function in a patient 
with FLD (33). Administration of CER-001, an 
apolipoprotein A1 (apoA-1)–containing HDL mimetic, 
has been shown to have beneficial effects on kidney 
and eye disease in a patient with LCAT deficiency 
(34).   

 
Approach to the Patient with Low HDL-C Levels 
 
When encountering a patient with very low HDL-C 
levels it is important to first determine if this is a new 
abnormality or has been present for a long time. If 
prior HDL-C levels are normal, this excludes a 
primary monogenic etiology. If the decrease in HDL-
C is new, one should consider the possibility of very 
poorly controlled diabetes, inflammation, infections, 
malignancy, liver disease, paraproteinemia, anabolic 
steroids, or a paradoxical response to PPAR 
agonists. Marked hypertriglyceridemia can also lead 
to very low HDL-C levels.   
 
In a patient with long-standing very low HDL-C levels 
without an identifiable secondary cause, one should 
consider a monogenic etiology. To evaluate potential 
monogenic causes, a detailed family history, with 
attention to HDL-C levels, is important. Obtaining 
lipid levels from relatives is very helpful. A focused 
physical examination, with particular attention to the 
skin, eyes, tonsils, and spleen may point to a specific 
monogenic disorder. Plasma apo A-I levels should be 
obtained. Individuals with familial 
hypoalphalipoproteinemia deficiency have 
undetectable plasma apo A-I. Patients with Tangier 
disease demonstrate very low apo A-I levels (<5 
mg/dL). LCAT deficiency is associated with apo A-I 
levels that are low but substantially higher than the 
other monogenic etiologies. Patients with LCAT 
deficiency also have a higher ratio of free: total 
cholesterol in plasma and measurement of plasma 
free (unesterified) cholesterol can be helpful. Two-
dimensional gel electrophoresis of plasma followed 
by immunoblotting with antibodies specific for apo A-I 
separates lipid-poor preß-HDL from lipid-rich–HDL 
and can be helpful in differentiating these disorders. 
Genetic analysis is indicated when a monogenic 
disorder is suspected.  
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HIGH HDL-C CONDITIONS 
(HYPERALPHALIPOPROTEINEMIA)  
 
An elevated concentration of apo A-I and apo A-II is 
called hyperalphalipoproteinemia (HALP). HALP is 
classified as moderate (HDL-C levels between 80 
and 100 mg/dL) or severe (HDL-C levels > 100 
mg/dL). While it is well recognized that high HDL-C 
levels are associated with a decrease in ASCVD it 
should be noted that very high HDL-C levels are 
paradoxically associated with an increase in ASCVD 
(35,36). 
 
HALP is a heterogeneous condition caused by a 
variety of genetic and secondary conditions (for 
example ethanol abuse, primary biliary cirrhosis, 
multiple lipomatosis, emphysema, exercise, and 
certain drugs such as estrogens). In many 
individuals, the very high HDL-C levels have a 
polygenic origin (5,37). Given the focus of this 
chapter, monogenic causes of HALP will be 
reviewed. Monogenic HALP includes CETP 
deficiency, hepatic lipase deficiency, endothelial 
lipase deficiency, and loss of function mutations in 
SRB1. Despite epidemiology that demonstrates an 
inverse relationship between HDL-C and ASCVD 
risk, some forms of familial HALP are paradoxically 
associated with increased cardiovascular risk.  
 
HALP is generally identified incidentally after routine 
assessment of a lipid profile as it is not usually 
associated with any signs or symptoms. Generally, 
patients are asymptomatic and no medical therapy is 
required.  
 
Cholesterol Ester Transfer Protein (CETP) 
Deficiency 
 
CETP transfers cholesteryl esters from HDL particles 
to triglyceride rich lipoproteins and LDL in exchange 
for triglycerides (11). Individuals who are 
homozygous for CETP variants have very high HDL-
C levels (>100mg/dL) while heterozygotes have 

moderately increased HDL-C levels (38-41). LDL-C 
and apo B levels may be normal or modestly 
decreased. The increase in HDL cholesterol are 
largely due to the accumulation of cholesterol esters 
(39). The decrease in LDL-C is due to the failure of 
cholesterol ester transport from HDL to apo B 
containing lipoproteins. There is a predominance of 
small LDL particles. Individuals who are 
heterozygotes for CETP mutations show modestly 
elevated HDL-C levels (38,39). In Japanese 
individuals with HDL-C levels > 100mg/dL 67% were 
demonstrated to have CETP gene mutations (42). 
CETP deficiency is the most important and frequent 
cause of HALP in Japan. CETP deficiency is 
common in other Asian populations but is relatively 
rare in other ethnic groups (39). Despite extensive 
studies the effect of CETP variants on the risk of 
ASCVD is uncertain (38-40,43). A variety of studies 
have indicated that a decrease in LDL-C and non-
HDL-C levels (i.e. pro-atherogenic lipoproteins) 
rather than an increase in HDL-C induced by CETP 
variants underlies a potential beneficial effect on 
ASCVD (44).    
 
Endothelial Lipase (EL) Deficiency 
 
Endothelial lipase (EL) is encoded by the LIPG gene 
and hydrolyzes phospholipids on HDL resulting in 
smaller HDL particles that are more rapidly 
metabolized (11). Genetic variants in LIPG have 
been identified Iin individuals with elevated HDL-C 
levels (38,39). As one would predict large HDL 
particles enriched in phospholipids are observed in 
individuals deficient in EL (39). Whether variants in 
LIPG leading to decreased EL activity and increased 
HDL-C levels reduces ASCVD risk is uncertain (38-
40).  
 
Hepatic Lipase (HL) Deficiency 
 
Hepatic lipase (HL) is encoded by the LIPC gene and 
mediates the hydrolysis of triglycerides and 
phospholipids in intermediate density lipoproteins 
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(IDL) and LDL leading to smaller particles (IDL is 
converted to LDL; LDL is converted from large LDL to 
small LDL) (11). It also mediates the hydrolysis of 
triglycerides and phospholipids in HDL resulting in 
smaller HDL particles (11). Several case reports of 
families with elevated HDL-C levels (HALP) caused 
by a genetically defined HL deficiency have been 
described (39,40). HL deficiency may also be 
associated with elevated triglycerides and cholesterol 
with increased intermediate density lipoproteins (IDL) 
(40,45). Several HL deficient individuals had 
premature ASCVD likely due to increased levels of 
apo B containing lipoproteins (40,45). Heterozygotes 
do not appear to have discrete lipoprotein 
abnormalities (45).  
 
Scavenger Receptor Class B Type I (SR-BI) 
 
Scavenger receptor class B type I (SR-BI) is encoded 
by the SCARB1 gene and facilitates the selective 
uptake of the cholesterol esters from HDL into the 
liver, adrenal, ovary, and testes (11). In macrophages 

and other cells, SR-B1 facilitates the efflux of 
cholesterol from the cell to HDL particles (11). SR-B1 
deficient mice have an increase in atherosclerosis 
despite elevated HDL-C levels (46). Mutations in 
SCARB1 associated with decreased SR-B1 have 
been observed in individuals with high HDL-C levels 
(47-49). Heterozygotes have intermediate elevations 
of HDL-C between wild-type and homozygous 
individuals. Studies have suggested that some but 
not all mutations in SCARB1 result in an increased 
risk of ASCVD despite increased HDL-C levels 
(40,49). A decrease in adrenal function has been 
reported in some individuals with SCARB1 mutations 
likely due to a reduced ability of SR-B1 to facilitate 
cholesterol uptake into the adrenal glands (48,50). 
Abnormalities in platelet function have also been 
observed in some patients (50).  
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