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ABSTRACT 
 
The brain integrates the response to a variety of 
signals of energy need and availability to match food 
intake with energy expenditure, thereby maintaining 
body weight stability. Early work with rodent models 
with disrupted energy balance (generally obesity) 
identified many hypothalamic genes and signaling 
pathways that impact energy homeostasis. More 
recent studies have identified hindbrain circuits that 
interact with peripheral metabolic signals and 
hypothalamic circuits to impact energy balance. 
Feeding, signals of energy utilization, and hormonal 
signals of energy stores (such as leptin) modulate 
gene expression and neurotransmission in specialized 
circuits within the hypothalamus and brainstem to 
control food intake.  While many of these circuits also 
control energy expenditure, the effects on body weight 
that arise from alterations in energy expenditure are 
generally more modest than the effects of produced by 
changes in feeding.  Although most of the mechanistic 
work that defined the systems that control energy 
balance utilized rodent models, these systems have 
human orthologs whose disruption produces 
phenotypes comparable to those observed in rodents, 
confirming their conserved function.  
 
 
 
 

INTRODUCTION 
 
Historically, obesity was thought to represent a 
disorder of voluntary behaviors, (albeit exacerbated by 
the ready availability of food and the reduced need for 
energy expenditure afforded by modern societies); 
many continue to hold this belief even today.  In reality, 
we now understand that food intake and body weight 
represent biologically controlled homeostatic 
variables, much like blood pressure. This 
understanding flows from the discovery of 
spontaneously occurring single gene mutations that 
promote obesity independently of environmental 
alterations, along with the more recent description of 
human genetic variants that influence weight gain. 
Furthermore, research building upon these genetic 
observations has identified many of the biological 
systems that mediate the control of energy 
homeostasis, most of which reside in or converge on 
the central nervous system (CNS).  
 
Changes in body weight reflect an alteration of energy 
balance, where energy intake (calories from eating or 
drinking) and energy expenditure (either as locomotor 
activity, basal metabolism, or thermogenesis) become 
unequal. For instance, food intake in excess of energy 
expenditure promotes the accretion of excess weight. 
Adipose tissue represents the major repository for 
ingested energy that exceeds immediate needs (1) 
and excess adipose tissue represents the hallmark of 
obesity.  



 
 
 

 
www.EndoText.org 2 

The energy density of adipose tissue is nearly 10-fold 
greater than muscle (protein) or liver (glycogen) (2).  
The ability to store energy in adipose tissue protects 
against environmental vicissitudes that might result in 
starvation, fetal wastage, and the inability to provide 
sufficient breast milk to the young. Therefore, 
evolution has likely selected for genetic variants that 
favor energy storage and conservation. The existence 
of environments in which excess calories are readily 
available with minimum or no effort occurred very 
recently in human evolution, while the human genetic 
blueprint evolved under the opposite circumstance. 
Thus, the modern obesity epidemic may represent, at 
least in part, a physiologic mismatch between the 
evolutionary pressures that bias toward energy 
storage and the modern, nutrient- and calorie-rich 
environment.  
 
The brain plays a central role in maintaining energy 
balance. CNS circuits continuously assess and 
integrate peripheral metabolic, endocrine and 
neuronal signals, and modulate both behaviors and 
peripheral metabolism to respond to acute and chronic 
needs (3). The brain modifies energy intake and 
expenditure to match energy demands on an ongoing 
homeostatic basis, establishing a metabolic “set-
point”.  
 
A BRIEF HISTORICAL PERSPECTIVE ON THE 
MECHANISMS THAT CONTROL ENERGY 
BALANCE 
 
Role for the Hypothalamus   
 
The description of Frölich syndrome (hyperphagic 
obesity and hypogonadism in patients with pituitary 
tumors) initially suggested that the pituitary gland 
might control energy balance (4). Others noted that 
pituitary tumors often impinge on the overlying 
hypothalamus, however, and suggested that the 
hypothalamus might represent the main modulator of 
feeding. Indeed, experiments by Hetherington and 

Ranson in 1940 demonstrated that lesions of the 
ventral medial portion of the hypothalamus increased 
feeding and promoted weight gain in rats, while 
lesions in the lateral hypothalamus led to decreased 
feeding and weight loss (5). In addition to 
demonstrating the importance of the hypothalamus to 
energy balance, these findings also led Eliot Stellar to 
suggest the concept of a “satiety center” situated in the 
ventral medial portion of the hypothalamus and a 
“hunger center” located in the lateral hypothalamus 
(6).  
 
This two-center model also fits with the notion that two 
behavioral systems govern feeding: the incentive and 
reward value system that modulates the wanting and 
liking of food, and the satiety system that promotes 
meal termination (associated with the sensation of 
“fullness”). While these systems are physiologically 
and anatomically integrated, simplicity often dictates 
their description and study as distinct entities. We now 
understand that the meal-terminating systems in the 
brainstem as well as the brain reward circuits work in 
conjunction with the hypothalamus to mediate the 
overall control of food intake and energy homeostasis. 
Furthermore, recent studies have demonstrated 
greater anatomic heterogeneity in the hypothalamic 
systems that control energy balance than suggested 
by the simple two-center model, as well as revealing 
finer functional complexity- with distinct subsets of 
neurons in the hypothalamus controlling individual 
aspects of food intake and energy expenditure. 
 
Genetic Models of Obesity Prove the Lipostatic 
Model of Energy Balance  
 
Animals (including humans) maintain remarkably 
constant adipose triglyceride stores (7), suggesting 
that the brain and periphery must communicate to 
coordinate feeding and energy expenditure so as to 
maintain this balance. Around the same time that 
lesioning studies demonstrated the importance of the 
hypothalamus for the control of energy balance (5, 8), 
Kennedy proposed the lipostatic hypothesis of hunger: 
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that an inhibitory factor produced by white adipose 
tissue in proportion to fat mass suppresses eating and 
body weight gain (9). He further suggested that lesions 
of the ventral medial hypothalamus increase food 
intake because of the removal of the site of action of 
the inhibitory signal from the fat. 
 
A strain of mice displaying dramatic hyperphagia and 
obesity from the time of weaning arose spontaneously 
at the Jackson Laboratory in 1949-50; the autosomal 
recessive allele conveying this phenotype was 
designated obese (ob) (10). Sixteen years later, a 
phenotypically similar mouse was identified (11). The 
diabetic state of these latter animals (studied on the 
diabetes-prone coisogenic KsJ background) 
distinguished them from ob/ob mice (which had been 
studied on the relatively diabetes-resistant B6 
background), leading to the diabetes (db) designation 
for the new mutation.  
 
Seeking the molecular predicates of the lipostatic 
system posited by Kennedy (9) and Hervey (12), 
Douglas Coleman at Jackson Labs performed 
parabiosis studies coupling the circulation of ob/ob 
mice to either wild-type or db/db mice (13). While 
ob/ob mice became lean when joined to a wild type, 
they died of starvation when joined to a db/db mouse. 
These findings led Coleman to hypothesize the 
deficiency of a blood-borne body weight-regulating 
factor in ob/ob mice and the unresponsiveness of 
db/db mice to this factor. Specifically, he suggested 
that the ob locus produced the secreted factor while 
the db locus encoded its receptor (13,14). In 1994, the 
Friedman group at Rockefeller University positionally 
cloned the gene mutated in ob/ob mice and 
demonstrated that it encoded a secreted factor (which 
they termed “leptin”) produced primarily by adipocytes 
(15). Exogenous leptin rescued the phenotype of 
ob/ob (now, Lepob/ob) mice, and decreased feeding and 
body weight in wild-type animals.  Soon thereafter, 
several groups cloned the leptin receptor (LepR) and 
demonstrated the disruption of the crucial “long” LepR 
isoform (LepRb) in db/db (Leprdb/db) mice (16–19).   

 
The identification of leptin thus demonstrated the 
essential veracity of the lipostatic hypothesis. 
Interestingly, subsequent work has revealed a more 
complicated biology for leptin (whose absence sends 
a stronger signal than its excess (see below)), as well 
as suggesting the existence of additional factors that 
may contribute to the lipostatic control of food intake 
and energy balance. 
 
THE HYPOTHALAMUS AND THE 
HYPOTHALAMIC MELANOCORTIN SYSTEM 
 
The hypothalamus coordinates a host of homeostatic 
systems (e.g., sodium and water balance, 
reproduction, body temperature) in addition to energy 
balance. Given its need to coordinate these various 
functions, the hypothalamus must sense a broad array 
of nutrients, metabolites, hormones, and other factors 
(20). Of the many distinct nuclei (collections of 
neuronal cells) in the hypothalamus, the arcuate 
nucleus (ARC) plays a unique role in sensing 
peripheral signals. The ARC lies at the base of the 
hypothalamus adjacent to the median eminence (ME), 
a circumventricular organ that lies outside the blood 
brain barrier to permit direct sampling of the blood 
(20).   
 
Importantly, the initial lesions of the ventral medial 
hypothalamus reported by Hetheringon and Ranson 
included the ARC, as well as the ventromedial 
hypothalamic nucleus (VMH), the dorsomedial 
hypothalamic nucleus (DMH), and the periventricular 
hypothalamic nucleus (PVH).  Lesions of the VMH 
nucleus alone failed to recapitulate the hyperphagic 
obesity caused by the larger (original) ventral medial 
lesions (21), suggesting important potential roles in 
the control of energy balance for one or more of these 
other hypothalamic nuclei.   
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The Arcuate Nucleus  
 
Its proximity to the ME, together with its projections to 
deeper hypothalamic areas involved in the control of 
feeding (e.g., the DMH, PVH and the lateral 
hypothalamic area (LHA)), suggest that the ARC 

serves to sense humoral signals and convey this 
information to downstream structures to modulate 
homeostatic systems (Figure 1). Indeed, the core of 
the CNS melanocortin system, which integrates 
peripheral signals of energy balance and modulates 
feeding and energy expenditure, lies in the ARC (22). 

 
 

 
Figure 1. The hypothalamic melanocortin system.  ARC POMC neurons produce aMSH and other POMC-
derived peptides that act on downstream MC4R-expressing cells, such as PVH MC4R cells that play 
crucial roles in the suppression of food intake.  ARC AgRP neurons (which also contain the inhibitory 
neurotransmitters NPY and GABA) release AgRP to antagonize MC4R signaling (increasing food intake) 
and also inhibit other PVH neurons to increase food intake and decrease energy expenditure.  Signals 
of energy surfeit (including leptin) promote POMC neuron action; serotonin (5HT) also promotes POMC 
neuron action via 5HTR2c on these cells.  In contrast, leptin inhibits AgRP cells, while orexigenic ghrelin 
also activates them.  Not only does leptin act directly on these cells, but leptin action on unidentified 
LepRb/GABA neurons represents a major modulator of the melanocortin system. 
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Ay  Reveals the Role for the CNS Melanocortin 
System in Energy Balance   
 
In 1902, French geneticist L. Cuenot described the 
obese Yellow (Ay/a) mouse. Also termed ‘lethal yellow’ 
because homozygotes for Ay die before birth, Ay was 
bred by mouse fanciers in Europe beginning in the 
1800s, and was notable for the dominant inheritance 
of a striking yellow coat, along with obesity 
proportional to the intensity of the yellowness of its 
coat (23). In 1960, another spontaneous mutation at 
the agouti locus arose in the Jackson Laboratory 
colony- viable yellow (Avy) (24). Expression of the wild-
type agouti gene (a) normally occurs intermittently in 
the hair follicle, generating alternate yellow and black 
pigment bands of the resulting hair, producing the 
agouti coat color (25). The original Ay mutation 
represents a deletion within the gene encoding the 
RNA-binding protein Raly (Raly), which fuses the 
constitutively active Raly promoter to the agouti gene, 
resulting in constitutive ectopic overexpression of 
agouti in all somatic (including brain) cells (26).  Avy 
also results from ectopic overexpression of agouti- 
due to the insertion of a retrovirus-like repetitive 
intracisternal A particle (IAP) into a noncoding exon of 
agouti (27). 
 
The agouti locus encodes agouti signaling protein 
(ASP), a peptide with high affinity for melanocortin 
receptors. The yellow coat color of the Ay/a mouse 
results from continuous overexpression of ASP in the 
skin, which blocks alpha-melanocyte-stimulating 
hormone (α-MSH) signaling at melanocortin-1 
receptors (MC1R) in the hair follicle (25,28). Since α-
MSH activates melanocytes to initiate the synthesis of 
eumelanin (black pigment) instead of phaeomelanin 
(yellow pigment), antagonism of α-MSH/MC1R 
signaling by ASP elicits a yellow coat color.  
 
The brain also contains a melanocortin system, and 
this CNS melanocortin system controls energy 
balance (22).  ICV administration of α-MSH or other 

melanocortin agonists decreases food intake and 
body weight (29).  Overexpression of ASP in the Ay/a 
brain antagonizes the anorectic action of α-MSH 
signaling and blunts the activity of brain melanocortin 
receptors, thus causing hyperphagia.  
 
Melanocortin Peptides and Receptors 
 
The post-translational modification and cleavage of 
the proopiomelanocortin (POMC) precursor peptide 
produces several melanocortin peptides, including 
adrenocorticotrophic hormone (ACTH), α-MSH (more 
prominent in rodents), ß-MSH (more prominent in 
humans) and γ-MSH; POMC processing also 
produces the opioid peptide, ß-endorphin (22). Within 
the CNS, the major population of POMC-producing 
cells resides in the ARC (a smaller population of 
brainstem POMC neurons may produce low levels of 
POMC and plays unclear roles in brain melanocortin 
signaling) (22).  CNS melanocortin peptides act via the 
melanocortin-3 and -4 receptors (MC3R and MC4R) 
on target neurons. The ARC also contains neurons 
that produce agouti-related protein (AgRP, an 
antagonist/inverse agonist for MC3R and MC4R), 
along with the inhibitory neurotransmitters 
neuropeptide Y (NPY) and gamma amino butyric acid 
(GABA) (30),(31). Thus, the core of the CNS 
melanocortin system comprises anorexigenic 
(appetite–suppressing) ARC POMC neurons, 
opposing orexigenic (hunger-inducing) ARC AgRP 
neurons, and MC3R and MC4R-containing target 
neurons throughout the CNS (22) (Figure 1).  
 
ARC POMC Neurons   
 
Signals of positive energy balance, such as leptin, 
tend to activate POMC neurons and increase their 
Pomc expression (32). Artificially activating ARC 
POMC neurons decreases food intake (33,34). While 
ARC POMC neurons also contain the neuropeptide 
CART (and a few POMC neurons contain various 
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amino acidergic transmitters) (35,36), most data 
suggest that melanocortin peptide action mediates the 
majority of the POMC neurons’ ability to suppress food 
intake and increase energy expenditure (37). The 
ablation of ARC Pomc expression promotes 
hyperphagic obesity similar to that of Ay mice (34),(38).  
The first evidence for a human melanocortin obesity 
syndrome resulted from the astute recognition of a 
rare agouti-mouse–like syndrome in two families, 
resulting from null mutations in the POMC gene (39–
41).  These patients have ACTH insufficiency, red hair, 
and obesity, resulting from the lack of ACTH peptide 
in the serum and a lack of melanocortin peptides in 
skin and brain, respectively. This obesity syndrome 
demonstrated that the CNS melanocortin circuitry 
subserves energy homeostasis in humans as it does 
in the mouse.   
 
The predictable, monogenetic heritability of the 
hyperphagic and obese phenotype caused by Ay, ob, 
and db demonstrates the genetic underpinnings of 
feeding control and overall energy balance. The 
subsequent finding that the orthologs of rodent obesity 
genes control body weight in humans confirms that 
biologic/genetic factors control feeding and the 
predisposition to obesity in humans, as well as in 
rodents (42). 
 
ARC AgRP Neurons   
 
Fasting and signals indicating negative energy 
balance activate ARC AgRP neurons, while signals of 
positive energy balance (e.g., leptin) inhibit these 
cells. ARC AgRP neuron activation promotes feeding 
and decreases energy expenditure, while neuronal 
ablation results in lethal anorexia, consistent with the 
strong orexigenic nature of these cells (43,44). AgRP 
acts as an inverse agonist at MC3/4R, decreasing 
receptor activity and thus promoting positive energy 
balance by increasing food intake and decreasing 
energy expenditure (25). While the ablation of Agrp 
and/or Npy in ARC AgRP neurons minimally affects 
energy balance in wild-type animals, it attenuates the 

obesity of leptin-deficient animals (45). In contrast, 
blockade of GABA release from these neurons, via the 
cre recombinase-mediated deletion of the vesicular 
GABA transporter (vGat), results in leanness and 
interferes with the response to food restriction, 
suggesting that these neurons (and especially GABA 
release therefrom) are crucial for promoting food 
intake, especially in response to signals of negative 
energy balance (46). Importantly, the ARC contains 
additional populations of (non-AgRP-containing) 
GABA neurons that may mediate orexigenic signals in 
a manner similar to AgRP cells (47).  
 
Downstream Targets of the ARC Melanocortin 
System   
 
Melanocortin-mediated stimulation of MC3/4R 
decreases food intake and increases energy 
expenditure to promote negative energy balance in 
animals and humans (48–50). Mice null for Mc4r 
display substantial hyperphagia and increased 
adiposity/body weight, and also display increased 
linear growth, as is characteristic of Ay/a mice (51). 
Mc3r-null mice display a more modest energy balance 
phenotype than Mc4r-null mice, with only modestly 
increased adipose mass, decreased lean mass, 
reduced fast-induced refeeding (52,53), elevated 
basal and fasting-induced corticosterone (53), and 
defects in circadian rhythms and meal entrainment 
(54).  Thus, MC4R represents the major melanocortin 
receptor that mediates the control of food intake and 
body weight.  Regions that contain large populations 
of MC3R- and MC4R-expressing neurons include the 
PVH, LHA, DMH, VMH, and ARC (the VMH and ARC 
contain MC3R only) (55). 
 
While a syndrome resulting from MC3R mutations in 
humans has not yet been definitively identified, MC4R 
clearly plays an important role in the control of body 
weight in humans, as well. Heterozygous frameshift 
mutations in the human MC4R locus associate with 
physical findings virtually identical to those reported 
for the mouse (51), with increased adipose mass, 
increased linear growth and lean mass, 
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hyperinsulinemia greater than that seen in matched 
obese control subjects, and severe hyperphagia. 
MC4R haploinsufficient adults also exhibit reduced 
sympathetic tone and mild hypotension (56).  MC4R 
haploinsufficiency in humans represents the most 
common monogenic cause of severe obesity, 
accounting for up to 5% of cases (57–59).  
 
Site-specific deletion studies have demonstrated a 
crucial role for MC4R in the PVH for the control of food 
intake and energy balance (60,61).  While AgRP 
neurons project to and inhibit ARC POMC neurons via 
direct GABA action (62), this projection appears to 
play little role in the promotion of feeding by AgRP 
neurons (63). Rather, AgRP neurons most strongly 
increase feeding via their projections to the PVH (LHA 
projections also participate)(64).  Thus, the PVH plays 
crucial roles in the control of feeding by POMC and 
AgRP neurons.   
 
Interestingly, while AgRP neuron activation promotes 
feeding most strongly via the PVH, AgRP neuron 
inhibition decreases food intake at a distinct site: 
detailed studies of animals ablated for AgRP neurons 
demonstrate that the withdrawal of GABAergic 
inhibition from cells in the brainstem parabrachial 
nucleus (PBN) mediate this affect (65) (See below for 
additional details).  

 
Paraventricular Nucleus of the Hypothalamus 
(PVH) 
 
The PVH represents a major output nucleus for the 
hypothalamus, from which integrated information is 
transmitted to effector systems, such as the pituitary 
gland, the autonomic system, and behavioral control 
circuits (66,67). The identification of small deletions or 
translocations at the human Single-minded-1 (SIM1) 
locus on chromosome 6 in three young obese patients 
suggested a crucial role for the PVH in energy balance 
in humans (68). SIM1 encodes a transcription factor 
that is expressed throughout the PVH and is required 
for the development of the PVH (68). While 

homozygous deletion of Sim1 is embryonic lethal in 
mice, animals heterozygous for Sim1 are normal until 
4 weeks of age, when they develop hyperphagic 
obesity (69). These mice display reduced numbers of 
neuronal nuclei in the PVH with a proportional 
decrease in overall size of the PVH. Presumably, the 
decreased number of PVH neurons in Sim1 
haploinsufficiency diminishes anorexic “tone” from the 
PVH, leading to hyperphagia and obesity in mice as 
well as in rare human patients with SIM1 mutations. 
 
As with other hypothalamic nuclei, the PVH contains a 
constellation of diverse neuronal subtypes. Identifying 
the PVH subpopulations that mediate effects on food 
intake and energy expenditure represent a crucial 
research direction. Unsurprisingly, PVH MC4R 
neurons potently suppress food intake (60,61,70). 
Interestingly, however, PVH-projecting ARC AgRP 
neurons regulate cells that lack MC4R (in addition to 
regulating MC4R neurons), suggesting the existence 
of additional PVH populations that play roles in the 
control of energy balance (71). Nos1-expressing PVH 
cells represent one important subset of appetite-
regulating non-MC4R PVH cells (72).  Other important 
non-MC4R PVH neurons include prodynorphin 
(Pdyn)-expressing cells (71).   
 
Prominent populations of PVH neurons include those 
that contain hormones/neuropeptides, including 
oxytocin (OXT), corticotropin releasing hormone 
(CRH), and thyrotropin releasing hormone (TRH), 
arginine vasopressin (AVP), and oxytocin (OXT) 
(61,64,70,73).These peptides also control other 
endocrine and CNS functions: TRH and CRH 
stimulate the thyroid and adrenal axes, respectively; 
AVP contributes to fluid balance; and OXT regulates 
uterine function and social interactions (74–78).  While 
these peptidergic PVH neurons do not contain MC4R, 
the injection of OXT into the hindbrain promotes 
satiation (64). Genetic data from mice argue against 
an important role of OXT or OXT neurons in energy 
balance, however. Not only do Oxt-null animals 
display no alteration in feeding or energy balance, but 
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neither the activation nor the ablation of PVH OXT 
neurons in adult animals alters food intake (72,79).  
Furthermore, all of these peptide-containing PVH 
populations are only weakly anorexigenic in mice, and 
OXT, AVP, and CRH neurons do not mediate 
melanocortin responses (61).  Thus, peptidergic PVH 
neurons play little role in the control of feeding, at least 
in mice, while distinct Mc4r-, Nos1-, and Pdyn-
containing PVH neurons (along with potentially other 
PVH neuron types that will be important to identify) 
play crucial roles in the control of feeding and energy 
balance. Interestingly, a recent GWAS analysis 
identified a polymorphism near the human anaplastic 
lymphoma kinase (ALK) locus that correlates with 
thinness. Decreased expression of this gene reduces 
adiposity in a variety of animal models and Alk 
expression in the PVH appears to mediate its effects 
on body weight (80).  Identifying the cell type(s) that 
mediate the effects of Alk on body weight will be very 
informative. 
 
Dorsomedial Nucleus of the Hypothalamus (DMH)  
 
The DMH has long been implicated in energy balance 
regulation, as well as in the modulation of body 
temperature, arousal and circadian rhythms of 
locomotor activity (81). This nucleus receives direct 
input from the ARC and also contains LepRb-
expressing neurons (82,84). While the exact 
molecular phenotype(s) of energy balance-regulating 
DMH cells remain poorly defined, recent studies have 
suggested that the LepRb-containing cells in this 
region play crucial roles for maintaining energy 
balance (85).  Indeed, the viral-mediated disruption of 
DMH LepRb in adult mice augments food intake and 
promotes obesity (86).  Furthermore, subpopulations 
of GABAergic DMH neurons play important roles in the 
leptin-mediated control of ARC POMC and AgRP cells 
(and thus, food intake) (85,87,88).  TrkB-containing 
DMH neurons also contribute to the control of 
homeostatic feeding behavior (89). Thus, while details 
continue to emerge, the DMH plays crucial roles in 
leptin action, the control of the hypothalamic 

melanocortin system, food intake, and overall energy 
balance.   
 
Ventromedial Nucleus of the Hypothalamus (VMH) 
 
The VMH contains neurons that express LepRb, 
MC3R and other receptors involved in body weight 
regulation. Neurons in the dorsomedial portion of the 
VMH (dmVMH) express the transcription factor, 
steroidogenic factor 1 (Sf1; Nr5a1) (90). Although Sf1-
deficient mice were first described in 1994, their early 
death due to adrenal insufficiency initially prevented 
the study of these mice in adulthood. Later, adrenal 
transplantation enabled the long-term survival of these 
mice, permitting the detection of late-onset obesity in 
Sf1-deficient mice (91), consistent with a role for the 
VMH in the control of energy balance. The obesity of 
Sf1-null mice results largely from decreased energy 
expenditure, however (91). Furthermore, Sf1-cre-
mediated ablation of LepRb doesn’t alter food intake, 
but rather decreases energy expenditure (thereby 
accentuating obesity in high-fat diet-fed animals) (92). 
Many Sf1-containing VMH neurons contain the 
neuropeptide PACAP (the product of the Adcyap 
gene), which contributes to the control of energy 
expenditure (93). Thus, Sf1-mediated manipulation of 
the dorsomedial VMH has revealed a crucial role for 
this region in overall energy balance, albeit by the 
modulation of energy expenditure, rather than food 
intake.  Indeed, the dmVMH is generally thought to 
serve as an autonomic control center that modulates 
a variety of parameters driven by the sympathetic 
nervous system (SNS). In addition to controlling 
energy expenditure, the dmVMH also plays important 
roles in nutrient mobilization (as during the response 
to hypoglycemia) (94–97). 
 
Lateral Hypothalamic Area (LHA) 
 
While a network of systems that suppress food intake 
(albeit in a manner antagonized by AgRP neurons) 
reside in the ARC, DMH, and PVH, the LHA is often 
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thought of as a region that promotes feeding. Well-
known LHA neuronal subtypes include two distinct 
sets of excitatory neurons that receive input from leptin 
and melanocortins and contribute to the control of 
feeding and energy balance.  One population contains 
the neuropeptide melanin concentrating hormone 
(MCH; not related to POMC or any of its derivative 
peptides) (98). First studied in mammals because of 
the increased expression of Mch mRNA in Lepob/ob and 
fasted mice, administration of MCH increases food 
intake and body weight gain and decreases energy 
expenditure(98). Furthermore, animals null for Mch (or 
its receptor) are lean (99). The MCH receptor localizes 
to the primary cilium, and some of the effects of 
ciliopathies on adiposity may be conveyed by effects 
on this receptor (see discussion of ciliopathies below).  
 
A distinct set of LHA neurons contain the 
neuropeptide, hypocretin (HCRT; also known as 
orexin) (100,101). Based upon early acute 
pharmacologic studies, HCRT was originally 
conceived of as an orexigen, since HCRT stimulates 
food intake when injected centrally during the light 
cycle. Consistently, fasting increases Hcrt mRNA 
expression and activates HCRT neurons (101). 
Subsequent work has revealed that animals null for 
HCRT or its receptors become mildly obese without 
observable alterations in food intake, however (102). 
Furthermore, mice (and dogs and humans) null for 
Hcrt or lacking HCRT neurons exhibit narcolepsy and 
increased body weight and adiposity (103). Thus, 
rather than having a primary role in the control of 
feeding, HCRT neurons promote alertness and 
activity, and most of the effect of Hcrt mutation on 
energy balance results from decreased physical 
activity and energy expenditure, while HCRT 
administration promotes activity (and food intake) 
during the resting phase of the diurnal cycle.  
 
The LHA also contains LepRb neurons that control 
HCRT neurons; these contain neurotensin and lie 
intermingled with the HCRT cells (104-107). Ablation 
of LepRb from these LHA cells prevents the normal 

regulation of HCRT neurons and results in decreased 
locomotor activity and energy expenditure. Both LHA 
LepRb neurons and HCRT cells project to the ventral 
tegmental area (VTA), which contains a large number 
of dopaminergic neurons that represent the core of the 
mesolimbic reward system (see below for further 
discussion of reward pathways). Thus, while lesioning 
studies suggest that the integrity of the LHA is required 
for motivation and normal feeding behavior, most data 
suggest that it plays little role in the normal modulation 
of food intake.    
 
PERIPHERAL SIGNALS THAT MODULATE 
ENERGY BALANCE VIA THE HYPOTHALAMUS 
 
Homeostatic regulation of energy balance requires the 
brain to maintain appropriate energy levels by 
monitoring peripheral signals of energy status and 
metabolism to modulate food intake and a variety of 
autonomic and neuroendocrine determinants of 
energy utilization. This requires the ability to sense 
circulating signals of metabolic status.  
 
Leptin 
 
The discovery of leptin revealed the existence of an 
endocrine system that senses and modulates adipose 
stores. Disruption of leptin signaling results in 
hyperphagia and obesity, and leptin administration to 
leptin-deficient Lepob/ob mice (but not LepRb-null 
Leprdb/db animals), reduces food intake and adiposity, 
sparing lean tissue (108–110). While the role for leptin 
in the control of appetite and adiposity initially 
dominated the thinking about its biology, it has 
become clear that the effects of elevated leptin are not 
as dramatic as those of low leptin. Indeed, diet-
induced obese rodents and humans remain obese 
despite exhibiting high circulating concentrations of 
leptin, commensurate with their high levels of leptin-
producing adipose tissue (111,112). In contrast to the 
Lepob/ob mice, where leptin administration results in 
remarkable reversal of the obesity phenotype, 
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increasing leptin to supraphysiologic levels in normal 
animals only modestly and briefly blunts food intake 
and body weight. Likewise, supraphysiological doses 
of leptin promote only modest effects on body weight 
in obese and non-obese humans(113). Thus, the 
absence of leptin conveys a more powerful signal than 
does its excess.  
 
Lepob/ob mice (and their leptin-deficient human 
counterparts) display additional phenotypes, including 
impaired growth and gonadal axis function, diminished 
immune function, infertility, and decreased activity and 
energy expenditure - all of which are reversed by leptin 
treatment (114,115). The lack of leptin also promotes 
increased hepatic glucose production, and leptin 
treatment suppresses hyperglycemia in several 
models of insulinopenic diabetes (116,117). 
Lipodystrophic people and transgenic animals that 
similarly lack adipose tissue exhibit leanness and low 
leptin levels, as well as hyperphagia, insulin 
resistance, diabetes and other endocrine and 
metabolic abnormalities that are not corrected by 
caloric restriction (109,110,118). Leptin replacement 
therapy to correct low leptin concentrations represents 
an important treatment for lipodystrophy syndromes in 
humans, decreasing their hunger and improving their 
endocrine and metabolic abnormalities (119).  
 
This constellation of phenotypes resulting from low 
leptin mirrors the physiologic response to starvation 
and leptin treatment attenuates many of these 
consequences of very low adiposity (115). Thus, 
normal leptin concentrations signal the repletion of 
energy (fat) stores to mitigate hunger and enable 
energy expenditure, while low leptin indicates the 
dearth of adipose reserves and promotes food-
seeking and the conservation of remaining fat by 
reducing energy expenditure.  
 
THE NEUROBIOLOGY OF LEPTIN    
The similar phenotypes of Lepob/ob and Leprdb/db mice 
(along with the inability of leptin to alter physiology in 
Leprdb/db mice) indicates that leptin action on LepRb-

expressing cells must mediate its effects. Consistent 
with its behavioral effects (e.g., on feeding) and its 
effects on the neuroendocrine and autonomic 
systems, most LepRb-expressing cells lie in the brain 
(83,84). Similarly, ablation of LepRb in the CNS 
promotes hyperphagia, neuroendocrine failure, and 
obesity (120). Some cells outside of the CNS might 
express LepRb, but the physiologic role for leptin 
action on these non-CNS cells remains unclear. 
 
Within the brain, the majority of LepRb-expressing 
neurons reside within the hypothalamus and 
brainstem, consistent with the known roles for these 
structures in the control of feeding, endocrine and 
autonomic function (83,84,121). Pan-hypothalamic 
ablation of LepRb promotes a phenotype very similar 
in quality and magnitude to that of Leprdb/db animals 
(122). Furthermore, ablation of LepRb from broadly-
distributed hypothalamic vGat- or Nos1-expressing 
neurons promotes dramatic hyperphagia and obesity 
(123,124). Smaller, more circumscribed sets of 
hypothalamic LepRb neurons have also been 
implicated in body weight control as well. Within the 
ARC, early developmental removal of LepRb 
specifically in POMC and AgRP neurons modestly 
increases feeding and adiposity (125,126). 
Interestingly, removal of LepRb from AgRP neurons in 
adult animals results in robust hyperphagia, obesity 
and diabetes, suggesting that developmental 
processes can largely compensate for the early lack of 
direct leptin action on AgRP neurons (127). Ablation of 
LepRb in the Sf1-expressing VMH blunts the increase 
in energy expenditure that accompanies increased 
adiposity, and deletion of LepRb in the LHA diminishes 
motor activity and promotes obesity (92,106,128). 
LepRb neurons in the ventral premammillary nucleus 
(PMv) play roles in reproduction (129). Importantly, 
functions for many additional groups of LepRb cells in 
the hypothalamus (especially in the DMH) have yet to 
be determined.  Currently, LepRb neurons in the ARC 
and DMH are thought to play the most important roles 
in the control of feeding and energy balance by leptin. 
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THE MOLECULAR BIOLOGY OF LEPTIN    
 
Alternative splicing of the Lepr transcript produces 
multiple isoforms of the receptor: LepRa, -b, -c, -d, etc 
(Figure 2). The Leprdb mutation mouse results from a 
splicing defect that causes the LepRa-specific exon to 
be inserted into the mRNA that encodes LepRb, 

preventing translation of the LepRb-specific coding 
sequences and producing LepRa in place of LepRb 
(16–18). Because the Leprdb/db mouse synthesizes all 
leptin receptor isoforms except LepRb, LepRb must be 
crucial for the control of energy homeostasis (130). 
Indeed, restoration of LepRb on a background null for 
all other LepR isoforms restores energy balance (19).   

 

 
Figure 2. LepR isoforms and signaling.  LepRa (Ra) represents the mostly highly expressed short form 
of LepR; LepRb (Rb) is the long form. Exon 17 contains half of a Jak docking site (BOX1) common to Ra, 
Rb and Rc, while exon 18b contains additional motifs required for full Jak2 binding (BOX2) and STAT3 
signaling (31,33). Circulating leptin binding protein consists of extracellular domain that has been 
cleaved from the cell surface, along with the LepRe splice variant that lacks a transmembrane domain. 
Humans do not generate the splice variant, so that all LepRe is produced by cell surface cleavage, 
presumably by membrane associated metalloproteases (33). LepRa, -c, -d and the other so-called “short” 
isoforms contain the same first 17 exons as LepRb, but diverge within the intracellular domain.  LepRb 
is the only isoform that mediates classical Jak-STAT signaling, as this isoform alone contains the motifs 
required to interact with Jak2 and to bind STAT proteins for downstream signaling (Figure 1) (34).  While 
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the function of LepRb is clear, the functions of the short isoforms are not, although they have been 
speculated to function in leptin transport into the brain and/or a source of cleaved, circulating 
extracellular LepR (which, along with LepRe comprises the major circulating leptin-binding protein) (35).  
 
LepRb, like other type 1 cytokine receptors, activates 
a JAK family tyrosine kinase (JAK2) to initiate 
signaling (130). Subsequently, tyrosine 
phosphorylated residues on LepRb recruit STAT 
proteins, which are then phosphorylated by JAK2 to 
promote their trafficking to the nucleus. In the nucleus, 
STATs bind DNA and modulate gene expression. 
STAT3 mediates the majority of leptin action, since 
disruption of the binding site for STAT3 on LepRb 
causes a severe obesity phenotype in mice that is 
similar to the obesity syndrome of Leprdb/db mice (131). 
Similarly, disruption of Stat3 in the forebrain or in 
LepRb-expressing neurons results in obesity in mice 
(132,133). While the brain-wide disruption of the 
genes encoding both isoforms of STAT5 (STAT5a and 
STAT5b) causes mild late-onset obesity, the 
disruption of Stat5a/b specifically in LepRb neurons 
produces no detectable phenotype, suggesting that 
STAT5 signaling is not required for leptin action in vivo 
(134–136). STAT5 represents a major mediator of 
GM-CSF signaling, however, and mice null for GM-
CSFR in the brain are obese, suggesting that the role 
for STAT5 in energy balance may be linked to the 
action of GM-CSF or other cytokines different than 
leptin (135). 
 
Insulin 
 
Like leptin, insulin circulates in proportion to fat mass, 
and alters neuropeptide expression in the 
hypothalamus via receptors located in the ARC, PVH, 
and DMH (137). ICV insulin has been reported to 
decrease food intake in rats and mice. Furthermore, 
mice deleted for insulin receptor (Insr) throughout the 
CNS display a modest late-onset obesity (more 
prominent in females), and are more susceptible to 
diet-induced obesity than wild-type mice (138). In 
addition, insulin acts centrally to decrease hepatic 

glucose output, in part via the inhibition of AgRP 
neurons (139,140).  
 
The insulin receptor (INSR), a tyrosine kinase, recruits 
and tyrosine phosphorylates insulin receptor 
substrates (IRS proteins; IRS-1, -2, -3, -4) which 
engage downstream signals, including the 
phosphatidylinositol 3-kinase (PI3-kinase) pathway. 
Deletion of Irs1 interferes primarily with peripheral 
insulin action and the growth axis, Irs3 is rodent-
specific and adipocyte-restricted, and the deletion of 
Irs4 minimally alters energy balance (141).  In 
contrast, deletion of Irs2 causes insulin-deficient 
diabetes (due to islet failure) and obesity. Restoration 
of Irs2 in the islets of Irs2-null mice or brain-specific 
ablation of Irs2 results in normoglycemic obesity, 
consistent with a role for brain IRS2 signaling in 
energy balance (142). While leptin modulates the IRS-
protein/PI3-kinase pathway and the deletion of Irs2 
from LepRb-expressing neurons promotes obesity 
(albeit a milder form of obesity than observed in 
animals deleted for Irs2 throughout the brain), deletion 
of Irs2 does not interfere with leptin action, suggesting 
that IRS2 may primarily play a role in brain insulin 
action (143).  
 
A variety of subunits and downstream effectors of the 
PI3-kinase signaling pathway have also been deleted 
in several neuronal populations in mice (144). These 
produce phenotypes generally consistent with the 
notion that PI3-kinase is important for the proper 
function of the POMC and AgRP neurons that 
modulate energy balance- at least in part by 
controlling the firing of these important neurons.  
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Modulators of Insulin and Leptin Signaling 
 
Many of the molecular signaling pathways that inhibit 
insulin and leptin action overlap. Protein tyrosine 
phosphatase-1B (PTP1B, a.k.a., PTPN1) 
dephosphorylates cognate tyrosine kinases (including 
those associated with INSR and LepRb) to terminate 
signaling (145,146). In addition to exhibiting increased 
insulin sensitivity, mice lacking Ptpn1 are lean 
compared to controls and exhibit resistance to weight 
gain on a high-fat diet, suggesting increased leptin 
action in these animals. Indeed, animals null for Ptpn1 
throughout the brain (or specifically in LepRb or 
POMC neurons) demonstrate increased leanness and 
enhanced leptin action (147,148). In addition to 
PTP1B, the tyrosine phosphatase, TCPTP, which 
directly dephosphorylates STAT3, contributes to the 
attenuation of LepRb signaling.  Furthermore, obesity 
and elevated leptin increase the expression of Ptpn2 
(which encodes TCPTP), and the deletion of neuronal 
Ptpn2 decreases body weight, increases leptin 
sensitivity, and blunts weight gain in DIO animals 
(149).  Moreover, the combined deletion of Ptpn1 and 

Ptpn2 in the brain augments leanness and further 
attenuates weight gain in DIO mice (149).  
 
Suppressors of Cytokine Signaling (SOCS proteins, 
e.g., SOCS1 and SOCS3) bind to activated cytokine 
receptor/Jak2 kinase complexes (including the 
LepRb/Jak2 complex) to mediate their inhibition and 
degradation (150). SOCS proteins may also inhibit 
INSR and other related tyrosine kinases. Leptin 
signaling via STAT3 promotes Socs3 expression in 
hypothalamic LepRb neurons; SOCS3 protein binds to 
phosphorylated Tyr985 of LepRb to attenuate LepRb 
signaling (151). The leanness of mice containing a 
substitution mutation of LepRb Tyr985 and the similar 
phenotype of mice lacking Socs3 in the brain or in 
LepRb neurons highlight the importance of these 
mechanisms of feedback inhibition for the control of 
energy balance (152,153). While LepRb Tyr985 also 
mediates the recruitment of the tyrosine phosphatase 
SHP2 (aka, PTPN11), data from cultured cells suggest 
that SHP2 mediates ERK pathway signaling by 
LepRb, and disruption of Ptpn11 in the brain, in LepRb 
neurons, or in POMC neurons, promotes obesity (130) 
(Figure 3). 
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Figure 3. Signaling by and inhibition of LepRb and InsR.  LepRb, which exists as a preformed homodimer 
in complex with the Jak2 tyrosine kinase, recruits and phosphorylates (pY) STAT3 via phosphorylated 
pY1138 to control many aspects of energy balance.  InsR, which also exists as a preformed dimer, but has 
intrinsic tyrosine kinase activity, autophosphorylates the juxtamembrane Tyr960 to recruit the insulin 
receptor substrate (IRS) proteins IRS1-IRS4.  IRS-proteins strongly activate the phosphatidylinositol 3-
kinase (PI3K), which play roles in the brain control of energy balance and glucose homeostasis.  Leptin 
also activates PI3K, albeit much more weakly than InsR, and by undefined mechansims.  Both LepRb 
and InsR activate the ERK pathway.  The adapter protein, SH2B1 also enhances signaling by both 
receptors.  In addition to decreasing food intake and increasing energy expenditure, LepRb-mediated 
STAT3 signaling promotes the expression of SOCS3, which acts as a feedback inhibitor of LepRb and 
InsR signaling.  A variety of tyrosine phosphatases also inhibit the activity of both receptors.    
 
SH2B1 binds to activated Jak2, as well as to INSR, 
TrkB, and a few other receptor tyrosine kinase 
complexes to increase their activity and mediate 
aspects of downstream signaling (154). Sh2b1-null 
mice display a complex phenotype that includes 
obesity; brain-specific absence of Sh2b1 also 
promotes obesity in mice (155,156). Thus, SH2B1 

signaling in the brain is required for energy balance, 
perhaps due to its requirement for correct signaling by 
multiple receptors involved in energy homeostasis. 
Furthermore, the phenotype of several human patients 
with morbid obesity, developmental delay, and 
behavioral disorders are associated with 
chromosomal deletions (16p11.2) or coding variants 
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involving SH2B1 (157). Indeed, GWAS studies have 
suggested a role for common variants in SH2B1 in 
human obesity (59).  While the deletion of Sh2b1 from 
LepRb neurons in mice promotes obesity, this effect 
may be independent of leptin action (158), suggesting 
that SH2B1 impacts energy balance via its actions on 
other growth factor receptors. 
 
Potential Roles for Other Adipokines and 
Anorexigenic Signals 
 
Several lines of evidence suggest the existence of 
peripherally-derived anorexigenic signals in addition to 
leptin and insulin.  First, because continuous 
administration of high levels of exogenous leptin in 
wild-type animals only slightly and transiently 
decreases feeding, while wild-type animals starve 
themselves to death during parabiosis to Leprdb/db 

animals (13,108,113,159), , there likely exists an 
additional hormonal signal that suppresses food intake 
(albeit one that requires leptin for its action).  
Additionally, the forced overfeeding of animals results 
in multi-day anorexia even in the absence of increased 
leptin concentrations (160).  Although it is not clear 
that this second anorectic signal derives from adipose 
tissue, fat produces many signaling molecules in 
addition to leptin, some of which, like leptin, are 
cytokines (adipose-derived cytokines, or 
“adipokines”).  While the adipokines adiponectin and 
resistin can alter feeding when injected into the brain 
(161,162), neither can suppress food intake to the 
extent observed in parabiosed or overfed animals.  
Thus, additional anorexigenic signals remain to be 
discovered.  
 
The Orexigenic Ghrelin System 
 
The diurnal release of ghrelin, which derives from the 
stomach, coincides with the initiation of meals and 
decreases over the course of each meal (163).  
Acutely administered ghrelin causes animals and 
humans to consume larger meals than normal, while 

chronic ghrelin administration results in obesity in 
rodents (164–167). As would be expected, most 
obese humans have low levels of circulating ghrelin, 
whereas levels are elevated in patients with anorexia 
nervosa (168).   
 
The growth hormone secretagogue receptor (GHSR) 
serves as the receptor for the acylated (active) form of 
ghrelin (which is acylated (octanoylated) by ghrelin O-
acyl transferase (GOAT) in the cells that synthesize it) 
(169).  Ingested fatty acids are required for ghrelin 
acylation, so that active ghrelin only increases prior to 
meals in animals that have fed over the prior 24 hours.  
 
ARC AgRP neurons express high levels of GHSR, and 
ghrelin activates these cells.  Indeed, ghrelin action on 
AgRP neurons mediates the majority of the anorectic 
response to ghrelin (170,171).  Consistent with the 
modest baseline phenotypes of mice null for the 
individual neurotransmitters employed by AgRP/NPY 
neurons, mice null for ghrelin, GHSR, or GOAT 
beginning early in embryogenesis exhibit no 
detectable alterations in baseline energy balance, and 
only modest defects in refeeding (172), presumably 
due to compensatory processes that alter the function 
of AgRP neurons during development. Apart from its 
actions on neurons in the ARC, ghrelin administration 
into other areas of the brain (i.e. PVN, LHA, ventral 
tegmental area (VTA), dorsal vagal complex) can also 
stimulate positive energy balance (173–176).  
 
THE HINDBRAIN CONTROL OF FEEDING 
 
Most consider the hypothalamus to play a dominant 
role in the long-term control of food intake.  Indeed, 
leptin, the hormonal signal of long-term energy stores, 
mediates its largest effects on food intake and energy 
balance via the hypothalamus (122,177).  In contrast, 
hindbrain circuits respond robustly to signals of gut 
status (including stretch, nutrients, and toxins/irritants) 
to control meal termination and thus meal size.   
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Humoral signals from the gut act on the hindbrain area 
postrema (AP), which lies outside the blood-brain 
barrier at the base of the fourth ventricle in the caudal 
medulla.  Other gut signals are conveyed to the 
hindbrain via afferent vagal fibers (whose soma lie in 
the nodose ganglion) (Figure 4).  These signals 
converge on the nucleus tractus solitarius (NTS) and 
promote meal termination (178,179).  Interference with 
components of this system (e.g., vagotomy) increases 
meal size, although compensatory changes in meal 

frequency (presumably directed by the hypothalamus) 
often dictate that food intake and energy balance 
remain constant over the long-term (180). Outputs 
from the AP and NTS include the dorsal motor nucleus 
of the vagus (DMV), which sends parasympathetic 
signals to the gut to alter motility.  Projections to more 
rostral regions, including the PBN and hypothalamic 
sites (including the PVH and DMH) also play roles in 
the suppression of food intake. 

 

 
Figure 4.  Emerging circuitry of gut-brain pathways that control food intake.  A variety of signals 
converge on the hindbrain to suppress food intake.  This includes a variety of gut peptides and the 
stress/inflammation signal, GDF15, as well as vagal sensory neurons whose soma reside in the nodose 
ganglion.  Stretch-sensing vagal afferents that express GLP1R and/or OXTR suppress feeding via the 
NTS (although their particular cell targets in the NTS remain to be defined).  In contrast, nutrient-sensing 
vagal neurons (including those that express GPR65, VIP, and/or SST) do not appear to control feeding; 
their precise function remains undefined.  Many populations of AP/NTS neurons promote the aversive 
suppression of food intake by projecting onto CGRP-expressing cells of the PBN.  Other neurons of the 
NTS (including those that express CALCR and LepRb) suppress food intake without promoting aversive 
effects, at least in part by activating a poorly-defined set of non-CGRP neurons in the PBN.   
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A number of observations suggest potential roles for 
hindbrain centers in the control of long-term energy 
balance, however, including the expression of LepRb 
and GHSR in the AP and NTS (83,84,181–184).  
Indeed, leptin modulates the physiology of hindbrain 
neurons and knockdown of NTS LepRb expression 
modestly increases food intake and body weight, 
especially in high fat diet (HFD)-fed rats (181,185–
189).  Furthermore, ablation of prolactin releasing 
hormone (PRLH, a.k.a., PRRP) increases feeding and 
body weight, and the NTS-specific re-expression of 
PRLH on a Prlh-null background restores normal 
feeding and energy balance (190).  More recently, the 
silencing of several NTS cell types has been shown to 
increase food intake and cause obesity.  Thus, the 
normal function of NTS systems contributes to the 
long-term control of energy balance.  Furthermore, 
many appetite-suppressing medications (including 
agonists for gut peptide receptors) mediate their 
effects by activating hindbrain systems (191–194).   
 
The Nodose Ganglion and Vagal Sensory Neurons 
 
Gut-innervating vagal sensory neurons in the nodose 
ganglion consist of mechanosensory cells that 
increase activity in relation to increasing gastric 
volume and distinct chemosensory neurons that 
respond to the chemical characteristics of nutrients in 
the gut. Both mechanosensing and chemosensing 
vagal neurons innervate the entire gastrointestinal 
tract (195,196). Recent studies have interrogated the 
vagal sensory neurons of the nodose ganglion, 
revealing markers for gut-innervating 
mechanosensory cells (which sense stretch and 
pressure; these cells express the receptors for GLP1 
(GLP1R) and OXT (OXTR)) and for chemosensory 
neurons (which sense nutrients in the gut; these cells 
express GPR65, vasoactive intestinal peptide (VIP), 
and somatostatin (SST)) (197,199).  Interestingly, the 
activation of mechanosensory cells suppresses 
feeding, while chemosensory cell activation does not.  
Thus, the mechanosensory and chemosensory vagal 

cells must innervate distinct downstream CNS targets, 
at least in part.  The appetite-suppressing functions of 
several hormones and neuropeptides (including gut-
derived cholecystokinin (CCK)) may result from their 
actions on vagal neurons (200,201). While CNS OXT 
neurons (in the PVH) do not appear to participate the 
in the control of feeding, the response of vagal 
mechanosensory neurons to exogenous OXTR 
agonists might mediate the appetite-suppressing 
effects of these agents (202). 
 
Role for the Area Postrema in Nausea and 
Aversive Responses 
 
Because AP capillaries lack tight junctions, the AP lies 
outside the blood-brain barrier and directly senses 
circulating nutrients and hormones.  While the 
molecular characterization of AP neurons remains in 
its infancy, the AP contains a variety of receptors 
(GLP1R, GFRAL, and CALCR) that respond to 
appetite-suppressing hormones (203–206).  Notably, 
ligands for each of these receptors promote aversive 
responses (e.g., nausea), for which the AP is well-
known (207–209).  Indeed, the action of 
autoantibodies directed to aquaporin-4 (AQP4, which 
is expressed around the AP) during neuromyelitis 
optica spectrum disorders results in AP syndrome- 
characterized by unremitting nausea and vomiting 
(and sometimes hiccups) (210–212).  Neurons from 
the AP project into the brain, including to the NTS, 
DMV, and PBN. 
 
The Nucleus Tractus Solitarius and Parabrachial 
Nucleus 
 
The NTS, which lies adjacent to the AP, receives 
gastrointestinal input from vagal sensory neurons and 
from the AP.  The NTS also receives taste information 
via the geniculate ganglion (213), although the NTS 
systems that integrate taste signals with information 
from the gut have yet to be defined.  NTS neurons also 
express a variety of receptors that contribute to the 
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control of food intake (e.g., LepRb and CALCR), and 
thus presumably sense a variety of circulating 
appetite-regulating signals.  Furthermore, NTS LepRb 
and CALCR neurons contribute to the physiologic 
control of food intake (185,214,215). Interestingly, 
while at least some AP and NTS neurons mediate the 
aversive suppression of food intake (i.e., cause 
nausea and/or vomiting, as well as decreasing 
appetite), the NTS LepRb and CALCR neurons 
suppress food intake without promoting such aversive 
responses (214,215).   
 
Thus, distinct NTS systems mediate the aversive and 
non-aversive suppression of food intake.  Indeed, it 
makes teleological sense that the consumption of 
nutrients should promote reward (to encourage the 
subsequent ingestion of a particular food type), rather 
than terminating ingestion in an aversive manner and 
discouraging the future consumption of the food.  
Consistently, the activation of certain vagal pathways 
can promote a rewarding response, even while 
suppressing feeding (198,199).   
 
Many AP/NTS neurons that mediate the aversive 
suppression of food intake directly innervate calcitonin 
gene-related protein (CGRP)-expressing PBN 
neurons.  Indeed, PBN CGRP neurons mediate the 
aversive responses to a variety of agents associated 
with gut irritation, including some chemotherapy drugs 
(216).  PBN CGRP cells also appear to participate in 
the emotional response to a variety of fear-inducing 
stimuli (217).  The activation of PBN CGRP cells 
suppresses food intake under a variety of conditions; 
indeed, the withdrawal of inhibitory tone from these 
cells mediates the lethal anorexia associated with the 
ablation of ARC AgRP neurons (65).   
 
Interestingly, however, the inactivation of PBN CGRP 
cells minimally impacts food intake and does not alter 
energy balance (218); thus other neural systems must 
mediate the long-term control of feeding and energy 
balance by brainstem systems.  Hence, the systems 
that mediate the aversive suppression of food intake 
may suppress long-term feeding less effectively than 

non-aversive systems, at least under normal 
physiologic conditions.  The PBN must also contain 
non-aversive systems for the suppression of food 
intake, since neither NTS CALCR cells nor PVH 
MC4R neurons innervate PBN CGRP cells (but rather 
innervate a distinct region of the PBN) and both 
promote the non-aversive suppression of food intake 
via the PBN (214). 
 
Gastrointestinal Hormones that Modulate Feeding 
 
CHOLECYSTOKININ  
 
Secreted from neuroendocrine secretory cells (L-cells) 
lining the intestinal lumen in response to nutrients, 
cholecystokinin (CCK) represents the canonical gut-
derived satiety signal. It is an acutely acting signal with 
a very short half-life (219). Early studies showed that 
exogenous CCK administered just prior to a meal 
reduces food intake in rats. In the last thirty years 
these results have been repeated and extended in 
numerous labs, demonstrating that the anorectic 
effects of CCK can be translated to virtually all 
species, including humans (220–222). CCK induces a 
transitory sensation of satiety, secretion of pancreatic 
enzymes and gallbladder contraction. CCK-A 
receptors are located on vagal afferents of the 
stomach and the liver and transduce signals via the 
vagal nerve to satiety centers in the brainstem, 
eliciting a brief reduction in food intake (for a review, 
see(Bray 2000) (223)). While CCK decreases meal 
size and duration, compensatory increases in meal 
frequency prevent CCK from producing long term 
effects on total food intake or body weight. Indeed, 
deletion of Cckar in mice does not cause obesity (224). 
 
THE INCRETINS  
 
Glucagon like peptide-1 (GLP-1) functions as an 
incretin (enhancer of insulin secretion) (225). GLP-1 
can also modulate satiety: ICV GLP-1 (or GLP1R 
agonists) potently suppresses food intake in rats and 
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mice, while the GLP1R antagonist, exendin (9-37), 
increases short-term food intake. Body weight and 
food intake are unaffected by ablation of GLP-1R, 
however, suggesting that (like CCK and CCKAR) this 
system primarily modulates short-term satiation, 
rather than long-term energy balance, under normal 
physiologic circumstances (226).  Despite this lack of 
a physiological role for GLP-1 or GLP-1R in the long-
term control of food intake, chronic treatment with 
GLP-1R agonists serves to suppress food intake and 
promote weight loss (227).   
 
The suppression of food intake by GLP-1R agonist 
pharmacotherapy requires GLP-1R expression on 
glutamatergic neurons of the CNS (194).  
Furthermore, caudal brainstem processing suffices to 
suppress food intake and gastric emptying by 
peripherally applied GLP-1R agonists (228).  Thus, the 
crucial GLP-1R-expressing neurons that mediate the 
anorectic effects of GLP-1R agonist pharmacotherapy 
may reside in the AP and/or NTS.  
 
Given that brain GLP-1R mediates the appetite-
suppressing effects of exogenous GLP-1R agonists 
and that the NTS GLP-1 neurons represent the sole 
source of GLP-1 in the CNS (229), these NTS GLP-1 
cells have been the subject of a great deal of interest.  
Interestingly, however, while NTS GLP-1 cells 
represent a subset of the NTS LepRb cells that 
contribute to the control of feeding, the ablation of NTS 
GLP-1 fails to alter energy balance or the ability of 
NTS LepRb neurons to suppress feeding (215). 
Consistently, extending the half-life of endogenous 
GLP-1 by inhibiting dipeptidylpetidase-4 (DPP4) fails 
to alter food intake, although it amplifies the incretin 
effect of endogenous GLP-1. Thus, neither 
endogenous NTS GLP-1 nor its CNS targets 
contribute meaningfully to the suppression of food 
intake, despite the prominent pharmacologic effects of 
GLP-1R agonists on these parameters.  
 
Intestinal glucose-dependent insulinotropic 
polypeptide (GIP, formerly gastric inhibitory 

polypeptide) is secreted from K-cells in the duodenum 
and proximal jejunum in response to food intake 
(230,231) and acts as an incretin, increasing glucose-
dependent insulin release from pancreatic β-cells and 
contributing to postprandial plasma glucose 
normalization. The incretin function of GIP may be 
mediated either directly via pancreatic GIP receptor 
(GIPR) activation (232) or via the activation of non-
ganglionic cholinergic neurons that innervate the 
islets, presumably as part of an enteric-neuronal-
pancreatic pathway (233). The impact of GIP on 
central appetite regulation is controversial, however 
(234,235). Indeed, while the combination of GIPR and 
GLP1R agonism in a single peptide appears to 
enhance weight loss over a GLP1R agonist alone, 
GIPR ligands poorly modulate food intake on their 
own.  Furthermore, there remains some debate about 
whether GIPR antagonism (rather than agonism) 
accentuates the effects of GLP1R agonists on food 
intake (236). 
 
GROWTH DIFFERENTION FACTOR-15  
 
While not a gut-derived peptide, growth differentiation 
factor 15 (GDF15) acts via the brainstem to modulate 
nutrient intake. GDF15 is secreted by a large number 
of tissues in response to cellular stressors. Circulating 
concentrations of GDF15 express increase in disease 
states, such as prostate cancer, infection, and 
cardiovascular disease, and this has been associated 
with anorexia and cancer cachexia (237). 
Furthermore, a variety of clinical and genetic data 
suggest roles for high circulating levels of GDF15 in 
the nausea and vomiting associated with hyperemesis 
gravidarum during the second trimester of pregnancy 
(238,239).  Mice with transgenic over-expression of 
GDF15 are leaner and are protected from diet induced 
obesity, and the injection of GDF15 causes 
hypophagia and weight loss in rodents (240,241).  
 
Unlike GDF15, which has broad tissue expression, 
expression of the receptor for GDF15 (GFRAL) is 
restricted to the AP and NTS in adults. Intact signaling 
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through the hindbrain is required for GDF15-mediated 
weight loss, as ablation of the AP and NTS or deletion 
of GFRAL abolishes hypophagia and weight loss in 
GDF15-treated mice (205,242,243).  While GDF15 
produces a strong conditioned taste aversion, the 
downstream neural circuits by which GDF15/GFRAL 
activation modulates feeding behavior have yet to be 
elucidated. While GFRAL-null mice are protected from 
weight loss in response to infections, tumors, and 
chemotherapy, they display little (if any) alteration in 
body weight under normal physiologic conditions 
(204).  Thus, GDF15 appears to link strong physiologic 
stressors (e.g., infection, pregnancy, cancer, and 
cardiovascular dysfunction) to the aversive 
suppression of food intake, rather than contributing to 
the normal control of food intake and energy balance.  
 
PEPTIDE YY  
 
Peptide YY (PYY), which is released from the L cells 
of the distal digestive tract, belongs to the pancreatic 
polypeptide family (including pancreatic polypeptide 
(PP) and NPY) and has been proposed to serve as a 
satiety signal (244–246). The circulation contains two 
forms of the peptide: PYY1-36 and PYY3-36; the latter 
represents the main circulating form of PYY in 
postprandial human plasma and is able to cross the 
blood-brain-barrier by non-saturable mechanisms 
(247,248). Both forms of PYY bind to the Y2 isoform 
of the NPY receptor (NPY2R) (249). While the 
reported effects of PYY3-36 on food intake in rodents 
and humans initially generated some controversy 
(250), recent studies support the notion that NPY2R 
agonists can promote a strongly aversive suppression 
of food intake in many species (251,252).  The role for 
endogenous PYY in food intake remains unclear, 
however, and although the AP/NTS represent 
presumptive sites that mediate the suppression of 
food intake by NPY2R agonists, this has yet to be 
definitively established. 
    
[Please refer to ENDOTEXT chapter Endocrinology of 
the Gut and the Regulation of Body Weight and 

Metabolism by Andrea Pucci and Rachel L Batterham, 
for additional information] 
 
AMYLIN  
 
Pancreatic b-cells co-secrete the peptide, amylin, with 
insulin during meals. Amylin inhibits gastric emptying 
and systemic and central administration causes a 
dose-dependent reduction of meal size (253–256). 
Amylin binds to the amylin receptor- CALCR in 
complex with a receptor activity modifying protein 
(RAMP) (257). The amylin-responsive neurons of the 
AP/NTS have yet to be definitively identified, but may 
lie in the AP and/or NTS.  Interestingly, combination 
treatment with amylin plus leptin elicits a greater 
inhibition of food intake and body weight loss in obese 
rats than predicted by the sum of monotherapy 
conditions. Peripheral administration of amylin 
restores leptin sensitivity in rats, crucial in the 
treatment of leptin resistance in obesity (258), 
suggesting the potential therapeutic utility of 
combining hindbrain- and hypothalamus-acting 
compounds. 
 
Interactions Between Forebrain and Brainstem 
Systems that Control Food Intake 
 
Communication between the systems that sense the 
gut and those that sense energy stores is crucial to 
control satiety appropriately for feeding state and 
physiologic requirements. Thus, the forebrain and 
hindbrain must communicate to appropriately control 
feeding.  Indeed, hypothalamic systems impact 
brainstem feeding circuits: AgRP neurons tonically 
inhibit PBN CGRP cells, while PVH projections to 
distinct (non-CGRP) PBN cells suppress feeding 
(61,65,70,71).  Similarly, the ingestion of nutrients 
activates a gut-vagus-NTS pathway that inhibits the 
activity of AgRP neurons (199), and projections from 
the NTS to the PVH can blunt food intake (259).  A 
great deal more research in this area will be required 
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to fully understand the integration of these circuits, 
however. 

 
OTHER SIGNALS THAT MAY MODULATE FOOD 
INTAKE  
 
Nutrient Signaling 
 
While their effects are not as strong as those of many 
hormones or neural circuits, all three groups of 
nutrients (carbohydrates, lipids, and proteins) have 
been implicated in the control of feeding.  Mayer 
proposed the “glucostatic hypothesis” in the 1950s, 
suggesting that decreases in glucose utilization 
stimulated eating and increases in glucose utilization 
halted eating (260,261). Indeed, intrahypothalamic 
glucose administration decreases food intake and 
inhibits hepatic glucose production (262). The 
response to decreased glucose or the blockade of 
glycolysis, which increases food intake and hepatic 
glucose production, is much stronger than the 
response to increased glucose, however.  
Furthermore, most glucose-sensing neurons are 
modulated within the normal to low range of glucose 
concentrations, rather than by elevated glucose.  Also, 
the sensor of cellular energy deficits, AMPK, has also 
been proposed to play a role in CNS glucose sensing 
(263,264), but this cellular pathway is likely to be 
engaged mainly by severe energy deficits in the CNS.  
Hence, the brain glucose- and energy-sensing 
systems may be mainly involved in defending against 
large swings in blood glucose (e.g., defending against 
hypoglycemia) rather than serving as a primary 
controller of food intake and energy balance.   
 
While the hypothalamic sensing of long-chain fatty 
acids has also been suggested to suppress food 
intake in response to increased availability of fatty 
acids in states of nutrient surfeit (265,266), the 
physiologic relevance of such a system remains 
unclear. The uptake of esterified lipids into the CNS is 
modest and circulating fatty acids actually increase 
during fasting. The systems that import fatty acyl-

CoAs into mitochondria and the control of overall 
mitochondrial function in hypothalamic cells that 
control food intake and metabolism represent 
important determinants of energy balance, however.  
 
Low protein diets dramatically increase food intake, 
and the peripheral or intra-CNS infusion of amino 
acids (especially the branched-chain amino acid 
leucine) robustly decreases food intake (267,268). 
While the neural pathways underlying these effects 
have yet to be completely elucidated, brainstem 
systems likely contribute, at least in part.  Additionally, 
the mechanistic target of rapamycin (mTOR)-
mediated cellular amino acid sensing system is 
required for the operation of the CNS systems that 
mediate protein appetite (269).  In addition to its role 
in neurotransmission, glutamate acts on its receptor in 
the GI tract both mediate taste-sensation and to serve 
as a gut-derived signal to also the vagal input to the 
CNS (270). In one study, intra-luminal glutamate 
infusion resulted in reduced body weight without 
altering food intake (271). 
 
Inflammation 
 
Inflammatory signals are proposed to mediate several 
distinct metabolic responses. Strong acute 
inflammatory stimuli (including those associated with 
systemic infection, cancer, etc.) decrease appetite and 
increase energy expenditure, promoting cachexia 
(GDF15 may mediate a portion of this effect). 
Conversely, obesity is associated with increased low-
grade inflammation that appears limited to particular 
tissues, such as adipose tissue (272). This low-grade 
“metabolic inflammation” is associated with insulin 
resistance and obesity. A variety of animal models 
have been employed to explore the interaction of 
inflammatory signals and energy balance/metabolism. 
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SYSTEMIC INFLAMMATION  
 
Systemic immune signaling promotes negative energy 
balance. Lipopolysaccharide (LPS) administration, 
which produces some of the metabolic consequences 
of bacterial infection, blunts appetite; the mechanism 
of this hypophagia overlaps with the systems that 
control energy balance, as the LPS-induced anorexia 
requires the melanocortin system (273). Consistent 
with the induction of negative energy balance by 
systemic inflammation, alterations that blunt 
inflammation generally blunt inflammatory anorexia. 
While not altering baseline energy balance in chow-
fed animals, deletion of IL-1b converting enzyme (ICE, 
which is essential for IL-1b activity), prevents LPS-
induced anorexia in mice (274). GDF15, acting via AP 
GFRAL neurons, may also contribute to the LPS-
mediated suppression of food intake. 
 
The inflammatory system may also contribute to the 
control of energy balance under normal physiology, as 
well: adiposity is increased in Il6 null and Gmcsf null 
mice, and in mice with impaired macrophage function 
due to the targeted deletion of Mac-1 or LFA-1 (or their 
receptor, ICAM-1)(275). Conversely, mice with 
constitutively increased IL-1 receptor signaling 
induced by targeted deletion of the endogenous IL-1 
receptor antagonist, Il1ra, display reduced body mass 
compared to wild-type littermates (276). 
 
METABOLIC INFLAMMATION 
 
Obesity is associated with increased production of a 
number of cytokines (including TNF alpha) in adipose 
tissue, resulting primarily from the activation of 
adipose tissue macrophages and other immune cells 
(275,279). Manipulations that decrease adipose tissue 
inflammation ameliorate the metabolic dysfunction 
associated with obesity. While interference with 
generalized macrophage function may increase 
adiposity, interventions that alter their pro-
inflammatory (versus anti-inflammatory) nature 

increase leanness and improve metabolic function 
(280,281).  
 
Some data also suggest that inflammation-associated 
hypothalamic processes may contribute to obesity. 
High fat feeding results in the activation of 
hypothalamic microglia (the resident immune cells of 
the brain) and astrocytes (282,283). Some have 
postulated that these activated microglia secrete 
proinflammatory cytokines to disrupt the control of 
food intake, promoting obesity. Debate continues 
regarding whether this gliosis provokes or attenuates 
obesity, however. The ER stress in adipose tissue and 
the hypothalamus, potentially a consequence of 
metabolic inflammation, has also been reported in 
obesity (284). Genetic or pharmacologic interference 
with ER stress ameliorates obesity and insulin 
resistance in rodent models. 
 
ENERGY BALANCE AND MOTIVATION 
 
The homeostatic regulation of energy balance 
powerfully defends against body weight excursions 
below the lower limits of adiposity (9), and but often 
fails to prevent weight gain in our world of abundance 
of highly palatable, high energy foods. Non-metabolic 
factors that contribute to overeating and obesity 
include food palatability, availability, sensory-specific 
satiety, energy density of food, consumption rate, 
stress, social environment and energy output/exercise 
(285,286). Palatability and pleasantness of food 
represent powerful determinants in regulating 
motivation to eat.  
 
Reward Circuitry and Neurotransmitters 
 
DOPAMINE AND THE BRAIN REWARD SYSTEM  
 
The neural circuits that comprise the reward pathways 
encompass wide-ranging brain regions, including the 
hypothalamus, the nucleus acumbens in the basal 
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forebrain, the midbrain ventral tegmental area (VTA), 
the amygdala and the thalamus (274). The LHA 
connects the hypothalamus to the broader reward 
system through projections to the VTA, where 
dopaminergic cell bodies lie. From there, the 
mesolimbic pathways (dopaminergic projections 
between the VTA and the nucleus acumbens) mediate 
reward-based feeding (287–289). 
 
Dopamine (DA) potently augments the drive to obtain 
a rewarding stimulus and is required to drive feeding 
behavior. DA-deficient mice nurse normally until 2 
weeks of age, but thereafter fail to thrive due an 
inability to wean themselves onto solid food unless 
supplemented with the DA precursor, L-DOPA, 
suggesting that DA is required for normal ingestive 
behavior (as well as activity) (290). While the specific 
mechanisms through which dopaminergic signaling 
regulates motivated feeding behavior are not yet clear, 
connections between the LHA and the mesolimbic 
system as well as integration with the leptin and 
melanocortin systems appear to contribute.  
 
SEROTONIN RECEPTOR 2c 
 
Serotonin (5-hydroxytrypamine, 5-HT), which derives 
from stress-modulated neurons in the midbrain raphe 
nuclei, acts via 5-HT receptor 2c (HTR2c) to decrease 
food intake and body weight, and deletion of Htr2c 
produces hyperphagic obesity that is accentuated by 
high fat diet. Within the hypothalamus, ARC, PVN, 
LHA, and anterior hypothalamic nucleus (AH) neurons 
contain Htr2c (291). A subset of ARC POMC neurons 
express Htr2c, and the Pomccre-mediated reactivation 
of a null Htr2c allele in these cells attenuates the food 
intake and obesity in the Htr2c null mice (292,293). 
Htr2c cells in the midbrain VTA and in the hindbrain 
NTS may also contribute to the control of feeding by 
HTR2c.  The effect of HTR2c activation may vary by 
brain region, but, in aggregate, Htr2c mutant mice 
confirm the important role for this receptor in energy 
balance. HTR2c agonists promote weight loss, and 
several have been approved for the treatment of 
obesity. 

ENERGY EXPENDITURE AS A DETERMINANT OF 
ADIPOSITY 
 
With few exceptions, most of the systems that 
dramatically alter energy balance act primarily via the 
control of feeding; isolated alterations in energy 
expenditure promote more modest changes in energy 
balance because increases in energy expenditure and 
negative energy balance promote a compensatory 
increase in feeding. Similarly, decreased energy 
expenditure will cause the accumulation of adipose 
mass, which tends to restrain feeding. For instance, 
interference with normal VMH function (discussed 
above) decreases diet-induced energy expenditure 
and promotes increased adiposity only when animals 
are provided high caloric density diets (91,92).  
 
The tendency for energy intake to match changes in 
energy expenditure is exemplified by several animal 
models in which alterations in energy expenditure do 
not lead to large changes in adiposity. Uncoupling 
protein 1 (UCP1, which is found primarily in brown and 
beige adipose tissue (BAT)) allows dissipation of the 
electrochemical gradient across the inner 
mitochondrial membrane, releasing energy as heat 
(294). Ablation of BAT in mice expressing diphtheria 
toxin A driven from the UCP1 promoter or congenital 
deletion of Ucp1 fails to alter adiposity at 
thermoneutrality, although adiposity increases slightly 
relative to controls in animals raised at temperatures 
colder than thermoneutrality, since these animals fail 
to substantially increase energy expenditure in 
response to the cold challenge (295). Similarly, the 
phenotype of mice null for the beta-adrenergic 
receptor beta 3-AR is not as severe as predicted: fat 
mass in male mice is only slightly increased, even in 
animals consuming a high-energy diet under non-
thermoneutral conditions (296). Also, “beta-less” mice, 
with a global targeted deletion of all three beta-
adrenergic receptor isoforms, have only slightly 
increased body fat on high fat diet under non-
thermoneutral conditions (296). 
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[Please refer to ENDOTEXT chapter titled The Role of 
Non-exercise Activity Thermogenesis in Human 
Obesity by Christian von Loeffelholz and Andreas 
Birkenfeld and Control of Energy Expenditure in 
Humans by Klaas R Westerterp for additional 
complementary information on energy expenditure] 

 
LESSONS FROM HUMAN OBESITY SYNDROMES 
 
While much of our understanding of the genetics and 
signaling pathways involved in the central control of 
energy balance and development of obesity has been 
derived from rodent models, there exist rare cases of 
human obesity syndromes due to genetic mutations 
that shed light on the pathogenesis of obesity 
development. Many of these mutations corroborate 
the evidence from animal studies. In addition, with the 
advent of next generation sequencing and the ability 
to delve deeply into the human genome, genome wide 
association studies (GWAS) have also begun to reveal 
gene variants that may contribute or predispose to 
obesity.  
 
Monogenic Obesity Syndromes 
 
MC4R 
 
Approximately 4% of morbid human obesity (BMI > 40 
kg/m2) results from mutations in MC4R (297–299). 
Preserved lean mass and increased stature are also 
evident in humans with MC4R deficiency syndrome, 
as in rodent models (57). Most obesity associated with 
MC4R mutations has been attributed to heterozygosity 
at the MC4R locus (58). Patients who are homozygous 
for a null MC4R mutation develop severe childhood 
obesity (57), while heterozygous family members are 
overweight. This suggests a codominant inheritance 
pattern in which the gene product of these mutations 
impair the function of the normal gene product. 
Genome-wide association studies (GWAS) have 
revealed common non-coding polymorphisms within 
the MC4R locus that are associated with increased 

adiposity (59). Treatment options for patients with 
MC4R mutations remain limited, although recent 
studies have suggested that the newly developed 
MC4R agonist setmelanotide can produce modest 
weight loss in patients with MC4R variants that encode 
receptor with decreased (rather than absent) function, 
as well as those with POMC mutations (300,301).  
 
LEPTIN DEFICIENCY INCLUDING 
LIPODYSTROPHY  
 
Genetic leptin deficiency in humans is very rare, but 
(as in rodents) elicits a severe obesity phenotype: A 
rare, recessively inherited LEP mutation was 
discovered in two children who are members of a 
highly consanguineous Pakistani family (302). This 
frameshift mutation introduces a premature stop 
codon that truncates the leptin protein. While rare, 
additional leptin-deficient individuals (all of whom are 
severely obese) have been identified. Daily 
subcutaneous administration of recombinant leptin 
dramatically and selectively reduces body fat to 
normal levels in these individuals (303). A few humans 
homozygous for leptin receptor mutations have also 
been identified; these individuals present a severe 
obese phenotype similar to those lacking leptin, 
although – as anticipated - they are not responsive to 
exogenous leptin (304). It is important to note that 
mice (305) and humans (306) heterozygous for null 
mutations of either LEPR or LEP are more obese than 
controls. It is thus possible that individuals 
heterozygous for functionally null mutations of these 
and other genes encoding molecular components of 
the various signaling pathways regulating energy 
homeostasis discussed in this review constitute a 
significant proportion of the very obese. Additionally, 
heterozygosity for several of these mutations would be 
expected to produce even greater levels of obesity. 
The increasing use of exome sequencing in evaluating 
instances of severe obesity will lead to the detection of 
more instances of obesity caused by such oligogenic 
mechanisms.  
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Lipodystrophy represents another clinical syndrome 
associated with leptin deficiency. Lipodystrophy 
encompasses a heterogenous group of disorders that 
range from inherited monogenic gene disruptions to 
acquired disorders due to treatment with medications 
such as highly active retroviral therapy for HIV. In 
generalized lipodystrophy, patients develop loss of 
subcutaneous fat tissue which results in leptin 
deficiency, hyperphagia, severe insulin resistance and 
diabetes, and visceral obesity. When leptin deficiency 
can be demonstrated, treatment with recombinant 
leptin significantly improves hyperphagia, body weight 
and diabetes severity (307).  
 
CILIOPATHIES  
 
A subset of mutations causing defects in primary cilia 
promote obesity syndromes (308,309). The primary 
cilium is found on most cells; while structurally related 
to motile cilia (such as flagella), the primary cilium is 
immotile and does not participate in propulsion. The 
primary cilium plays a crucial sensory role in cells, 
including cell-specific sensing, such as olfaction in 
sensory epithelium, photoreception in retinal cells, 
mechanical transduction in kidney cells, and signaling 
via a variety of cell surface receptors, including many 
GPCRs. A broad group of disease-causing human 
mutations are now known to result from mutations in 
genes affecting ciliary functions (the “ciliopathies”). 
The clinical presentation of these diseases variably 
includes anosmia, retinal degeneration, kidney 
malformations, and a variety of developmental and 
neural defects, many of which are idiosyncratic to the 
particular gene that is mutated. A number of these 
mutations produce obesity in addition to the other 
phenotypes noted above, both in mice and humans. 
Included in these obesity-causing ciliopathies are 
Bardet-Biedel Syndrome (BBS), McKusic-Kaufman 
Syndrome, Alström Syndrome, and Joubert 
Syndrome. Altered trafficking of MC4R and/or MCH 
receptor may play roles in the obesity of those with 
ciliopathies. 
 

POMC AND PROHORMONE CONVERTASE 1 
DEFICIENCIES  
 
Mutations resulting in complete absence of the POMC 
gene product cause secondary adrenal insufficiency 
due to lack of ACTH; however, once glucocorticoid 
replacement therapy is started, children with these 
mutations invariably develop obesity due to 
hyperphagia. In patients of Caucasian ancestry, there 
is also a characteristic phenotype of red hair and pale 
skin, although this is not found in patients from other 
genetic backgrounds. Some POMC mutations affect 
specific melanocortin peptide products, and those that 
specifically alter α-MSH result in severe early-onset 
obesity (39,40). 

 
The prohormone POMC is cleaved by prohormone 
convertase 1 (PC1). Human PC1 deficiency caused by 
missense and splice site mutations in the PC1 gene 
also results in a disorder characterized by obesity and 
hypocortisolemia as well as hypogonadism (310).  
Other monogenetic obesity syndromes in mice and 
humans likely result from alterations in melanocortin 
signaling, including those due to alterations in other 
components of the peptide processing system, 
including carboxypeptidase E (CPE) (311). 
 
BRAIN-DERIVED NEUROTROPHIS FACTOR 
(BDNF/TrkB) SIGNALING  
 
BDNF, a member of the neurotrophin family, is widely 
expressed in the nervous system during development, 
as well as being expressed within several brain 
regions important for energy homeostasis in adults 
(312). BDNF acts via its receptor, TrkB, to control a 
variety of basic neural processes, including 
proliferation, survival, and plasticity. Given its many 
important roles in the CNS, alterations in BDNF (or its 
receptor, TrkB) would be predicted to interfere with 
multiple processes. Indeed, humans haploinsufficient 
for BDNF display impaired cognitive function and 
hyperactivity, in addition to hyperphagic obesity 
(313,314). Mutations in NTRK2 (which encodes TrkB) 
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produce similar hyperphagia and obesity, along with 
impaired cognitive function and nociception, in rare 
human patients (315). Interestingly, a coding 
polymorphism in BDNF (Val66Met) is associated both 
with obesity and with binge eating disorders in humans 
(316), consistent with the role for BDNF/TrkB signaling 
in energy balance, and suggesting a broader role for 
this system in the genetic determination of adiposity in 
humans. Indeed, alteration of TrkB and/or BDNF 
function in the hypothalamus of mice promotes obesity 
(317,318). Furthermore, polymorphisms in BDNF are 
associated with risk for obesity in human GWAS 
studies (59). 
 
PRADER-WILLI SYNDROME (PWS) 
 
PWS presents in infancy with low birth weight, 
hypotonia and poor feeding, followed by a progressive 
transition to hyperphagia and obesity starting after age 
2 or 3 years. Additional features include short stature 
(correctible with growth hormone therapy), central 
hypogonadism, characteristic behaviors (especially 
around feeding), and often cognitive impairment 
(319,320). Most instances result from a 5-7 Mb 
deletion of an imprinted region (PWS region) on the 
paternal chromosome 15 (15q11-q13) and are non-
recurrent. Within this deletion lie a number of genetic 
elements, including the genes encoding MAGEL2 and 
NECDIN, which are thought to be involved in neural 
development and function, and a complex non-coding 
locus. Non protein -coding genes in this interval 
include a transcribed non-coding gene (SNURF-
SNRPN) that encodes a multitude of C/D box small 
nucleolar (sno-) RNA genes, including SNORD116. 
The RNA products of these SNORD genes are 
thought to be involved in RNA editing, perhaps of 
specific mRNA species.  
 
A small number of individuals with PWS phenotypes 
associated with microdeletions of the implicated 
region on chromosome 15 have reduced the number 
of candidate genes for this syndrome (319). These 
patients have demonstrated obesity, developmental 
delay, hypogonadism, and all major features of PWS. 

The minimum critical deletion region contains only 
non-coding genes, including the SNORD116 gene 
cluster, IPW, and SNORD109A. The Snord116 locus 
has been deleted from mouse models, which display 
a growth defect and behavioral abnormalities, 
including a relative hyperphagia that develops after 
weaning, but which is balanced by increased energy 
expenditure (321). Thus, the effects of SNORD116 
likely contribute to PWS, but may not account for all of 
the phenotypes.  
 
The functions of Necdin and Magel2 have also been 
examined in genetically targeted mouse models. 
Magel2-/- mice display early growth retardation with a 
mild increase in adiposity, and Necdin-/- mice display 
early postnatal respiratory failure along with a subset 
of PWS-associated behaviors (322–324). Thus, the 
full PWS likely results from the combined effects of 
multiple genes; several genes within the PWS region 
also likely contribute to the maximal obesity 
phenotype. It is not yet clear how each of the loci within 
the PWS alter neurophysiology and/or which neurons 
they might specifically affect to alter energy balance. 
Understanding the molecular physiology of PWS is 
likely to identify novel genes in the control of energy 
homeostasis in non-syndromic obesities. 
 
[PLEASE REFER TO THE CHAPTER TITLED THE 
GENETICS OF OBESITY IN HUMANS BY SADAF 
FAROOQI AND STEPHEN O'RAHILLY, FOR 
ADDITIONAL INFORMATION ON GENETIC 
FORMS OF OBESITY. 
 
CONCLUSION 
 
This chapter provides an overview of the complex 
neural and metabolic pathways that determine energy 
intake and expenditure. Distinct areas of the brain 
receive and interpret hormonal and neuronal 
messages from the periphery and other brain regions 
to integrate regulatory changes that maintain energy 
balance. These changes require a finely tuned 
balance of synaptic neurotransmitters, hormonal 
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feedback loops and neuropeptide expression. The 
identification of the molecules encoding these 
messages using human studies and animal models 
has expedited the discovery of the crucial signaling 
and homeostatic pathways that govern these 
mechanisms. Their existence provides definitive 
refutation of vitalist/psychological notions that have 
permeated the field of energy intake and metabolism, 

and provides the heuristic, reductionist framework in 
which ongoing research on these questions should be 
conducted. It is likely that major genes and their 
modifiers, as well as allelic variants of a larger number 
of genes with lesser individual impact, will eventually 
account for both qualitative and quantitative aspects of 
the critical phenotypes in rodents and humans.  
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