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ABSTRACT 
 
This chapter summarizes the intimate relationship 
between the hypothalamus and the anterior pituitary 
with respect to the secretion of ACTH and GH from the 
physiological viewpoint. Other chapters in Endotext 
cover the hormones prolactin, LH, FSH, TSH and the 
posterior pituitary. Adrenocorticotropic hormone 
(ACTH) and growth hormone (GH) are both peptide 
hormones secreted from the anterior pituitary. ACTH 
is derived from cleavage of the precursor hormone 
pro-opiomelanocortin (POMC) by prohormone 
convertase enzymes. Classically, it activates the 
production and release of cortisol from the zona 
fasciculata of the adrenal cortex via the melanocortin 
receptor MC2R. The major hypophysiotropic factor 
controlling ACTH expression and secretion is 
corticotropin-releasing hormone (CRH), in conjunction 
with arginine vasopressin (AVP). Key physiological 
features of the hypothalamo-pituitary-adrenal (HPA) 
axis are discussed, including the ultradian pulsatility of 
CRH, AVP and ACTH secretion, the circadian pattern 
of secretion, the negative feedback of cortisol on the 
HPA axis, the stress response, and the effects of aging 
and gender. GH is secreted mainly by somatotrophs 
in the anterior pituitary, but it is also expressed in other 
parts of the brain. Similarly, to ACTH, the release of 
GH is pulsatile with diurnal variation, under a negative 
feedback auto-regulatory loop, and can be affected by 

various factors. Activities that affect secretion of GH 
include sleep and exercise, and physical stresses 
such as fasting and hypoglycemia, hyperglycemia, 
hypovolemic shock, and surgery. GH secretion 
demonstrates differences between the sexes, with 
male ‘pulsatile’ secretion versus female ‘continuous’ 
secretion. In addition, the level of secretion also 
declines with age, a phenomenon termed the 
‘somatopause’. All these are discussed in detail in this 
chapter. 
 
THE HYPOTHALAMO-PITUITARY INTERFACE 
 
The hypothalamus and pituitary serve as the body’s 
primary interface between the nervous system and the 
endocrine system. This interface takes the form of: 
 
• Amplification from femto (10-15) and pico (10-12)-

molar concentrations of hypophysiotropic 
hormones to nano (10-9) molar concentrations of 
pituitary hormones. 

• Temporal smoothing from ultradian pulsed 
secretion of hypophysiotropic hormones to 
circadian rhythms of pituitary hormone secretion 
(1). 
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The function of this interface is modified by feedback, 
usually negative, via the nervous system and via the 
endocrine system. 
 
REGULATION OF ACTH 
 
Cells of Origin 
 
ACTH is released from corticotrophs in the human 
pituitary, constituting 15-20% of the cells of the 
anterior pituitary (see Endotext chapter- Development 
and Microscopic Anatomy of the Pituitary Gland). They 
are distributed in the median wedge, anteriorly and 
laterally, and posteriorly adjacent to the pars nervosa. 
These cells are characteristically identified from their 
basophil staining and PAS-positivity due to the high 
glycoprotein content of the N-terminal glycopeptide of 
pro-opiomelanocortin (vide infra), as well as ACTH 

immunopositivity. Scattered ACTH-positive cells are 
also present in the human homologue of the 
intermediate lobe. Some of these appear to extend 
into the posterior pituitary, the so-called “basophilic 
invasion” (2). 
 
ACTH/POMC 
 
POMC GENE STRUCTURE   
 
ACTH is derived from a 266 amino acid precursor, pro-
opiomelanocortin (POMC: Figure 1). POMC is 
encoded by a single-copy gene on chromosome 
2p23.3 over 8 kb (3). It contains a 5′ promoter and 
three exons. Apart from the hydrophobic signal 
peptide and 18 amino acids of the N-terminal 
glycopeptide, the rest of POMC is encoded by the 833 
bp exon 3. 

 

 
Figure 1. POMC and its derivatives. 
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POMC PROMOTER 
 
The promoter of POMC has most extensively been 
studied in rodents (4). Common transcription elements 
such as a TATA box, a CCAAT box, and an AP-1 site 
are found within the promoter (5,6). Corticotroph and 
melanotroph-specific transcription of POMC appears 
to be dependent on a CANNTG element motif 
synergistically binding corticotroph upstream 
transcription element-binding (CUTE) proteins (7). 
These include neurogenic differentiation 1 factor 
(NeuroD1) (8), pituitary homeobox 1 (Pitx1 or Ptx1) 
(9), and Tpit (10,11). NeuroD1 is a member of the 
NeuroD family and forms heterodimers with other 
basic-helix-loop-helix (bHLH) proteins, activating 
transcription of genes that contain an E-box, in this 
case POMC. This highly restricted pattern of 
expression in the nervous and endocrine systems is 
important during development. NeuroD1 is expressed 
in corticotrophs but not melanotrophs, thus indicating 
that there are some differences between the 
operations of the transcriptional mechanisms of these 
two POMC-expressing cell types (8). Tpit is a 
transcription factor of the T-box family and it plays an 
important role in late-stage cell determination of 
corticotrophs and melanotrophs (10). Pitx1 is a 
homeoprotein belonging to a class of transcription 
factors that are involved in organogenesis and cell 
differentiation. Both Tpit and Pitx1 bind to their 
respective responsive elements and are involved in 
controlling the late differentiation of POMC gene 
expression, maintaining a basal level of POMC 
transcription and participating in hormone-induced 
POMC expression (12). To summarize the respective 
roles of the CUTE proteins, Pitx1 confers pituitary 
specificity in the broadest sense, Tpit confers the 
POMC lineage identity common to corticotrophs and 
melanotrophs, whereas NeuroD1 expression confers 
corticotroph identity (4). However, CUTE proteins are 
not the only method by which POMC expression is 
differentiated between corticotrophs and 
melanotrophs. The Pax7 transcription factor has been 
shown to be a key determinant of melanotroph 

identity, and it works by remodeling chromatin prior to 
Tpit expression, opening key areas of chromatin to 
allow Tpit and other transcription factors access to 
enhancers, resulting in melanotroph specification (13). 
 
Ikaros transcription factors, which had previously been 
characterized as being essential for B and T cell 
development, have been demonstrated to bind and 
regulate the POMC gene in mice. Moreover, Ikaros 
knockout mice demonstrate impaired corticotroph 
development in their pituitaries, as well as reduced 
circulating ACTH, MSH, and corticosterone levels 
(14), suggesting a role in corticotroph development. 
 
POMC transcription is positively regulated by 
corticotrophin releasing hormone (CRH). CRH acts via 
its G-protein coupled receptor to activate adenylate 
cyclase, increase intracellular cAMP and stimulate 
protein kinase-A (15). Transcription stimulation is 
mediated by an upstream element (PCRH-RE) binding 
a novel transcription factor (PCRH-REB) containing 
protein kinase-A phosphorylation sites (16). CRH also 
stimulates the transcription of c-Fos, FosB and JunB, 
as well as binding to the POMC AP-1 site (17). Another 
secondary messenger pathway that controls POMC 
expression involves intracellular Ca2+ ions (18). Both 
cAMP and intracellular Ca2+ pathways cross-talk with 
each other (19). These findings further support the 
importance of cAMP and Ca2+ in the intracellular 
signaling of corticotrophs and melanotrophs. 
Interestingly, there is a remarkable absence of cAMP-
responsive elements (CRE) and Ca2+ responsive 
elements (CaRE) in the promoter region of POMC 
despite the demonstrated importance of cAMP and 
Ca2+ in the intracellular signaling of corticotrophs and 
melanotrophs. Other, more indirect strategies have 
evolved to translate cAMP signals into changes in 
POMC gene expression involving a CREB/c-Fos/AP-
1 signaling cascade activating POMC transcription via 
an activator protein-1 (AP-1) site in exon 1. Similarly, 
intracellular Ca2+ may signal via the Ca2+ binding 
repressor DREAM (downstream response element-
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antagonist modulator) and modulation of c-Fos 
expression (20).  
 
CRH also activates POMC expression through a Nur 
response element which binds the related orphan 
nuclear receptors Nur77, Nurr1, and NOR1 (21). The 
pituitary adenylate cyclase-activating peptide 
(PACAP) also stimulates cAMP synthesis and POMC 
transcription, presumably through a common pathway 
with CRH (22). 
 
The effect of Nuclear transcription factor kappa B (NF-
κB) on POMC expression is unclear. Although NF-κB 
is mostly associated with an activation of gene 
expression, it has been shown to inhibit POMC gene 
expression by binding to the promoter region (23). In 
keeping with this finding, CRH treatment blocks this 
binding, leading to an increase in POMC expression. 
On the contrary, it has also been shown that more 
pertinent high glucose (metabolic stress condition) 
elevates POMC transcription in AtT-20 cells through, 
or at least in part, the NF-κB responsive element and 
AP-1 sites (24).  
 
POMC mRNA transcription in corticotrophs is 
negatively regulated by glucocorticoids (25), although 
glucocorticoids increase expression of POMC in the 
hypothalamus (26). The inhibitory effect of 
glucocorticoids on corticotroph POMC expression 
appears, in the rat POMC promoter, to be dependent 
on a glucocorticoid response element partially 
overlapping the CCAAT box (27). The element binds 
the glucocorticoid receptor as a homodimer plus a 
monomer on the other side of the DNA helix (28). 
Glucocorticoid regulation of corticotroph POMC 
transcription is also indirectly mediated via other 
mechanisms such as down-regulation of c-jun 
expression and direct protein-protein mediated 
inhibition of CRH-induced AP-1 binding (29), inhibition 
of CRH receptor transcription (30), inhibition of 
CRH/cAMP induced activation of Tpit/Pitx1, inhibition 
of CRH action via the Nur response element (12), and 
suppression of NeuroD1 expression which in turn 

inhibits the positive NeuroD1/E-box interaction in the 
POMC promoter (31). 
 
There are also some other nuclear receptors and 
respective ligands that show potential roles in POMC 
regulation. All-trans retinoic acid (ATRA), a 
stereoisomeric form of retinoic acid, has been shown 
to inhibit POMC transactivation and ACTH secretion in 
murine corticotroph tumor AtT20 cells via inhibition of 
AP-1 and Nur transcriptional activities (32). Mutations 
in the retinoic acid receptor-related orphan receptors 
(ROR) also result in enhanced corticosterone 
secretion and ACTH response as well as a lack of 
diurnal variation compared to wild-type mice (33). As 
for the thyroid hormone and its receptor, there appears 
to be no reported direct interaction with the POMC 
promoter, although POMC-/- animals are known to 
display primary hyperthyroidism (34). More studies are 
needed to elucidate the potential roles of different 
nuclear receptors and ligands in POMC regulation. It 
is also important to note that most of these studies 
were conducted using tumor cells or in vitro models, 
as some of the global knockout models can be lethal 
or difficult. 
 
Leukemia Inhibitory Factor (LIF), a pro-inflammatory 
cytokine expressed in corticotrophs, has also been 
shown to stimulate POMC transcription via activation 
of the Jak-STAT pathway (35,36). This stimulation is 
synergistic with CRH. Deletional analysis of the POMC 
promoter has identified a LIF-responsive region from 
–407 to –301. A STAT binding site that stimulates 
POMC transcription and which partly overlaps with the 
Nur response element has been identified within the 
POMC promoter (37). This pathway might form an 
interface between the immune system and regulation 
of the pituitary-adrenal axis, particularly during chronic 
inflammation, where pro-inflammatory cytokines such 
as LIF might stimulate STAT3 expression and 
therefore POMC transcription (38). Another interface 
between the immune system and POMC expression 
involves Toll-like receptor (most likely TLR4) 
recognition of lipopolysaccharide, which is a 
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component of the bacterial cell wall. This appears to 
act via activation of c-Fos and AP-1 expression (39).  
 
The POMC promoter sits within a CpG island, defined 
as the regions in the genome which the G and C 
content exceed 50%. These genomic regions are 
important controllers of gene expression as 
hypermethylation of the cytosine leads to silencing of 
gene expression via remodeling of the chromatin 
structure to favor heterochromatinization (40). 
Hypermethylation of the POMC promoter leads to 
repression of POMC expression in non-expressing 
tissues. In contrast, hypomethylation leads to de-
repression of the POMC promoter in POMC 
expressing tissues (e.g. corticotrophs). Notably, a 
small cell lung carcinoma cell line, which expresses 
POMC and ACTH, possesses a hypomethylated 
POMC promoter, suggesting that ectopic ACTH 
secretion by tumors may be due to hypomethylation at 
a relatively early stage in carcinogenesis (41). 
 
BIOGENESIS OF ACTH 
 
Prohormone convertase enzymes PC1 and PC2 
process POMC at pairs of basic residues (Lys-Lys or 
Lys-Arg). This generates ACTH, the N-terminal 
glycopeptide, joining peptide, and beta-lipotropin 
(beta-LPH) (Figure 1). ACTH can be further processed 
to generate alpha-melanocyte stimulating hormone 
(alpha-MSH) and corticotropin-like intermediate lobe 
peptide (CLIP), whereas beta-LPH can be processed 
to generate gamma-LPH and beta-endorphin (42). In 
corticotrophs, POMC is mainly processed to the N-
terminal glycopeptide, joining peptide, ACTH, and 
beta-LPH; smaller amounts of the other peptides are 
present (43). Other post-translational modifications 
include glycosylation of the N-terminal glycopeptide 
(44), C-terminal amidation of N-terminal glycopeptide, 
joining peptide and alpha-MSH (45,46), and N-
terminal acetylation of ACTH, alpha-MSH and beta-
endorphin (47,48). 

 
HYPOPHYSIOTROPIC HORMONES AFFECTING 
ACTH RELEASE 
 
Corticotropin Releasing Hormone (CRH) 
 
This 41 amino acid neuropeptide (49) is derived from 
a 196-amino acid prohormone (50). CRH is likely to be 
involved in all the three types of stress responses: 
behavioral, autonomic and hormonal. CRH 
immunoreactivity is mainly found in the paraventricular 
nuclei (PVN) of the hypothalamus, often co-localized 
with AVP (51). CRH is part of a family of neuropeptides 
together with the urocortins 1, 2 and 3 (52).  
 
CRH binds to G-protein coupled seven-
transmembrane domain receptors (53,54), which are 
classically coupled to adenylate cyclase via Gs, 
stimulating cAMP synthesis and PK-A activity. 
However, it is increasingly clear that CRH receptors 
also couple to Gi (inhibiting adenylate cyclase) and Gq 
(stimulating phospholipase C, the processing of 
phosphatidylinositol 4,5-bisphosphate into inositol 
trisphosphate and diacylglycerol and intracellular Ca2+ 
release), as well as the recruitment of beta-arrestins 
which counter-regulate CRH-R function via G-protein 
decoupling and receptor 
internalization/desensitization (52). 
 
To date, two CRH receptor genes have been identified 
in humans. CRH-R1 mediates the action of CRH at 
corticotrophs by binding to CRH; it also binds urocortin 
1. CRH-R1 is most extensively expressed in the CNS. 
CRH-R2 binds to all three urocortins, while binding 
CRH at a far lower affinity (52). CRH-R2 is 
predominantly expressed in the heart and has 
profound effects on the regulation of the 
cardiovascular system and blood pressure (55,56). 
 
Besides stimulating POMC transcription and ACTH 
biogenesis, CRH stimulates the release of ACTH from 
corticortophs via CRH-R1 leading to a biphasic 
response with the fast release of a pre-synthesized 
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pool of ACTH, and the slower and sustained release 
of newly-synthesized ACTH (57). Figure 2 describes 
the stimulation of ACTH release by CRH (58). It is 
clear that CRH and CRH-R1 is the ‘main line’ of the 
HPA axis with major defects in this axis with CRH (59) 
and CRH-R1 knockout (60). Although urocortin 1 can 
also activate CRH-R1, urocortin 1 knockout mice 
appear to have normal HPA axis function, suggesting 

that urocortin 1 does not have a significant regulatory 
role on the axis (61). Indeed, knocking out all three 
urocortins does not have any major effect on basal 
corticosterone levels (62) although female urocortin 2 
knockout mice exhibit a more subtle dysregulation with 
elevated basal ACTH and corticosterone secretion 
which is modulated by their estrogen status (63).

 
 

 
Figure 2. Diagram showing the release of ACTH from corticotroph cells. CRH binds to a particular 
receptor that leads to activation of cAMP. The rise in cAMP inhibits TREK-1, thus leading to the 
depolarization of the cell and subsequently influx of calcium via VGCC. The rise in intracellular calcium 
leads to the exocytosis and release of ACTH. 
 
CRH secretion is also regulated by other 
neurotransmitters and cytokines. These include 
acetylcholine, norepinephrine/noradrenaline, 
histamine, serotonin, gamma-aminobutyric acid 
(GABA), interleukin-1beta, and tumor necrosis factor.  
All of these factors increase hypothalamic CRH 
expression, except for GABA which is inhibitory.  
 
Arginine Vasopressin (AVP) 
In the anterior pituitary, AVP principally binds to the 
seven-transmembrane domain V1b receptor, also 

known as the V3 receptor (64). The receptor is 
coupled to phospholipase C, phosphatidyl inositol 
generation, and activation of protein kinase-C (65,66) 
and not via adenylate cyclase and cAMP (15). AVP 
stimulates ACTH release weakly by itself, but 
synergizes with the effects of CRH on ACTH release 
(67). Downregulation of protein kinase C by phorbol 
ester treatment abolishes the synergistic effect of AVP 
on ACTH release by CRH (68). AVP does not 
stimulate POMC transcription either by itself or in 
synergism with CRH (69). Between the two 
neuropeptide effects on ACTH release, CRH is the 
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more dominant effect although there is some residual 
HPA axis activation in female CRH knockout mice 
(59). 
 
The association between AVP and ACTH release 
suggests that measurement of AVP levels might be 
useful for assessing anterior pituitary function. 
However, direct measurement of plasma AVP is 
technically difficult due to its small molecular size and 
binding to platelets. Copeptin is a 39-amino acid 
glycosylated peptide which is derived from the C-
terminal part of the AVP precursor at an equimolar 
amount to AVP. It remains stable for several days at 
room temperature in serum or plasma, and its 
measurement is reliable and reproducible, making it a 
biomarker of AVP release (70). The copeptin 
increment during glucagon stimulation testing 
correlates well with the ACTH increment in healthy 
controls, but not in patients with pituitary disease (71). 
Interestingly, there appears to be a sexual dimorphism 
in terms of the correlation between copeptin and 
ACTH/cortisol release under the conditions of insulin 
tolerance testing, with a positive correlation observed 
in women but no significant correlation in men, i.e. 
copeptin cannot be used as a universal marker of HPA 
axis stimulation (72). 
 
Other Influences on ACTH Release 
 
Glucocorticoids rapidly travel through circulation to 
inhibit the HPA axis at the level of the hypothalamus 
(release of CRH) (73-76) and anterior pituitary 
(release of ACTH) (77,78) when synthesized. There is 
an inherent short delay in this dynamic relationship 
between the hypothalamus-pituitary-adrenal system 
but nevertheless it is one of the main influences on 
ACTH release.  
 
The mineralocorticoid system has always been 
closely linked to the glucocorticoid system. The 
endogenous glucocorticoids bind to the 
mineralocorticoid receptors with a 10-fold greater 
affinity than to the glucocorticoid receptors (79-81). 

The mineralocorticoid receptors have a more 
restricted expression profile throughout the body, with 
notably high levels of expression in the kidney and 
adipose tissue, although it is also expressed in certain 
parts of the brain (82). Administration of 
mineralocorticoid antagonists 
intracerebroventricularly or intrahippocampal infusion 
have been shown to increase the basal HPA axis 
activity as well as potentiate the initial rise of ACTH in 
response to stress (83,84).  
  
Oxytocin and AVP have been co-localized to the PVN 
and supraoptic nuclei of the hypothalamus (85). 
Oxytocin controversially inhibits ACTH release in man 
(86-88) by competing for AVP receptor binding (89), 
but its more dominant effect seems to be a potentiation 
of the effects of CRH on ACTH release (90,91).  
 
Vasoactive intestinal peptide (VIP) and its relative, 
peptide histidine isoleucine (PHI), have been shown 
to activate ACTH secretion (92). This is most probably 
mediated indirectly via CRH (93). 
 
Atrial natriuretic peptide (ANP) 1-28 has been 
localized to the PVN and supraoptic nuclei (94). In 
healthy males, infusion of ANP 1-28 was reported to 
attenuate the ACTH release induced by CRH (95,96), 
but this only occurs under highly specific conditions 
and is not readily reproducible. In physiological doses, 
ANP 1-28 does not appear to affect CRH-stimulated 
ACTH release (97). 
 
Opiates and opioid peptides inhibit ACTH release 
(98). There does not seem to be a direct action at the 
pituitary level. It is likely that these act by modifying 
release of CRH at the hypothalamic level (99).  Opiate 
receptor antagonists such as naloxone or naltrexone 
cause ACTH release by blocking tonic inhibition by 
endogenous opioid peptides (100). 
 
The endocannabinoid system has recently 
appeared as a key player in regulating the baseline 
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tone and stimulated peaks of ACTH release. The 
seven-transmembrane cannabinoid receptor type 1 
(CB1) is found on corticotrophs, and the 
endocannabinoids anandamide and 2-
arachidonoylglycerol can be detected in normal 
pituitaries (101). Antagonism of CB1 causes a dose-
dependent rise in corticosterone levels in mice (102). 
CB1-/- knockout mice demonstrate higher 
corticosterone levels compared to wild-type CB1+/+ 
littermates, although the circadian rhythm is 
preserved. Treatment of the CB1-/- mice with low-dose 
dexamethasone did not significantly suppress their 
corticosterone levels and surprisingly caused a 
paradoxical rise in ACTH levels when compared to the 
wild-type, although high-dose dexamethasone 
suppressed corticosterone and ACTH to the same 
degree in both CB1-/- and CB1+/+ mice. These CB1-/- 
mice have: (1) higher CRH mRNA expression in the 
PVN; (2) lower glucocorticoid receptor mRNA 
expression in the CA1 hippocampal region, but not in 
the dentate gyrus or the PVN; (3) significantly higher 
baseline ACTH secretion from primary pituitary cell 
cultures as well as augmented ACTH responses to 
stimulation with CRH or forskolin (103). It has also 
been known for some time that the administration of 
the cannabinoid agonist delta-9-tetrahydrocannabinol 
(THC) for 14 days suppresses the cortisol response to 
hypoglycemia in normal humans (104). Thus, the 
endocannabinoids appear to negatively regulate basal 
and stimulated ACTH release at multiple levels of the 
hypothalamo-pituitary-adrenal axis. 
 
Catecholamines act centrally via alpha1-adrenergic 
receptors to stimulate CRH release. Peripheral 
catecholamines do not affect ACTH release at the 
level of the pituitary in humans (105). 
 
Nitric oxide (NO) and carbon monoxide negatively 
modulate the HPA axis by reducing CRH release, at 
least in vitro (106,107). Endotoxin administered into 
isolated rat hypothalamus led to generation of NO and 

CO, which subsequently led to significant decrease in 
CRH and vasopressin secretion (107).  
 
GH secretagogues such as ghrelin and the synthetic 
GH secretagogue hexarelin stimulate ACTH release, 
probably via stimulating AVP release with a much 
lesser effect on CRH (108-111). GH-releasing 
peptide-2 (GHRP-2) has also been shown to cause 
ACTH release in humans (112,113). GH releasing 
hormone (GHRH) has been shown to potentiate the 
ACTH and cortisol response to insulin-induced 
hypoglycemia, but not to potentiate the ACTH and 
cortisol response after administration of CRH/AVP 
(114).  
 
Obestatin, a 23 amino acid amidated peptide, is 
derived from preproghrelin, which is the same 
precursor as ghrelin (Figure 3). Obestatin is found to 
suppress food intake and have opposing metabolic 
effects to ghrelin when administered intraperitoneally 
in mice (115). An early study showed that intravenous 
or intracerebroventricular obestatin had no effects on 
pituitary hormone release (GH, prolactin, ACTH and 
TSH) in male rats (116), consistent with the fact that 
the obestatin receptor GPR39 is not expressed in the 
pituitary (115,117,118). A study in mice and non-
human primates (baboon) again showed no effects of 
obestatin on prolactin, LH, FSH and TSH expression 
and release. However, obestatin was shown to 
stimulate POMC expression and ACTH release in vitro 
and in vivo, and in this study the authors found GPR39 
expression in pituitary tissue and primary pituitary cell 
cultures, contrary to the above-mentioned studies. 
This effect was mediated by the adenylyl cyclase and 
MAPK pathways. The increase in ACTH release was 
also associated with an increase in pituitary CRH 
receptor expression. Interestingly, obestatin did not 
inhibit the stimulatory effect of ghrelin on ACTH 
release (119). Therefore, the effects of obestatin on 
pituitary hormone secretions remain controversial. 
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Figure 3. Schematic diagram showing the synthesis of ghrelin and obestatin from the same precursor, 
preproghrelin. Preproghrelin is a 117 amino acid precursor encoded at chromosome 3. Cleavage of this 
protein leads to the production of ghrelin, a 28 amino acid peptide, and obestatin, a 23 amino acid 
protein. Ghrelin can be present as both des-acyl- and acyl-ghrelin (figure modified from (291)). 
 
Angiotensin II (Ang II) is able to stimulate ACTH 
release in vitro from pituitary cells (120). Central Ang 
II is likely to stimulate CRH release via its receptors in 
the median eminence, as passive immunization with 
anti-CRH can abolish the effect of Ang II (121). 
Intracerebroventricular Ang II can stimulate ACTH 
release in rats (122) and is able to stimulate the 
synthesis of CRH and POMC mRNA (123). 
Conversely, blockade of Ang II subtype 1 (AT1) 
receptors with candesartan is able to decrease the 
CRH, ACTH, and cortisol response to isolation stress 
in rats (124,125). There is some controversy as to 
whether peripheral Ang II can modulate ACTH 
secretion. It is likely that the ACTH rise seen after Ang 
II infusion into rats is mediated via circumventricular 
organ stimulation, as blockade of Ang II effects on the 
circumventricular organs with simultaneous infusion of 
saralasin blocks this rise (122). 

 
In vitro studies have shown an inhibitory effect of 
somatostatin on ACTH release in AtT-20 pituitary cell 
lines from rats, which is mediated via somatostatin 
receptor (SSTR) subtypes 2 and 5 (126). This 
inhibitory effect is dependent on the absence of 
glucocorticoids in the culture medium, but is more 
prominent when somatostatin analogues targeting 
SSTR 5 are used (127,128). In rodents, pasireotide, a 
somatostatin analogue capable of activating SSTRs 1, 
2, 3, and 5, is capable of inhibiting CRH-stimulated 
ACTH release in contrast to octreotide (selective for 
SSTRs 2 and 5), which was less efficacious (129). 
Early in vivo studies in humans showed no effect of 
somatostatin on basal or CRH-stimulated ACTH 
release (130), although somatostatin does decrease 
basal secretion in the context of Addison’s disease 
(131). It is unlikely, therefore, that somatostatin itself 
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is an inhibitor of ACTH release in normal human 
physiology. Corticotroph adenomas express the 
somatostatin receptor (SSTR) subtype 5 (132) and 
ACTH secretion from cultured corticotroph adenomas 
is inhibited by pasireotide (133). This is the basis for 
the use of pasireotide to treat Cushing’s disease (134). 
Octreotide is clinically ineffective in this context (135), 
but may be effective if glucocorticoids are lowered. 
 
The role of TRH in ACTH release is in dispute. 
Although there is evidence that prepro-TRH 178-199 
can inhibit both basal and CRH-stimulated ACTH 
release in AtT-20 cell lines and rat anterior pituitary 
cells (136,137), other investigators have not been able 
to confirm this (138). There has also been another 
study showing that TRH is able to induce ACTH 
release from AtT-20/NYU-1 cells (139), but no in vivo 
studies exist to substantiate a physiological role. 
 
Tumor necrosis factor-alpha (TNFalpha) is a 
macrophage-derived pleiotropic cytokine that has 
been shown to stimulate plasma ACTH and 
corticosterone secretion in a dose-dependent manner 
(140). The primary site of action of TNFalpha effect on 
the HPA axis is likely to be on hypothalamic CRH-
secreting neurons. The effects are abolished with 
CRH antiserum treatment, thus suggesting that CRH 
is a major mediator of the HPA axis response to 
TNFalpha. 
 
Interleukins IL-1, IL-6 and possibly IL-2 appear to 
stimulate ACTH release (141-143). There seem to be 
multiple mechanisms for interleukins to stimulate 
ACTH release, but most of the acute effects of these 
agents are almost certainly via the hypothalamus 
(144). 
 
Leukemia Inhibitory Factor is able to stimulate 
POMC synthesis, as noted above. 
 
Endothelial Growth Factor (EGF) is a pituitary cell 
growth factor that is previously known to induce 

production of prolactin (145). Both EGF and its 
receptor (EGFR) are expressed in normal pituitary 
tissue (146). More recently, EGF has been found to 
regulate the transcription of POMC and production of 
ACTH (147-149). The mechanism behind this is still 
unclear, although mutations in ubiquitin-specific 
protease 8 (USP8), a deubiquitinase enzyme with 
various targets including EGFR, leading to 
hyperactivation of this enzyme and subsequent 
increased EGFR deubiquitination and recirculation to 
the cell surface, enhance the release of ACTH 
(147,150). A significant percentage of corticotroph 
adenomas harbor somatic mutations in USP8, and a 
germline mutation case have also been described and 
can develop Cushing’s disease (147,150,151). These 
findings further provide evidence that EGF and EGFR 
can regulate production of ACTH.      
 
PHYSIOLOGY OF ACTH RELEASE 
 
Pulsatility of ACTH Release 
 
Frequent sampling of ACTH with deconvolution 
analysis reveals that it is secreted in pulses from the 
corticotroph with 40 pulses ± 1.5 measured per 24 
hours, on analysis of 10-minute sampling data. These 
pulses temporally correlate with the pulsed secretion 
of cortisol, allowing for a 15 minute delay in secretion, 
and correlate in amplitude (152). Pulse concordance 
has been measured at 47% (ACTH to cortisol) and 
60% (cortisol to ACTH) in one study (153), and 90% 
(ACTH to cortisol) in another (154). Although the 
pulsatility of ACTH secretion may result from pulsatile 
CRH release, there is evidence that isolated human 
pituitaries intrinsically release ACTH in a pulsatile 
fashion (155). In addition, studies in rats have shown 
that constant CRH infusion still resulted in oscillations 
of ACTH and glucocorticoid release (156). However, 
the pulsatile activities of ACTH and glucocorticoid are 
entirely dependent on the level, rather than the 
pattern, of CRH secretion (156).    
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The pulsatile release of ACTH induces pulses of 
glucocorticoid secretion. In rats with HPA axis 
suppression, constant infusion of ACTH did not induce 
pulsatile glucocorticoid secretion (157). It was shown 
in vitro using ZF cell lines that constant ACTH 
treatment led to larger increase in pCREB and 
steroidogenic gene transcription at the start of 
treatment but the cells became unresponsive to the 
stimuli over time (158). The responsiveness of cells to 
the ACTH treatment could only be maintained with 
pulsatile ACTH treatment, further supporting the 
importance of pulsatile release of ACTH 
physiologically.  
 
Recent developments in automated sampling of blood 
(159) and tissue interstitial fluid via microdialysis (160) 
have also uncovered the ultradian rhythms in plasma 
ACTH which correlate well with plasma and tissue 
steroid (cortisol and cortisone) concentrations, 
indicating that the ultradian rhythms in blood ACTH 
and cortisol/cortisone translate well to tissue exposure 
to these steroids.  
   
Circadian Rhythm 
 
In parallel with cortisol, ACTH levels vary in an 
endogenous circadian rhythm, reaching a peak 
between 06.00-09.00h, declining through the day to a 
nadir between 23.00h-02.00h, and beginning to rise 
again at about 02.00-03.00h. An increase in ACTH 
pulse amplitude rather than frequency is responsible 
for this rhythm (152). The circadian rhythm in 
glucocorticoid secretion is a key mechanism for re-
entraining behavior in the face of external 
perturbations such as an abrupt phase shift of light 
conditions, i.e. a model of ‘jet lag’ (161). 
 
The circadian rhythm is mediated via a master 
oscillator in the supra-chiasmatic nucleus (SCN). A 
lesion in the SCN eliminates the glucocorticoid 
circadian rhythm (162). An autoregulatory negative 
transcription-translation loop feedback system 
involving cyclical synthesis of the period proteins 

Per1-3, Clock/BMAL1, and Cry1/2 acts as the basic 
molecular oscillator, where the Clock/BMAL1 
heterodimer acts to activate the transcription of Per 
and Cry proteins (the so-called ‘positive limb’). In turn, 
the Per and Cry proteins complex together, 
translocate back into the nucleus and inhibit 
Clock/BMAL1-mediated transcription (the so-called 
‘negative limb’). The system is reset by 
phosphorylation, ubiquitination and proteasomal 
degradation of the Per/Cry repressor complexes 
(163,164). Entrainment of the oscillator is achieved by 
light input from the retina, mediated via the retino-
hypothalamic tract. Light-activated transcription of 
immediate-early genes such as c-fos and JunB 
(165,166) causes activation of PER1 gene 
transcription as well as modification of the acetylation 
pattern of histone tails. The latter are implicated in the 
control of chromatin structure and accessibility of 
genes to transcription (167). The impact of a period 
protein gene deletion on circulating glucocorticoids 
depends on which side of the clock feedback loop is 
affected (164). Knockout mice with mutations in the 
components of positive limb of the oscillator (Clock or 
BMAL1) suffer from hypocortisolism and lose 
circadian cyclicity (168,169). The deletion of Per2, 
which affects the negative limb of the oscillator, also 
results in hypocortisolism (170). However, 
Cry1 knockout (also affecting the negative limb) leads 
to hypercortisolism (171,172). 
 
Is a circadian rhythm in CRH secretion responsible for 
the ACTH rhythm? Although there is a report of a 
circadian rhythm in CRH secretion (173), and in situ 
hybridization studies show that there is a circadian 
rhythm in CRH expression in the suprachiasmatic 
nucleus (174), other reports do not confirm this (175). 
Moreover, the circadian rhythm persists despite a 
continuous infusion of CRH, suggesting that other 
factors are responsible for the modulation of ACTH 
pulses (176). The most likely alternative candidate is 
AVP: immunocytochemical studies show a circadian 
rhythm in AVP expression (177) and Clock knockout 
mice show a loss of the circadian rhythm in AVP RNA 
expression in the SCN (178). In addition, metyrapone 
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and CRH infusion in normal individuals showed a 
persistence of the HPA circadian rhythm, thus further 
supporting the role of AVP in regulating ACTH rhythm 
(176).  
 
However, rhythmic HPA axis activity is not the be-all 
and end-all of the circadian rhythm of glucocorticoid 
release. For example, the adrenal rhythm of cortisol 
secretion persists after hypophysectomy (179). 
Indeed, light pulses can induce glucocorticoid 
secretion independent of ACTH secretion. This HPA 
axis-independent pathway is mediated by the 
sympathetic nervous system innervation of the 
adrenals (180). The adrenal glands also possess an 
independent circadian oscillator: oscillatory 
Clock/BMAL1, Per1-3 and Cry1 expression is seen in 
the outer adrenal cortex (zona glomerulosa and zona 
fasciculata). This adrenal circadian clock appears to 
‘gate’ the response to ACTH, i.e. it defines a time 
window during which ACTH is most able to stimulate 
glucocorticoid secretion (181). Exogenous ACTH is 
capable of phase-dependently resetting glucocorticoid 
rhythms (182), suggesting that the adrenal circadian 
clock can be entrained by the ACTH rhythm. This 
illustrates a general principle of circadian system 
organization, namely that there is a hierarchical 
system with the SCN master clock entraining and 
coordinating peripheral and non-SCN tissue clocks via 
endocrine and neuronal signals. 
 
Stress 
 
Stress, both physical and psychological, induces the 
release of ACTH and cortisol, particularly via CRH and 
AVP (183,184), and increases the turnover of these 
neurohypophysiotropic factors by increasing the 
transcription of CRH and AVP (185).  
 
During acute stress, an immediate activation of the 
autonomic nervous system takes place, followed by a 
delayed response via the HPA axis-mediated release 
of glucocorticoids (164). During the initial stage, there 
is an immediate increase of catecholamines via 

activation of the sympathetic preganglionic neurons in 
the spinal cord, which in turn stimulates adrenal 
medulla production of catecholamines via splanchnic 
nerve innervation. The catecholamines released will 
also collectively affect peripheral effector organs 
where they are translated into the classical fight-or-
flight response. The delayed response of stress 
involves activation of the HPA axis, leading to an 
increase in glucocorticoid level, which in turn can 
terminate the effects of the sympathetic response 
together with the reflex parasympathetic activation. It 
is important to note that this neurohormonal stress 
response has an additional endocrine leg in the form 
of glucagon: together, one of the important effects of 
this trio is to enhance the release of glucose, amino 
acids and fatty acids, a coordinated catabolic 
response to stress (186). 
 
Stress paradigms studied in humans include 
hypoglycemia during the insulin tolerance test (Figure 
4), and venipuncture (187). Elective surgery has also 
long been used as a paradigm of the stress response 
in humans (188-190): the magnitude of cortisol rise 
correlates positively with the severity of surgery (191). 
Experimentally, other stress paradigms such as 
hemorrhage, oxidative stress, intraperitoneal 
hypertonic saline, restraint/immobilization, foot shock, 
forced swimming, or shaking are used to study the 
stress responses in animals. Importantly, different 
stress paradigms can have differential effects on CRH 
and AVP. In situ hybridization with intronic and exonic 
probes can be used to study the transcription of 
heterogenous nuclear RNA (hnRNA), followed by its 
processing (including splicing, capping and 
polyadenylation) to messenger RNA (mRNA) within 1-
2 hours. CRH and AVP hnRNA levels in rats subjected 
to restraint show significant increases at 1 and 2 hours 
after the induction of stress, followed by significant 
increases in mRNA levels at 4 hours (192). In contrast, 
intraperitoneal hypertonic saline causes a rapid 8.6-
fold increase in CRH hnRNA and mRNA within 15 
minutes, returning to basal levels by 1 hour. AVP 
hnRNA responses are slower, peaking at 11.5-fold 
increase by 2 hours, followed by a prolonged elevation 
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of AVP mRNA levels from 4 hours onwards (193). As 
previously noted, serum copeptin can be used as a 
more stable biomarker of AVP secretion and copeptin 
increments correlate well with cortisol secretion in a 

glucagon stimulation test paradigm (71), but exhibit a 
sexual dimorphism in the context of the insulin 
tolerance test (72). 

 
 

 
Figure 4. Typical response to hypoglycemia (≤2.2 mmol/l) induced by 0.15 U/kg Actrapid i.v. in a normal 
subject. Peak cortisol is ≥550 nmol/l. 
 
Various stressors are known to stimulate oxytocin 
release which in turn, at least acutely, appears to 
potentiate CRH-induced ACTH secretion and 
therefore cortisol release (90). There are also roles for 
endogenous nitric oxide (NO) and carbon monoxide 
(CO) in modulating the ACTH response to stress 
(194). Neuronal NO synthase co-localizes with AVP 
and to some extent CRH in paraventricular neurons 
(195,196). Knockout mice lacking wild-type and 
neuronal NO synthase have much reduced quantities 

of POMC immunoreactivity in their arcuate nuclei and 
pituitaries compared to wild-type mice (195,197).  In 
general, inflammatory stressors appear to activate an 
endogenous inhibitory pathway, whereby NO and CO 
attenuate the stimulated secretion of CRH and AVP. 
These effects can also be seen in terms of circulating 
AVP. However, the regulation of the pituitary-adrenal 
axis by other stressors may involve an activating role 
for these gaseous neurotransmitters. CRH-R2, as 
noted above, binds the urocortins 1, 2 and 3, and 
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appears to mediate a down-regulatory role in the HPA 
response to stress: knockout mice exhibit a 
‘hypersensitive’ acute ACTH and corticosterone 
response (198) and a defective recovery from stress 
with a slower drop in corticosterone (199). 
 
Repetitive stress causes variable effects, 
enhancement or desensitization, on ACTH responses, 
depending on the stress paradigm involved. This 
appears to be positively correlated with changes in 
AVP binding to V1b receptors, reflecting changes in 
the number of binding sites and not their affinities. It is 
at present unclear whether this is due to changes in 
transcription of the V1b gene, alterations in mRNA 
stability, translational control or recruitment of 
receptors from intercellular pools (200). With chronic 
stress, oxytocin is thought to have a longer term 
stress-antagonistic function, partially via cortisol-
mediated negative feedback on CRH, partially via 
GABAergic inhibition of CRH neuron function and 
partially via a direct inhibitory effect of oxytocin on 
CRH expression (90). 
 
As noted above, circadian rhythms in adrenal ACTH 
responsiveness, controlled by local oscillator circuits, 
gate’ the glucocorticoid output in response to a certain 
level of ACTH. In the case of stress, this leads to 
markedly different glucocorticoid responses 
depending on when (during the active or inactive 
phase) the experimental stress is applied to 
experimental animals. Moreover, the timing of 

repetitive stress application can lead to differences in 
the behavioral and metabolic responses to 
repetitive/chronic stress. Lastly, it is also known that 
stress can influence clock function at the level of the 
SCN and also at the level of the adrenal circadian 
oscillator leading to phase shifts (164). In humans, 
stressors such as illness leads to abolition of the 
diurnal variation of cortisol, which appears to be ACTH 
independent (201,202). This change in the diurnal 
regulation of cortisol secretion is linked to regulation of 
immune responses which is likely to be adaptive in the 
acute context, but which may be maladaptive with 
chronic stress (203).   
 
FEEDBACK REGULATION OF THE HPA AXIS 
 
Glucocorticoid feedback occurs at multiple levels: at 
the pituitary, at the hypothalamus, and most 
importantly, centrally at the level of the hippocampus, 
which contains the highest concentration of 
glucocorticoid receptors in the central nervous system. 
Multiple effects mediate this feedback (Figure 5), 
including: 
 
• inhibition of CRH and AVP synthesis and release 

in the PVN (204,205). 
• inhibition of POMC transcription (as outlined 

above). 
• inhibition of ACTH release induced by CRH and 

AVP (206). 
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Figure 5. Regulation of ACTH. Green arrows denote stimulatory influences, red arrows denote inhibitory 
influences. 
 
Fast feedback occurs within seconds to minutes and 
involves inhibition of ACTH release by the 
corticosteroids, mediated through the glucocorticoid 
receptor (GR). For example, an injection of 
prednisolone inhibits ovine CRH-stimulated ACTH 
release within 20 minutes (207). In vitro this appears 
to involve inhibition of CRH-stimulated ACTH release, 
and CRH release, but basal secretion is not affected. 
Protein synthesis is not required, implying that the 
glucocorticoid effect is non-genomic (208,209). Cell 
membrane-associated GR has recently been shown to 
directly mediate fast feedback inhibition by inhibition of 
Src phosphorylation in corticotrophs (210), but other 
work implicates the GC-induced secretion of annexin 
1/lipocortin1 from folliculostellate cells as a paracrine 

mechanism for inhibition of ACTH release (211). In 
addition, receptors for ACTH (MC2R) are present in 
normal corticotrophs, allowing ‘ultra-fast’ feedback 
regulation of the HPA axis (212). The receptor 
expression is lost in the corticotroph adenomas of 
patients with Cushing’s disease, which could be the 
potential mechanism of resistance to feedback of the 
HPA axis seen in these patients (212).  
  
Intermediate feedback occurs within 4 hours’ time 
frame and involves inhibition of CRH synthesis and 
release from CRH neurons, not affecting ACTH 
synthesis (209). However, it is thought that this is a 
relatively minor contributor to negative feedback (73). 
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Slow feedback occurs over longer timeframes and 
involves inhibition of POMC transcription (209), via GR 
antagonism of Nur response element activation of 
POMC transcription by CRH. The molecular 
mechanism involves a GR-dependent recruitment of 
the histone deacetylase HDAC2 to a trans-repressor 
complex with Brg1, histone H4 deacetylation, and 
chromatin remodeling (213,214). 
 
There is evidence that ACTH can inhibit CRH 
synthesis in the context of elevated CRH levels due to 
Addison’s disease or hypopituitarism, although not in 
the context of normal human subjects (215). 
Immunohistochemical studies of the paraventricular 
nuclei in adrenalectomized or hypophysectomized rats 
show a reduction of CRH and AVP positive cells when 
these rats are given ACTH infusions (216). 
 
Glucocorticoids have also been shown to control the 
cell cycle in corticotrophs. This occurs via feedback 
repression of the positive cell-cycle regulators L-Myc, 
N-Myc, and E2F2, plus activation of the negative cell-
cycle regulators Gadd45b, GADD45g, and Cables1. In 
this way, glucocorticoids negatively regulate 
corticotroph proliferation, a key influence which 
appears to be lost in corticotroph adenomas (217). 
 
EATING 
 
Cortisol is well known to rise after eating (218,219). 
This rise is provoked by two mechanisms: (i) by direct 
stimulation of the HPA axis; and (ii) via regeneration of 
cortisone to cortisol by stimulation of 11β-
hydroxysteroid dehydrogenase type 1 (11βHSD1) 
(220). The postprandial rise in cortisol has been 
shown to be mediated via increased pituitary ACTH 
secretion, which is in turn is modulated by central 
stimulant alpha-1 adrenoreceptors (221). The cortisol 
response to food is also enhanced in obese subjects 
compared to normal BMI individuals (222).  
 

There also appear to be key differences between the 
effects of individual macronutrients, where 
carbohydrates lead to equal stimulation of the HPA 
axis and 11βHSD1, and where fat and protein led to 
greater stimulation of the HPA axis compared to 
11βHSD1. Direct intravenous infusion of 
macronutrients such as Intralipid and amino acids 
does not stimulate cortisol secretion (223,224). The 
most likely candidates for the factors that mediate 
stimulation of the HPA axis after eating are the gut 
hormones which are released in response to enteral 
nutrients. For example, glucagon-like peptide-17-36 
(GLP-17-36) has been shown to stimulate cortisol and 
ACTH secretion, suggesting a direct effect on the 
hypothalamus/pituitary (225-227). Gastric inhibitory 
peptide (GIP), however, has not been shown to 
stimulate cortisol secretion except in the special case 
of ectopic GIP receptors in bilateral adrenal 
hyperplasia, causing food-stimulated Cushing’s 
syndrome (228). 11�HSD1 activity appears to be 
inhibited by GIP (229), therefore suggesting the GIP is 
not a key player in mediating the post-prandial rise in 
cortisol. Although ghrelin has been shown to increase 
cortisol secretion when given in infusion (108-110), 
ghrelin is suppressed after eating, making it an 
unlikely mediator of the post-prandial cortisol 
response. 
 
AGING OF THE HPA AXIS 
 
Studies in humans and experimental animals have 
shown evidence that hyperactivity of the HPA axis 
contributes to neuronal and peripheral deterioration 
associated with aging (230,231). Hyperactivity of the 
HPA axis can be caused by stress and is necessary 
as part of physiological adaptation. However, there 
must be mechanisms to limit the response to stress, 
especially during chronic stress, in order to avoid the 
damaging effects of prolonged exposure to stress 
hormones such as CRH and corticosterone.  
 
High basal levels of glucocorticoids and loss of 
circadian rhythm have been associated with greater 
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cognitive decline at a given age (232). Aging is 
associated with high basal levels of circulating 
corticosteroids, although there is not always a 
correlation between plasma ACTH and corticosteroids 
(233-235). In addition, there is also an alteration to the 
circadian rhythm of the HPA axis, as demonstrated by 
studies using a feeding-associated circadian rhythm 
paradigm. It was found that it took 1 week for young 
rats and 3 weeks for older rats to entrain the secretion 
of corticosterone in response to a restricted feeding 
schedule where they were fed for 2 hours per day. 
After the rats were shifted to a different pattern of 
feeding, the entrained circadian rhythm of 
corticosterone secretion persisted much longer in 
young rats than in older rats. This suggests that the 
aged HPA axis appears to take longer to adjust to 
changes in circadian rhythm, but such adjustments do 
not ‘stick’ as well as compared to the younger HPA 
axis (236,237). 
 
When the expression of CRH in the SCN was 
examined using in situ hybridization, younger 3-4-
month-old Sprague-Dawley rats exposed to light from 
04.00h to 18.00h have a clear diurnal rhythm with 
higher expression seen in samples taken at 03.00h 
versus 23.00h. This rhythm was lost in older 17-20 
month old rats with equal expression seen in samples 
from 03.00h and 23.00h (174).  Fetal grafts containing 
the SCN have been shown to restore the circadian 
rhythm in old Sprague-Dawley rats, thereby 
suggesting that the altered diurnal variation of HPA 
axis probably involves alterations in the function of the 
suprachiasmatic nuclei (238).  
 
Aging is also associated with an increase in 
expression of 11�HSD1 both in brain and peripheral 
tissues (239,240). Such changes could conceivably 
expose tissues to elevated levels of glucocorticoids 
and contribute to the aging process. 
 
The effects of aging on CRH regulation and whether 
CRH influences the course of aging are still unclear. 
Studies have reported increased, unchanged, or 

reduced hypothalamic CRH release and expression 
during aging (232).  
 
GENDER DIFFERENCES IN HPA AXIS 
REGULATION 
 
Endogenous glucocorticoid responses to stress are 
significantly elevated (in an estrogen-dependent 
fashion) in females as compared with males (241-
244). This estrogen dependence is likely mediated 
through estrogen-response elements within the 
promoter regions of CRH (245). As previously noted, 
there is also a sexual differential in the relationship 
between AVP release and the ACTH/cortisol response 
during insulin tolerance testing where the serum levels 
of copeptin (as a marker of AVP release) positively 
correlate with ACTH/cortisol release in women but not 
men (72). However, the sexual dimorphism of the 
stress response is not seen with exercise-induced 
stress (246) nor acute psychological stress (247). 
 
PSYCHONEUROENDOCRINOLOGY OF HPA 
 
The link between the HPA axis and 
psychophysiopathology has long been speculated 
(248). Neuropsychological disturbances are well 
observed in humans and study models with abnormal 
or aberrant HPA axis.  
 
Depression is associated with increased inflammation 
and given that HPA axis is strictly implicated in 
inflammation, it is hypothesized that alteration in HPA 
axis is associated with increase in pro-inflammatory 
cytokines causing depression, at least with a subgroup 
of individuals with depression (249). In depression, it 
is hypothesized that the regulation of ACTH and 
cortisol secretory activity are altered, along with 
impaired corticosteroid receptor signaling (250,251). 
Dysregulation of the HPA axis contributes to 
suppression of transcription of the brain-derived 
neurotrophic factor (BDNF) gene, thereby reducing 
the synthesis and secretion of BDNF protein, a nerve 
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growth factor family (252). This leads to 
neurodegenerative changes, most prominently in 
hippocampus, observed in depression. Chronic 
excess of cortisol in the brain may also lead to 
serotonin deficiency due to decreased availability of 
tryptophan, the substrate for serotonin production, and 
reduction of density and reactivity of serotonin 
receptors (252). The use of antidepressants targeting 
this aspect of neurotransmission has shown to 
normalize the activity of HPA axis, decreasing the 
levels of CRH and consequently also ACTH and 
cortisol (252).  
 
Some depressed patients were also reported to have 
enlarged adrenal glands (253,254) and impaired 
negative feedback with the hypercortisolemia, thereby 
suggesting that the level of impairment is at the 
glucocorticoid receptor-dependent negative feedback, 
either centrally or at the level of pituitary (255,256). 
However, when a study looking at 24-hour automated 
blood cortisol sampling study in depressed 
premenopausal women was conducted, it found only 
6 patients (24%) of a cohort of 25 to have 
hypercortisolemia (257). This suggests that not all 
depressed patients will have hypercortisolemia as the 
main feature of dysregulation of HPA axis. The 
impairment of the negative feedback was 
hypothesized to be due to the diminished sensitivity of 
the glucocorticoid receptors (the ‘glucocorticoid 
resistance’ theory) secondary to reduced receptor 
function and expression, shown in large number of 
experimental, biological and molecular studies (258).  
 
In bipolar disorder, an increase in cortisol secretion 
may be seen in the manic phase (259). Interestingly, 
a weaker cortisol awakening response is observed in 
patients with depression, mania and partial remission 
against those of healthy control subjects (260), 
thereby indicating dysregulation of HPA axis in bipolar 
disorder subjects.  
 
In schizophrenia, individuals who developed or at risk 
of developing psychosis have been observed to have 

elevated levels of cortisol measured upon waking up 
(261,262). The disturbance is more pronounced in 
individuals not treated with antipsychotic medications. 
Elevated cortisol levels appear to be correlated with 
the risk of a first psychotic episode (263), but symptom 
severity is only correlated with cortisol levels during 
the initial phase of psychosis (264-266).   
 
REGULATION OF GH RELEASE 
 
SOMATOTROPH DEVELOPMENT AND 
DIFFERENTIATION 
 
Somatotrophs make up approximately 50% of the cell 
population of the anterior pituitary and generally are 
concentrated in the lateral wings of the pituitary gland. 
These cells are characteristically acidophilic, 
polyhedral and immunopositive for GH and Pit-1. A 
smaller number of such cells are mammo-
somatotrophs, i.e. immunopositive for GH and 
prolactin (267). 
 
During the process of cell differentiation in the 
Rathke’s pouch primordium, a cascade of transcription 
factors is activated to specify anterior pituitary cell 
types. The two factors particularly involved in 
differentiation of the lactotroph, somatotroph, and 
thyrotroph lineages are Prop-1 (Prophet of Pit-1) and 
Pit-1, also known as GHF-1 and Pou1f1. Prop-1 is a 
paired-like homeodomain transcription factor; 
mutations in this gene cause combined GH, prolactin, 
and TSH deficiency. Mutations of Prop-1 will also give 
abnormalities of gonadotroph function and, 
occasionally, corticotroph reserve. Interestingly, these 
deficiencies are often progressive over time. Pit-1 is 
part of the POU homeodomain family of transcription 
factors that includes unc-86, Oct-1, and Oct-2 (268). 
Pit-1 is a key transcription factor that activates GH 
gene transcription in the somatotroph (vide infra).  
 
The transcription factor Foxo1 (forkhead box 
transcription factor) is expressed in 40% of 
somatotrophs. Foxo1 is involved in the development 
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of various other tissues slow-twitch muscle fibers, 
bone and pancreas, and a global knockout is lethal. A 
pituitary-specific knockout of Foxo1 causes a delay in 
the terminal differentiation of somatotrophs but does 
not affect commitment of pituitary progenitor cells to 
the somatotroph lineage (269). Foxo1 exerts its effect 
via stimulation of NeuroD4 expression which is also 
important to the terminal differentiation of 
somatotrophs (270).  
 

Growth Hormone (GH) 
 
GH GENOMIC LOCUS 
 
Human GH was first isolated in 1956 (271) and the 
structure of the peptide was elucidated fifteen years 
later (272). Human GH is a 191 amino acids single 
chain peptide with two disulphide bonds and molecular 
weight of 22,000 daltons. The GH locus, a 66 kb region 
of DNA, is located on chromosome 17q22-q24 and 
consists of 5 homologous genes, which appear to 
have been duplicated from an ancestral GH-like gene 
(Table 1) (273,274).

 
 

Table 1. The Five Genes in the GH Locus 
Gene Product Variant(s) Expressed in References 
hGH-N 
or GH1  

Normal GH 2 alternatively spliced 
variants (97): 
22 kDa (full-length 
191 aa). 
20 kDa (lacking 
residues 32-46) 

Anterior pituitary (275) 

hGH-V 
or GH2  

Variant GH 
detectable in 
pregnancy from mid-
term to delivery 
(276,277) 

20 kDa Placental 
syncytiotrophoblast 
cells 

(278) 

CSH-1, 
CSH-2  

Chorionic 
somatotropin/human 
placental lactogen 

22 kDa Placental 
syncytiotrophoblast 
cells 

(279,280) 

CSH-like 
gene 
CSHL-1  

Non-functional 
proteins 

Many alternatively 
spliced variants 

 (281) 

 
STRUCTURE OF THE GH PROMOTER 
 
Because of their origin from an ancestral GH-like 
gene, all five genes in the GH genomic locus share 
95% sequence identity including their promoters 
(282): proximal elements in the promoter bind Pit-

1/GHF-1 (283-286). Pit-1 plays a central role in 
controlling the expression of hGH-NN gene. 
Inactivation or lack of functional Pit-1 expression in 
both mice and human inhibits the differentiation and 
proliferation of the pituitary cells (287). Although Pit-1 
is necessary for transcription of transfected GH1 
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genes in rat pituitary cells, it is not sufficient (288). 
Other transcription factors such as Sp1, CREB, and 
the thyroid hormone receptor are involved 
(285,289,290).  
 
A placenta-specific enhancer found downstream of the 
CSH genes (291) as well as pituitary-specific 
repressor sequences found upstream of GH2, CSH-1 
and -2, and CSHL-1  may serve to limit transcription of 
these particular genes to the placenta (292). 
 
A locus control region consisting of two DNase-I 
hypersensitive regions (HS), specifically HG-I site, 
14.5 and 30 kb upstream of GH1 appears to be 
required for pituitary-specific GH1 expression (293). 
This region, which also binds Pit-1 (294), activates 
histone acetyltransferase, which controls chromatin 
structure and the accessibility of the GH locus to 
transcription factors (295,296). The acetylated histone 
domain potentiates GH transcription and, more 
recently, HS-I was also shown to be crucial for 
establishing a domain of non-coding polymerase II 
transcription necessary for gene activation (297). 
 
Pit-1 is mainly expressed in the pituitary 
somatotrophs, but it has also notably been 
demonstrated to be expressed in extrapituitary 
tissues. Pit-1 regulates local GH expression in the 
mammary gland and may be involved in mammary 
development and possibly the pathogenesis of breast 
carcinoma (298).  
 
GROWTH HORMONE STRUCTURE 
 
This is a 191 amino acid single chain polypeptide 
hormone that occurs in various modified forms in the 
circulation. During spontaneous pulses of secretion, 
the majority full-length isoform of 22 kDa makes up 
73%, the alternatively spliced 20 kDa isoform 
contributes 16%, while the ‘acidic’ desamido and N-
alpha acylated isoforms make up 10%. During basal 
secretion between pulses other forms (30 kDa, 16 kDa 

and 12 kDa) can also be identified which consist of 
immunoreactive fragments of GH (299-301). 
 
Higher molecular weight forms of GH exist in the 
circulation, representing GH bound to growth hormone 
binding proteins (GHBP) (302). The high-affinity 
GHBP consists of the extracellular domain of the 
hepatic GH receptor, and this binds the 22 kDa GH 
isoform preferentially (303). This high-affinity GHBP is 
released into circulation by proteolytic processing of 
the GH receptor by the metalloprotease TACE/ADAM-
17 (304). The low-affinity GHBP binds the 20 kDa 
isoform preferentially (305). Binding of GH to GHBP 
prolongs the circulation time of GH as the complex is 
not filtered by the glomeruli (300). GH/GHBP 
interactions may also compete for GH binding to its 
surface receptors (306). 
 
GH is also expressed in other areas of the brain, such 
as the cortex, hippocampus, cortex, caudate nucleus, 
and retinal areas (307), as is the GH receptor, IGF-1, 
and the IGF-1 receptor, where it is thought that these 
mediate neuroprotective and regenerative functions 
(308). 
  
HYPOPHYSIOTROPIC HORMONES AFFECTING 
GH RELEASE 
 
GHRH 
 
GHRH was originally isolated from a pancreatic tumor 
taken from a patient that presented with acromegaly 
and somatotroph hyperplasia (309). GHRH is derived 
from a 108 amino acid prepro-hormone to give GHRH 
(1-40) and (1-44) (Figure 6), which are both found in 
the human hypothalamus (310,311). The C-terminal 
30-44 residues appear to be dispensable, as residues 
1-29 show full bioactivity. GHRH binds to a seven-
transmembrane domain G-protein coupled receptor 
that activates adenylate cyclase (312), which 
stimulates transcription of the GH gene as well as 
release of GH from intracellular pools (313,314). No 
other hormone is released by GHRH, although GHRH 
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has homology to other neuropeptides such as PHI, 
glucagon, secretin and GIP (315). 
 

 
Figure 6. Hypophysiotrophic hormones influencing GH release. The pathway of GPR101 leading to GH 
release is currently unclear therefore not shown on this figure. 
 
Somatostatin  
 
Somatostatin (a.k.a. somatotropin release inhibitory 
factor or SRIF) is derived from a 116 amino acid 
prohormone to give rise to two principal forms, 
somatostatin-28 and -14 (316). Both of these are 
cyclic peptides due to an intramolecular disulphide 
bond (Figure 6). Somatostatin has multiple effects on 
anterior pituitary as well as pancreatic, liver and 
gastrointestinal function: 
 
• It inhibits GH secretion directly from 

somatotrophs (317,318) and antagonizes the GH 
secretagogue activity of ghrelin (319). 

• It inhibits GH secretion indirectly via antagonizing 
GHRH secretion. 

• It inhibits GH secretion indirectly via inhibiting the 
secretion of ghrelin from the stomach (320-322). 

• It inhibits secretion of TSH and TRH stimulation 
of TSH secretion from the pituitary (323,324). 

• It inhibits the secretion of CCK, glucagon, gastrin, 
secretin, GIP, insulin and VIP from the pancreas 
(325). 

 

Somatostatin binds to specific seven-transmembrane 
domain G-protein coupled receptors (SSTRs), of 
which there are at least 5 subtypes. SSTRs 2 and 5 
are the most abundant in the pituitary (326). An 
immunohistochemical study on fetal pituitaries has 
shown that SSTR 2 is present from 13 weeks 
gestation, mainly on thyrotrophs and gonadotrophs. 
SSTR 5 is mainly found on somatotrophs and 
develops relatively late in gestation at 35-38 weeks of 
gestation, suggesting that SSTR 2 regulates TSH, LH 
and FSH whereas SSTR 5 regulates GH (327). The 
somatostatin receptors couple to various 2nd 
messenger systems such as adenylate cyclase, 
protein phosphatases, phospholipase C, cGMP 
dependent protein kinases, potassium, and calcium 
ion channels (328). 
 
Ghrelin 
 
Ghrelin is an orexigenic (appetite-stimulatory) peptide 
that was isolated from stomach and can stimulate the 
release of GH. It is derived from preproghrelin, a 117 
amino acid peptide, by cleavage and n-octanoylation 
at the third residue to give a 28 amino acid active 
peptide (Figure 3 and Figure 6). Ghrelin is the 
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endogenous ligand of the GH secretagogue receptor 
(GHS-R) 1a, another member of the seven-
transmembrane receptor family G-protein coupled to 
the phospholipase C-phosphoinositide pathway 
(329,330). This variant of GHS-R has been shown to 
transduce the GH-releasing effect of synthetic growth 
hormone secretagogues (GHSs) as well as ghrelin 
and also plays a role in neuroendocrine and appetite-
stimulating activities centrally. Both ghrelin and GHS-
R1a have corresponding widespread tissue 
expression (331). The other GHS-R variant, GHS-
R1b, is a 289 amino acid G-protein coupled receptor 
with five transmembrane domains. The biological 
function of GHS-R1b is unclear. It has widespread 
expression throughout the body (331) but does not 
bind to ghrelin or other GHSs. However, it was shown 
to have counter-regulatory attenuating role on GHS-
R1a signaling, possibly via the formation of 
heterodimers with GHS-R1a (332).  
 
The majority of circulating ghrelin exists as the des-
octanoylated (des-acyl) form: octanoylated ghrelin 
constitutes approximately 1.8% of the total amount of 
circulating ghrelin (333). Octanoylation appears to be 
essential for GH secretagogue activity, as des-acyl 
ghrelin is inactive for GH release (329). The enzyme 
that octanoylates ghrelin has recently been identified 
as ghrelin O-acyltransferase (GOAT) (334). GOAT is 
a porcupine-like enzyme belonging to the super-family 
of membrane-bound O-acyltransferase 4 (MBOAT4) 
and has widespread tissue expression corresponding 
to ghrelin (335). Historically, the earliest GH 
secretagogues discovered such as GHRP-1, GHRP-
2, GHRP-6, and hexarelin were synthetic and derived 
from the enkephalins (336). 
 
In the circulation, ghrelin appears to be bound to a 
subfraction of HDL particles containing clusterin and 
the A-esterase paraoxonase. It has been suggested 
that paraoxonase may be responsible for catalyzing 
the conversion of ghrelin to des-acyl ghrelin (337). 
However, inhibition of paraoxonase in human serum 
does not inhibit the de-acylation of ghrelin, and there 

is a negative correlation in these sera between the 
paraoxonase activity and ghrelin degradation. Instead, 
it is more likely that butyrylcholinesterase and other B-
esterases are responsible for this activity (338). 
 
Ghrelin is present in the arcuate nucleus of the 
hypothalamus and in the anterior pituitary (339). 
Immunofluorescence studies show that ghrelin is 
localized in somatotrophs, thyrotrophs, and 
lactotrophs, but not in corticotrophs or gonadotrophs, 
suggesting that ghrelin may be acting in a paracrine 
fashion in the anterior pituitary (340). It stimulates GH 
release in vitro directly from somatotrophs (329) and 
also when infused in vivo, although the latter action 
appears to require the participation of an intact GHRH 
system (319). Ghrelin stimulates GH secretion in a 
synergistic fashion when co-infused with GHRH (110). 
Both GHS and ghrelin have been shown to stimulate 
the release of GH in a dose-related pattern which is 
more marked in humans than in animals (341,342).  
 
Besides its GH releasing activity, ghrelin has 
orexigenic activity (343,344), and stimulates insulin 
secretion (345), ACTH and prolactin release (346). 
Knocking out the preproghrelin gene in mice does not 
seem to affect their size, growth rate, food intake, body 
composition, and reproduction, indicating that 
proghrelin products (acyl- or desacyl-ghrelin, 
obestatin) are not dominantly and critically involved in 
mouse viability, appetite regulation, and fertility (347), 
although subtle reductions in the amplitude of 
secretory GH peaks can be detected in these 
knockout mice during their youth: these differences 
recede with aging (348). Ghrelin null mice show an 
increased utilization of fat as an energy substrate 
when placed on a high-fat diet, which may indicate that 
ghrelin is involved in modulating the use of metabolic 
substrates (349). GHS-R knockout mice have the 
same food intake and body composition as their wild-
type littermates, although their body weight is 
decreased in comparison. However, treatment of 
GHS-R null mice with ghrelin does not stimulate GH 
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release or food intake, confirming that these properties 
of ghrelin are mediated through the GHS-R (350). 
 
Although it is clear that acyl-ghrelin activates GH 
secretion when injected into mice and men, the 
specific contribution of acyl-ghrelin to physiological 
pulsatile GH release is less clear. This question has 
been studied by knocking out GOAT: these mice 
showed an overall decline in the amount of GH release 
compared to age matched wild-type mice. The 
alteration of the GH release observed did not coincide 
with alterations in the pituitary GH content and GHRH, 
somatostatin, neuropeptide Y, or GHS-R mRNA 
expression. However, an increase in pulse number 
and greater irregularity of GH pulses was observed in 
these mice. Although other mutations that cause 
derangement of GH secretion have been previously 
associated with the ‘feminization’ of the expression of 
GH-dependent sexually divergent liver genes in male 
animals, there was no evidence of this in the Goat-/- 
mice. An increase in IGF-1 in the circulation, in the 
liver and also in the muscle was observed in the Goat-
/- mice, either as a result of the disordered GH pulse 
pattern, or because there was a failure of the elevated 
IGF-1 levels to feedback on GH release. Overall, the 
data suggest that acyl-ghrelin has a regulatory role in 
the patterning of GH secretion, but the absence of 
acyl-ghrelin does not fatally knock out GH production 
(351). 
 
To complicate things further, des-acyl ghrelin may 
have biological effects of its own. It has been shown 
to inhibit apoptosis and cell death in primary 
cardiomyocyte and endothelial cell cultures (352), to 
have varying effects on the proliferation of various 
prostate carcinoma cell lines (353), to inhibit 
isoproterenol-induced lipolysis in rat adipocyte 
cultures (354), and to induce hypotension and 
bradycardia when injected into the nucleus tractus 
solitarii of rats (355). More controversially, 
intracerebroventricular or peripherally administered 
des-acyl ghrelin causes a decrease in food 
consumption in fasted mice and inhibits gastric 

emptying. Des-acyl ghrelin overexpression in 
transgenic mice causes a decrease in body weight, 
food intake, fat pad mass weight, and decreased linear 
growth compared to normal littermates (356).  These 
observations were not replicated by other researchers, 
who found no effect of des-acyl ghrelin on feeding 
(357). The effects of des-acyl ghrelin appear not to be 
mediated via the type 1a or 1b GHS-R (352-354). The 
effects of peripherally administered des-acyl ghrelin 
on stomach motility can be inhibited by 
intracerebrovascular CRH receptor type 2 
antagonists, suggesting that CRH receptor type 2 is 
involved, but there is no direct evidence that des-acyl 
ghrelin binds this receptor (358) 
 
As noted above, the GH-stimulatory actions of ghrelin 
in vivo seem to require an intact GHRH system, as 
immunoneutralization of GHRH blocks ghrelin-
induced GH secretion (319). The actions of GH 
secretagogues are blocked by hypothalamo-pituitary 
disconnection, which suggests that in vivo ghrelin’s 
stimulatory actions are indirect and mediated by 
GHRH (359). However, GHRH cannot be the sole 
mediator of ghrelin’s actions as the GH response to 
ghrelin is greater than that to GHRH (360), and, as 
noted above, ghrelin synergistically potentiates GH 
release by a maximal dose of GHRH (110). There is 
no evidence to suggest that ghrelin decreases 
somatostatinergic tone as immunoneutralization of 
somatostatin does not block ghrelin’s ability to release 
GH (319). There may therefore be another mediator, 
the so-called ‘U’ factor, released by ghrelin, which 
causes GH secretion (361). 
 
Macimorelin (also known as Ghryelin) is an orally 
available ghrelin receptor (GHSR) agonist which is 
now validated for stimulation testing for GH reserve 
(362).  
 
LEAP2 
 
Liver-expressed antimicrobial peptide 2 (LEAP2) has 
recently been discovered as an endogenous 
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antagonist to GHSR (363). It is produced in the small 
intestines, mainly in the jejunum (363). Level of LEAP2 
declines with fasting, as opposed to the level of ghrelin 
which goes up (363,364). In addition, the expression 
of LEAP2 is significantly upregulated following 
bariatric surgery, which is currently the most effective 
treatment for obesity (363). In vivo studies have shown 
that LEAP2 is capable of inhibiting the effects of 
ghrelin on GH secretion and food intake (363). LEAP2 
is also shown to bind to GHSR in a non-competitive 
manner to ghrelin, thereby suggesting the presence of 
an allosteric site on the receptor (363).  
 
Obestatin 
 
As mentioned earlier, the effects of obestatin on 
pituitary hormones release remain controversial. Initial 
study has shown that intravenous or 
intracerebrovascular treatment of obestatin did not 
affect the release of growth hormone in male rats 
(116). However, a more recent study has shown that 
obestatin treatment inhibits both basal and ghrelin-
induced GH release and expression, both in vitro and 
in vivo in non-human primates and in mice (119). This 
inhibitory effect is mediated by the adenylyl-cyclase 
and MAPK pathways. Obestatin treatment causes a 
reduction in Pit-1 and GHRH-R mRNA levels in the 
pituitary as well as a decrease in hypothalamic GHRH 
and ghrelin expression. Obestatin also reduces the 
expression of pituitary somatostatin receptors, namely 
SSTR subtypes 1 and 2 (119).   
 
OTHER INFLUENCES ON GROWTH HORMONE 
RELEASE 
 
Glucocorticoids and Sex Hormones 
 
Glucocorticoid treatment has a biphasic effect on GH 
secretion: an initial acute stimulation in 3 hours, 
followed by suppression within 12 hours (365,366). 
The latter is the clinically important effect, as excess 
endogenous and exogenous glucocorticoids are well 
known to suppress growth in children (367). The 

inhibitory effect of glucocorticoids on GH release is 
possibly mediated by increase in expression of 
somatostatin (368).  
 
Sex hormones are also involved in regulating GH 
release particularly during puberty and also later in life. 
They affect GH release by acting at hypothalamic, 
pituitary, and peripheral levels. Both estrogen and 
testosterone increase GH secretion in humans by 
amplifying secretory burst mass and reduce the 
orderliness of GH secretion (369). Estrogen affects 
GH secretion mainly by interacting with the estrogen 
receptor-alpha expressed in the GHRH neurons and 
in the GH-secreting pituitary cells. The stimulatory 
effects of estrogen on GH secretion are possibly 
mediated by the release of GHRH and/or by 
enhancing the sensitivity to ghrelin released from the 
hypothalamus (370).  Estrogen increases the 
irregularity in pulsatility and lowers total and free IGF-
1. Although estrogen increases the secretion of GH, it 
is also known to counter-regulate itself by reducing GH 
sensitivity in the liver and other peripheral organs, 
hence decreasing the secretion of IGF-1. The 
mechanism of this effect is via upregulating the SOCS-
2 protein which in turn inhibits the JAK1-STAT5 signal 
transduction pathway of the GHR (371). GH deficient 
patients started on estrogen therapy therefore require 
a higher dose of GH replacement therapy to achieve a 
particular target IGF-1 level (372). The route of 
estrogen replacement is an important influence on GH 
requirement and those on oral estrogen are clearly 
more GH resistant than women using transdermal 
preparations (373,374). Testosterone, on the other 
hand, increases basal GH secretion and IGF-1 
concentrations, thus relieving the negative feedback 
on GH secretion (369).  
 
Leptin 
 
Leptin is a 167 amino acid anorexigenic peptide 
primarily produced by white adipose tissue (375), 
regulates body fat mass (376) by feedback inhibition 
of the appetite centers of the hypothalamus (377). 
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Leptin and its receptor have been detected both by 
RT-PCR and immunohistochemistry in surgical 
pituitary adenoma specimens and in normal pituitary 
tissue (378,379). However, pituitary adenoma cells in 
culture do not secrete GH in response to leptin 
treatment (379,380). 
 
Leptin increases GH secretion in the short term, 
mainly via an increase in GHRH secretion and 
decrease in somatostatin expression. In the long term, 
it leads to a decrease in GH secretion, probably 
reducing GHRH sensitivity (381). In obese subjects, in 
whom which plasma leptin levels are persistently 
elevated, GH secretion and responsiveness are 
reduced in both animals and humans (382). However, 
if leptin-deficient obese subjects are studied in parallel 
with sex and BMI-matched leptin-replete obese 
subjects, it is found that their GH responses to GHRH 
and GHRP-6 are equally blunted suggesting that the 
leptin is not influential in mediating the 
hyposomatotropinism of obesity (383). 
 
IGSF1 
 
IGSF1 (X-linked immunoglobulin superfamily, 
member 1) gene encodes a transmembrane 
immunoglobulin superfamily glycoprotein that is highly 
expressed in the Rathke’s pouch, adult anterior 
pituitary cells, and the hypothalamus. Loss of function 
mutations in IGSF1 result in a variable spectrum of 
anterior pituitary dysfunction, including central 
hypothyroidism and hypoprolactinemia (384,385). 
More recently, effects of IGSF1 deficiency on 
somatroph function were characterized in adult males 
harboring hemizygous IGSF1 loss-of-function 
mutations and Igsf1-deficient mice (386). It was shown 
that IGFS1-deficient patients develop acromegaloid 
facial features accompanied by elevated IGF-1 
concentrations and GH profile. Similar biochemical 
profiles were also observed in the male Igsf1-deficient 
mice. The exact mechanism of how IGSF1 regulates 
or influence GH secretion has not been elucidated.  
 

Kisspeptin 
 
Kisspeptin is a peptide hormone that binds to the G-
protein coupled receptor GPR54. Although it was 
originally characterized as a ‘metastasis suppressor’ 
gene, its most well-characterized role is in stimulating 
the secretion of GnRH from GnRH neurons, in turn 
leading to gonadotrophin production from pituitary 
gonadotrophs. In addition to this, kisspeptin stimulates 
GH release from somatotrophs (387,388). These 
positive effects of kisspeptin are seen when given in 
vivo to cows or sheep (389), but so far have not been 
seen when given intravenously in small studies in 
human volunteers (390), although this may be 
because the GH stimulatory effects are only observed 
with central administration. 
 
Catecholamines 
 
In general, alpha-adrenergic pathways stimulate GH 
secretion, by stimulation of GHRH release and 
inhibition of somatostatinergic tone, while beta-
adrenergic pathways inhibit secretion by increasing 
somatostatin release (391,392). The alpha2-
adrenoceptor agonist clonidine can therefore be used 
as a provocative test of GH secretion (393,394) 
although clinical experience suggests that this is an 
unreliable stimulatory test for GH secretion in practice. 
L-dopa stimulates GH secretion; however, this action 
does not appear to be mediated via dopamine 
receptors as specific blockade of these receptors with 
pimozide does not alter the GH response to L-dopa 
(395). Instead, L-dopa’s effects appear to depend on 
conversion to noradrenaline or adrenaline, as alpha-
adrenoceptor blockade with phentolamine disrupts the 
GH response to L-dopa (396). 
 
Acetylcholine 
 
Muscarinic pathways are known to stimulate GH 
secretion, probably by modulating somatostatinergic 
tone (397). Pyridostigmine, an indirect agonist which 
blocks acetylcholinesterase, increases the 24 hour 
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secretion of GH by selectively increasing GH pulse 
mass (398). On the other hand, the muscarinic 
antagonist atropine is able to blunt the GH release 
associated with slow wave sleep (399) and that 
associated with GHRH administration (400). Passive 
immunization with anti-somatostatin antibodies 
abolishes the pyridostigmine induced rise in GH in 
rats, but not immunization with anti-GHRH antibodies, 
supporting the central role of somatostatinergic tone in 
mediating this response (401).  
 
Dopamine 
 
Continuous infusion of dopamine into normal healthy 
men leads to an increase in mean GH secretion 
comparable to that observed with GHRH. When given 
together, dopamine and GHRH have additive effects 
on GH secretion, and similarly the dopamine agonist 
bromocriptine augments the effects of GHRH (402).  
 
Endogenous Opioids 
 
Endorphins and enkephalins are able to stimulate GH 
secretion in man (403), and blockade with opiate 
antagonists can attenuate the GH response to 
exercise (404). Passive immunization against GHRH 
in rats inhibits GH release in response to an 
enkephalin analogue, which argues for stimulation of 
GHRH in response to these compounds (405). In 
keeping with this, a recent study demonstrated close 
juxtapositions between the enkephalinergic/ 
endorphinergic/ dynorphinergic axonal varicosities 
and GHRH-immunoreactive perikarya in the human 
hypothalamus (406). Morphologically, the majority of 
contacts between the GHRH perikarya and 
endogenous opiates were enkephalinergic while only 
few dynorphin- and endorphin-GHRH interactions 
were detected. Enkephalinergic-GHRH interactions 
and fibers are known to be densely populated in the 
infundibular nucleus and anterior periventricular area, 
thereby suggesting that enkephalin regulates not only 
the activity of GHRH- but also somatostatin-
synthesizing neurons (407). The balance between the 

activation of GHRH and somatostatin neuronal 
systems may determine if enkephalin stimulates or 
inhibits or has no effect on pituitary GH secretion. 
Unfortunately, the study was unable to detect the 
presence of synapses between the enkephalinergic/ 
endorphinergic/ dynorphinergic and GHRH neurons 
because the immunocytochemistry was carried out 
under light microscope. Electron microscopy was not 
applied in the study due to the long post-mortem 
period. Nevertheless, these findings demonstrated the 
presence of intimate associations between the 
endogenous opioid and GHRH systems in the human 
hypothalamus, as well as indicated the significant 
differences between the regulatory roles of 
endogenous opioids on growth in humans. 
 
Stimulation of GHRH by endorphins and enkephalins 
cannot be the only mechanism increasing GH release, 
however, as the met-enkephalin analogue DAMME is 
able to increase GH release over and above the levels 
released during maximal stimulation by a GHRH 
analogue (408). It is possible that the actions of 
endogenous opioids occur via an interaction with the 
GHS-R, as the original GH secretagogues 
characterized were derived from the enkephalins 
(336). 
 
Endocannabinoids 
 
As with ACTH/cortisol, the endocannabinoids may 
also influence the release of GH. Somatotroph cells 
bear the CB1 receptor (101). The administration of 
THC for 14 days suppresses GH secretion in response 
to hypoglycemia in healthy human subjects (104). 
Oddly enough, THC and anandamide appear to have 
opposing effects on GH levels in ovariectomized rats: 
THC increases and anandamide decreases GH 
secretion in this context (409). However, the treatment 
of anterior pituitary cells in primary culture with THC 
does not seem to influence the release of GH and 
prolactin to GHRH and TRH, suggesting that the 
effects of THC are mediated via the hypothalamus and 
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not directly on the anterior pituitary (410), perhaps by 
stimulating somatostatin release (411). 
 
Ghrelin and the Endocannabinoid System 
 
Ghrelin and the endocannabinoid system interact in a 
bidirectional fashion. The intraperitoneal 
administration of cannabinoids results in increased 
plasma ghrelin levels and stomach ghrelin expression 
in rats (412) and CB1 receptor antagonism with 
rimonabant reduces ghrelin levels (413), suggesting 
that the orexigenic effects of cannabinoids may also 
be connected to an increase in ghrelin secretion from 
the gastric X/A-like cells. The effects of ghrelin on 
appetite were also abolished in CB1 knockout or in the 
presence of the CB1 antagonist rimonabant (414-
416). In addition, the effects of cannabinoids are also 
abolished in the absence of the ghrelin receptor GHS-
R1a (417). These findings confirm that both ghrelin 
and cannabinoid signaling pathways have to intact to 
mediate the effects of these two systems on appetite. 
Interestingly, in vivo and in vitro GH release is intact in 
response to ghrelin in CB1-knockout animals (415). 
These findings are intriguing because they suggest 
that the effects of ghrelin on GH release are somehow 
modulated differently at the receptor-binding stage of 
the pathway compared to its orexigenic and metabolic 
effects. Moreover, it has also been proposed that the 
bidirectional relationship of the ghrelin and 
endocannabinoid system might be potentially 
mediated by the interaction (e.g. heterodimerization) 
between GHS-R1a and CB1 receptors (417). 
However, further molecular and functional studies are 
needed to elucidate the exact mechanism of 
interaction between these two systems. 
 
Free Fatty Acids 
 
The negative feedback regulation of plasma free fatty 
acids on growth hormone secretion has long been 
studied (418). Low free fatty acids have been shown 
to stimulate GH release, although there is a lag period 
between these two phenomena. Similarly, high 

plasma levels of free fatty acids have been shown to 
stimulate splanchnic somatostatin, thereby affecting 
GH secretion (419). Studies on both hypothalamic and 
cortical cell cultures have shown marked decrease in 
somatostatin mRNA levels when both the neuronal 
cells are treated with free fatty acids, thereby 
indicating the possible role for free fatty acids in the 
regulation of the GH secretion centrally (420).   
 
Other Neuropeptides and Factors Affecting GH 
Secretion 
 
Many neuropeptides, including the ones in the 
following paragraphs, have been shown to influence 
GH secretion in various contexts. For the most part, 
however, their physiological role in man is not well 
characterized. 
 
Infusion of galanin, a 29 amino acid peptide originally 
isolated from the small intestine, causes stimulation of 
GH secretion when infused alone and also enhances 
GHRH-stimulated GH secretion (421). 
 
Calcitonin, the 32 amino acid peptide secreted from 
the C cells of the thyroid gland, appears to inhibit the 
stimulated secretion of GH by GHRH, arginine, and 
insulin-induced hypoglycemia (422,423). 
 
Neuropeptide Y (NPY) is an orexigenic peptide that 
has been shown to inhibit GH secretion in rats (424-
426), from human somatotroph tumor cells in culture 
(427), and from rat hypothalamic explants (428). 
When infused into patients with prolactin-secreting 
pituitary adenomas, 9 out of 15 patients showed a 
paradoxical rise in GH levels (429). However, when 
infused into healthy young men overnight, NPY did not 
have any significant effect on GH secretion (430). 
 
Pituitary adenylate cyclase-activating polypeptide 
(PACAP) is a hypothalamic C-terminally amidated 38 
residue peptide hormone originally characterized on 
the basis of its ability to stimulate cAMP accumulation 
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from anterior pituitary cells (431). In rats, PACAP 
stimulates GH release from pituitary cell lines and also 
when infused in vivo (432-434). When infused into 
human volunteers, however, GH levels do not appear 
to be affected (435). 
 
Klotho, a transmembrane protein that is classically 
known for its ‘co-receptor’ activity with fibroblast 
growth hormone receptors, has recently been 
characterized as a possible secretagogue for GH. 
Although it is usually attached to membranes, the 
extracellular region can be shed from the cell surface, 
and there is some evidence for endocrine activity. 
Klotho knockout mice exhibit reduced growth in the 
context of a ‘early aging’ phenotype, and 
histopathological examination of their somatotrophs 
demonstrate reduced numbers of secretory granules. 
Klotho treatment of somatotrophs in vitro has been 
demonstrated to increase GH secretion, but at present 
its physiological role is yet to be fully elucidated (436). 
 
GPR101, an orphan GPCR that is constitutively 
coupled to Gs, has been shown to induce GH secretion 
through the activation of protein kinase A and protein 
kinase C in the Gs and Gq/11 pathways (437). 
Transgenic mice with overexpression of pituitary-
specific Gpr101 develops gigantism phenotype and 
has hypersecretion of GH, in the absence of pituitary 
hyperplasia or tumorigenesis, thereby indicating that 
the role of Gpr101 in the pituitary enhances secretion 
rather than enhancing proliferation (437). In humans, 
duplication of the GPR101 gene and thus, 
overexpression of GPR101, leads to a severe form of 
pituitary gigantism known as X-linked acrogigantism 
(X-LAG) (438-441). X-LAG is characterized by infant-
onset somatotroph tumors or hyperplasia with high 
levels of GH and in most cases prolactin as well. 
 
Nesfatins, and nesfatin-like-peptides, are 
hypothalamic and brainstem peptides speculated to 

be involved in energy homeostasis (442). They have 
been shown to inhibit GH release in mammalian 
somatotroph cell lines (443). Both of these peptides 
bind to the membrane of the GH3 cells, thereby 
indicating the possibility of a GPCR-mediated action 
(443). Interestingly, their effects on GH synthesis 
seem to be concentration-dependent, as low and high 
concentrations of nesfatins downregulate the 
expression of GH mRNA, while medium 
concentrations of nesfatins does not produce this 
effect (443). Their physiological significance in 
humans has not yet been established. 
 
  
FEEDBACK LOOPS OF GH SECRETION 
 
Multiple negative feedback loops exist to autoregulate 
the GH axis (Figure 7). 
 
• Somatostatin auto-inhibits its own secretion 

(444). 
• GHRH auto-inhibits its own secretion by 

stimulating somatostatin release (445). 
• GH auto-regulates its own secretion in short term 

by stimulating somatostatin release and inhibiting 
GHRH-stimulated GH release (446-448). There is 
also a negative feedback on stomach ghrelin 
release by GH (449). More recently, it is 
demonstrated that in long-term feedback 
situation, the inhibition of GH release is most 
likely due to feedback inhibition by IGF-1 (450).   

• IGF-1, whose production is stimulated by GH, 
inhibits GH release in a biphasic manner: (1) by 
stimulating hypothalamic somatostatin release 
early, and (2) by inhibiting GH release after 24 
hours, probably by inhibiting GH mRNA 
transcription (451,452). Interestingly, IGF-1 
infusion suppresses GHRH-induced GH release 
in males but not in females, suggesting a sexually 
dimorphic effect (450).

•  
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Figure 7. Regulation of GH. Green arrows denote stimulatory influences, red arrows denote inhibitory 
influences. 
 
PHYSIOLOGY OF GH SECRETION 
 
Pulsatility of GH Secretion  
 
The secretory pattern of GH was first elucidated in rats 
(453). Circulating GH levels are pulsatile, with high 
peaks separated by valleys where the GH is 
undetectable by conventional RIAs or IRMAs (Figure 
8). The recent development of sensitive 

chemiluminescent assays for GH with high frequency 
sampling and deconvolution analysis has allowed the 
detailed study of GH secretion. This shows that there 
are detectable levels of basal GH secretion in the 
‘valleys’ (454). On average, there are 10 pulses of GH 
secretion per day lasting a mean of 96.4 mins with 128 
mins between each pulse (455). The diurnal secretory 
pattern of GH in human is fully developed after 
puberty, demonstrating a major peak at late night/early 

http://www.endotext.org/


 
 

 
www.EndoText.org 30 

morning which is associated with NREM (slow wave)-
sleep, and a number of peaks during the light hours of 
the day, but with quite large individual difference (456).  
 

 
Figure 8. Pulsatility of circulating GH levels in adult men and women. 
 
There is a dynamic interplay of pulsatile GHRH and 
somatostatin secretion: 
• Via crosstalk: GHRH neurons receive inhibitory 

inputs from somatostatin neurons, whilst 

somatostatin neurons receive direct stimulatory 
inputs from GHRH neurons 
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• Via synergistic actions on somatotrophs: Pre-
exposure to somatostatin enhances GHRH-
stimulated secretion of GH (457). 

 
Further studies in animals have revealed that 
somatotropin releasing inhibiting factor regulates the 
magnitude of the troughs of GH as well as the 
amplitude of the peaks, whereas GHRH functions as 
the main regulator of the pulsatile pattern 
(450,458,459). Interestingly, continuous GHRH 
administration in human volunteers does not affect the 
pulsatility of GH secretion (460). Moreover, patients 
with an inactivating mutation of the GHRH receptor 
continue to show pulsatile GH secretion, suggesting 
that somatostatin pulsatility is sufficient to determine 
GH pulsatility (461). These observations suggest that 
the mechanisms involved in humans may differ from 
the animal models. 
 
GH and Sexual Dimorphism 
 
The technical developments in sensitive detection of 
GH and deconvolution analysis referred to above have 
elucidated differences in secretion between men and 
women. Women have higher mean GH levels 
throughout the day than men due to higher 
incremental and maximal GH peak amplitudes (Figure 
8), but show no significant difference in GH half-life, 
interpulse times, or pulse frequency (462). The higher 
basal GH levels may underlie the higher nadir GH 
levels seen in normal women after GH suppression 
with oral glucose (463). Recent evidence suggests 
that there are sexual differences in the expression of 
somatostatin and somatostatin receptor subtypes in 
the rat pituitary, which would clearly cause differences 
in the physiological regulation of GH release (464). 
 
Differences in GH secretion patterns between the 
sexes, with male ‘pulsatile’ secretion versus female 
‘continuous’ secretion, can cause different patterns of 
gene activation in target tissues, e.g. induction of 
linear growth patterns, gain of body weight, induction 

of liver enzymes and STAT 5b signaling pathway 
activity (465).  
 
GH and Aging 
 
GH and IGF-1 levels are known to decline 
continuously with age and to very low levels in those 
aged ≥60 years (466). This phenomenon, known as 
the ‘somatopause’, is also seen in other mammals and 
has led to the speculation that GH treatment can be a 
potent anti-aging therapy (467). Conversely, 
decreased GH/IGF-1 signaling has also been shown 
to extend longevity in a wide variety of species such 
as worms, fruit flies, mice, and yeast (468), thus 
raising the question of whether decreased activity of 
the GH/IGF-1 axis might be beneficial for human 
longevity. Somatopause might therefore be nature’s 
way of sustaining the aging individual (469).  
 
It is also suggested that the anorexia associated with 
aging is due to the decline in the level of acylated 
ghrelin in older adults. This is supported by a recent 
study that showed an age-dependent decline in both 
circulating acyl-ghrelin and growth hormone levels in 
older adults (aged 62-74 years, BMI range 20.9-29 
kg/m2) compared to young adults (aged 18-28 years, 
BMI range 20.6-26.2 kg/m2) (470). By estimating the 
correlations between amplitudes of individual GH 
secretory events and the average acyl-ghrelin 
concentration in the 60-minute interval preceding each 
GH burst, the ghrelin/GH association was more than 
3-fold lower in the older group compared with the 
young adults, thus suggesting that with normal aging, 
endogenous acyl-ghrelin levels are less tightly linked 
to GH regulation. In addition, ghrelin mimetics have 
also been shown to be a potential treatment for the 
musculoskeletal impairment associated with aging 
(471).  
 
Sleep 
 
The secretion rate of GH shows a circadian pattern, 
with peak rates measured during sleep. These are 
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approximately triple the daytime rate (472). GH 
secretion is especially associated with slow wave 
sleep (SWS – stages 3 and 4) (473). Deep sleep is 
also shown to enhance the activity of GH axis and has 
an inhibitory effect on cortisol levels (474). The decline 
in GH secretion during aging is paralleled by the 
decreasing proportion of time spent in SWS, although 
it is unclear which is cause and which is effect (475). 
In early data from a clinical trial, GH deficient patients 
have increased sleep fragmentation and decreased 
total sleep time, and it is conjectured that such 
alterations in sleep patterns may be responsible for 
excessive daytime sleepiness in such patients (476). 
 
Sleep deprivation, in the laboratory or due to travel 
causing ‘jet lag’, causes two alterations in the GH 
secretory pattern: the magnitude of secretory spikes is 
augmented: the return to pre-travel levels takes at 
least 11 days and is slower to recover after westward 
travel. The major pulse of GH secretion occurring in 
early sleep is also shifted to late sleep (477). It is also 
noted that the GH pulses are more equally distributed 
throughout 24 hours of sleep deprivation compared to 
a night-time sleep condition, with large individual 
pulses occurring during the day (478).  
 
Administration of a GHRH antagonist reduces 
nocturnal GH pulsatility by 75% (479). Normal 
subjects remain sensitive to GHRH boluses during the 
night, however, and the lowering of somatostatinergic 
tone during the night may be responsible for the 
increase in GH secretion rate (480). Recent work, 
however, has also demonstrated that ghrelin levels 
rise through the night in lean men (481). It is likely, 
therefore, that a combination of increased GHRH, 
decreased somatostatin and increased ghrelin levels 
underlie the circadian variation in GH secretion. 
 
Administration of GHRH augments increased 
nocturnal GH release and promotes SWS. 
Somatostatin does not change nocturnal GH release, 
and does not affect the proportion of SWS, but may 
increase rapid eye movement (REM) sleep density 

(482). Ghrelin has been shown to promote slow wave 
sleep at the expense of REM sleep, accompanied by 
an increase in GH and prolactin release when 
administered exogenously (483). 
 
Exercise 
 
Exercise is a powerful stimulus to secretion of GH 
(484), which occurs by about 15 min from the start of 
exercise (485). The kinetics may vary between 
subjects, an effect which is likely to be related to 
differences in age, sex and body composition (486). 
Ten minutes of high-intensity exercise is required to 
stimulate a significant rise in GH (487). Anaerobic 
exercise causes a larger release of GH than aerobic 
exercise of the same duration (488).  
 
Acetylcholine, adrenaline, noradrenaline, and 
endogenous opioids have been implicated in exercise-
induced GH release (397). However, ghrelin levels do 
not rise in acute exercise, indicating that ghrelin may 
not have a role to play in exercise-induced GH release 
(489). 
 
Recent evidence also indicates that exercise 
enhances SWS and thus leads to increase in GH 
release as well as brain-derived neutrotrophic factors 
(BDNF) and IGF-1 gene expression and protein levels 
(490,491). This is thought to improve learning and 
memory performance, especially in the elderly 
(490,491). Sleep-deprived individuals seem to have a 
larger exercise-induced GH response, although the 
reason behind this is still unclear (492).  
 
Hypoglycemia 
 
Insulin-induced hypoglycemia is another powerful 
stimulus to GH secretion (Figure 9) (493,494). The 
peak GH levels achieved during insulin stress testing 
correlate well with those achieved during slow wave 
sleep (495). The hypoglycemic response is mediated 
by alpha2-adrenergic receptors (496) to cause 
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inhibition of somatostatin release (397), although other 
evidence argues for a role of stimulated GHRH 
release, as a GHRH receptor antagonist significantly 
suppressed hypoglycemic GH release (497). Ghrelin 

is unlikely to be involved in the GH response to insulin-
induced hypoglycemia as circulating ghrelin levels are 
suppressed by the insulin bolus (498). 

 

 
Figure 9. Normal response of GH to insulin-induced hypoglycemia (≤2.2 mmol/l). Peak GH secreted is 
≥6.66 µg/L. 
 
Other Stressors 
 
Other physical stresses such as hypovolemic shock 
(499) and elective surgery (500) cause increased GH 
release; alpha-adrenergic dependent mechanisms are 
thought to underly this, as blockade with phentolamine 
inhibits the response (500). 
 
Hyperglycemia 
 
In contrast to hypoglycemia, ingestion of an oral 
glucose load causes an initial suppression of plasma 

GH levels for 1-3 hours (Figure 10), followed by a rise 
in GH concentrations at 3-5 hours (501). The initial 
suppression could be mediated by increased 
somatostatin release as pyridostigmine, a postulated 
inhibitor of somatostatin release, blocks this 
suppression (502). Circulating ghrelin levels also fall 
following ingestion of glucose (503). The GH response 
to ghrelin and GHRH infusions is blunted by oral 
glucose, an effect that is probably mediated by 
somatostatin (504). The later rise in GH levels is 
postulated to be due to a decline in somatostatinergic 
tone plus a reciprocal increase in GHRH, leading to a 
‘rebound’ rise (397). 
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Figure 10. GH response to 75g oral glucose in 8 non-acromegalic, non-diabetic women, given at time 0. 
Error bars denote SD. Note the high variability of the baseline GH level due to the pulsatile nature of GH 
secretion. GH levels fall to <0.4 µg/L at 120 minutes. 
 
In type I diabetes mellitus, GH dynamics are 
disordered, with elevated 24 hour release of GH (505). 
Deconvolution analysis shows that GH pulse 
frequencies and maximal amplitudes are increased. 
The latter is accounted for by higher ‘valley’ levels 
(506). Better glycemic control appears to normalize 
these disordered dynamics (507). The 
pathophysiological mechanism appears to involve 
reduced somatostatinergic tone (397). 
 
There is conflicting evidence for increased, 
decreased, or normal GH dynamics in type II 
diabetics. It is likely that this reflects two factors acting 
in opposite directions: (1) the confounding factor of 
obesity in these patients, which leads to hyposecretion 
of GH; and (2) the hyperglycemia, which leads to 
hypersecretion (397). 
 
Dietary Restriction and Fasting 
 
Dietary restriction and fasting lead to a significant 
increase in pituitary secretion of GH (508). A 5-day fast 
in normal healthy men resulted in a significant 

increase in the pulse frequency as well as pulse 
amplitude of GH release. This was coupled with a 
decrease in expression and secretion of IGF-1, which 
could explain the lack of feedback inhibitory effect on 
pituitary GH secretion in the fasting state.  
 
Obesity and Malnutrition 
 
Chronic malnutrition states such as marasmus and 
kwashiorkor cause a rise in GH levels (509). On the 
other hand, obesity is known to be associated with 
lower GH levels, partially due to decreased levels of 
GH binding protein and partially due to decreased 
frequency of GH pulses (510). Visceral adiposity, as 
assessed by CT scanning and dual energy X-ray 
absorptiometry, seems to be especially important, and 
correlates negatively with mean 24 hour GH 
concentrations (511). The mechanism of decreased 
GH release in obesity has been ascribed to increased 
somatostatinergic tone, as pyridostigmine is able to 
reverse this, to some extent, by suppressing 
somatostatin release (512-514). However, this cannot 
be the full explanation, as pyridostigmine is not able to 
fully reverse the hyposomatotropinism of obesity, even 
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when combined with GHRH and the GH secretagogue 
GHRP-6 (515). 
 
The fasting induced elevation in secretion of GH is 
blunted in obesity (516,517). Nevertheless, fasting in 
obese volunteers still induces an appreciable increase 
in GH secretion, with accompanying increase in 
lipolysis and insulin resistance. Co-administration of 
pegvisomant (a GH receptor antagonist) abrogated 
this phenomenon, suggesting that the elevation in GH 
during fasting is responsible for the insulin resistance 
induced by fasting (518). 
 
Although leptin has been shown to be influential on GH 
secretion in rats (519), this may not be so in humans. 
Leptin-deficient subjects have been compared with 
obese non-deficient control subjects in their GH 
responses when stimulated with GHRH plus GHRP-6. 
Both these groups have decreased GH peaks 
compared to non-obese control subjects, as expected. 
There was no significant difference in mean GH peaks 
between leptin-deficient and leptin-replete controls, 
suggesting that leptin does not play a significant role 
in the GH suppression seen in obese humans, and 
that the decreased GH secretion of obesity is 
mediated via other mechanisms (383). 
 
Another candidate for the mechanism linking obesity 
to GH secretion is ghrelin. Its levels correlate 
negatively with body fat content (520). A comparative 
study between 5 lean and 5 obese men employed 
rapid sampling and pulse analysis of ghrelin levels 
over 24 hours. Ghrelin levels increased at night in the 
lean controls but did not in the obese group (481). 
Weight loss caused circulating ghrelin levels to rise in 

two studies (521,522). Contradicting this, however, 
Lindeman and colleagues found that ghrelin levels 
paradoxically correlated positively with visceral fat 
area, in contrast with 24-hour GH secretion, which 
correlated negatively. Moreover, in their study, weight 
loss increased GH secretion but did not affect ghrelin 
levels (523). More recently, a study comparing 
subjects with central obesity only with subjects 
suffering from the metabolic syndrome showed 
changes in ghrelin levels not to be associated with 
central obesity per se but with other components of the 
metabolic syndrome (524). The response of GH 
secretion to exogenous ghrelin is significantly blunted 
in obese patients and this response is restored early 
on after Roux-en-Y gastric bypass (prior to any major 
weight loss), suggesting that there is an intrinsic 
resistance to ghrelin in obesity which is reversed with 
gastric bypass, and which is not linked to weight loss 
(525). Therefore, there does not appear to be a simple 
relationship where obesity-induced reduction in 
ghrelin levels leads to the reduced secretion of GH.  
 
Amino Acids 
 
GH release is stimulated by a protein meal (526). L-
arginine, an essential amino acid, can be used as a 
provocative test for GH secretion (527). Evidence that 
L-arginine acts through inhibition of somatostatin 
release includes the observation that L-arginine can 
still enhance the GH response to GHRH despite the 
use of maximal doses of GHRH (528). However, a 
specific GHRH antagonist blunted the GH response to 
L-arginine, an observation that supports the notion 
that L-arginine also acts through stimulation of GHRH 
secretion (497). Unlike oral glucose, L-arginine does 
not modify the GH response to ghrelin infusion (504). 
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