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ABSTRACT 
 
Type 1A diabetes (T1D) represents an autoimmune 
disorder that can affect individuals from within a year 
of birth until age 60. A number of genes strongly 
influence the development of disease, including genes 
found within the human lymphocyte antigen (HLA) 
complex. The role of non-HLA genes is being defined 
in recent studies, and we are beginning to identify 
pathways that lead to autoimmunity and eventually 
pancreatic islet cell destruction. Although genes can 
predispose one to type 1A diabetes, environmental 
factors may also play a significant role in the 
pathogenesis. These as-yet-undefined factors appear 
to have accelerated the onset and markedly increased 
the frequency of disease in many populations around 
the world over the last 30 years. The development of 
ever more sophisticated immunoassays to detect 
antibodies directed against pancreatic antigens have 
helped define the autoimmune nature of the disorder, 
but as importantly have also provided an opportunity 
to identify those individuals with prediabetes and to 
stratify their risk of developing overt hyperglycemia. 
Immunologic assays as well as intervention trials are 
allowing us to learn more about the immune pathways 
that are disordered and offer hope for future 
therapeutic approaches to prevent and reverse type 
1A diabetes. 
 
 

INTRODUCTION  
  
In the U.S. alone, more than one million people are 
living with type 1 diabetes (TID) and approximately 80 
people per day, or 30,000 individuals per year, are 
newly diagnosed (1, 2). Recent epidemiological 
studies demonstrate that the global T1D incidence is 
increasing at a rate of approximately 3-4% per year, 
notably among younger children (3, 4). Despite 
improvements in insulins, insulin delivery methods, 
and home glucose monitoring, the vast majority of 
those with T1D do not achieve recommended levels of 
glycemic control.  This is particularly true in childhood 
and adolescence, where a recent U.S. study reported 
mean HbA1c values exceeding 9.5%, and a high 
frequency of both DKA and severe hypoglycemia (5). 
In addition to the increased risk of morbidity and 
mortality, TID places significant emotional and 
financial burdens on individuals, families, and society. 
These realities highlight the need for both better TID 
therapies and the continued push towards the 
prevention of TID. In recent decades, research efforts 
have described the natural history of type 1 diabetes 
and expanded the ability to identify individuals at risk 
for the disease even before clinical onset, via the 
recognition of genetic markers or TID-specific 
autoantibodies. The increasing ability to identify the at-
risk population affords researchers the opportunity to 
intervene at progressively earlier stages in the 
disease.  With the understanding that established islet 
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autoimmunity, confirmed by the presence of multiple 
T1D autoantibodies, inevitably leads to clinical TID, 
investigative efforts are shifting towards the prevention 
or modification of autoimmunity.  Furthermore, with 
the mounting evidence that any amount of residual C-

peptide improves long term clinical outcomes in TID, 
some therapies aim to preserve remaining beta cell 
function in those with clinical disease. In this chapter, 
we review the epidemiology of TID and the genetic and 
environmental risk factors for T1D. 

  

 
  
EPIDEMIOLOGY OF DIABETES 
  
T1D, or autoimmune diabetes, represents 5-10% of 
diabetes, and like autoimmunity in general, TID is 
increasing worldwide. The increase likely is 
attributable to environmental factors or epigenetic 
changes, as genetic changes don’t occur rapidly 
enough to explain such a dramatic increase. The 
SEARCH for Diabetes in Youth Study is a multicenter 
observational study investigating trends in incidence 
and prevalence of diabetes in American youth < age 
20.  SEARCH data suggests that the prevalence of 
TID among non-Hispanic white youth is ~1/300 in the 
US by age 20 years (6). Between 2002 and 2009, the 
incidence of TID among non-Hispanic white youth < 
age 20 years increased by an average of 2.7% per 
year (7). Similarly, the EURODIAB study evaluated 
TID incidence trends in 17 European countries from 
1989-2003 in youth < age 15 years, and found an 
average annual incidence increase of 3.9%. This trend 
predicts a 70% increase in TID prevalence between 
2005-2020 among European youth < 15 years old (8) 
with the peak of diagnosis between ages 10-14 (9). 

While incidence and prevalence are well documented 
in children, TID occurs in adults as well, at a frequency 
that is less certain; estimates are that 25-50% of all 
TID cases are diagnosed in adulthood. The 
uncertainty likely is due to a less dramatic clinical 
presentation than is typically seen in children who 
present with TID. The incidence of TID varies 
tremendously by geographic location, with higher 
rates generally seen in countries located farther from 
the equator. Worldwide incidence data was reported 
in 2000 by the DIAMOND project (10), a WHO-
sponsored effort to address the public health 
implications of TID. The incidence of TID between 
1990 and 1994 in 50 countries is shown in Figure 1. 
Between 1990 and 1994, the incidence of TID in 
individuals aged 0-14 years in both Finland and 
Sardinia was 37/100,000 individuals, whereas the 
incidence in both China and Venezuela was 
0.1/100,000 individuals, a 350-fold difference. The 
increased incidence coupled with reduced early 
mortality has contributed to the increasing prevalence 
of disease.  
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Figure 1. Worldwide incidence of TID 1990-1994, used with permission from International Diabetes 
Federation. 
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WHAT IS THE RISK OF TYPE 1 DIABETES? 
  
As is true for Cindy, 85% of individuals who develop 
TID have no family history of TID; nonetheless, a 
family history of the disease does increase an 

individual’s relative risk.  The prevalence of TID in the 
US non-Hispanic white population by age 20 is ~0.3%, 
as compared with ~5% of those with a relative with 
TID, a 15-fold increase in relative risk.   This relative 
risk is depicted in Figure 2. 

  

 
Figure 2. Among 300 people without a family member with diabetes, 1 will have TID. Among 300 people 
with a family member with diabetes, 15 will have TID. 
  
The risk of TID among family members varies depending on who the affected family member is, as shown in 
Table 1.   
  

Table 1. Prevalence of TID in Individuals with a Family History of TID 
Relative with TID Prevalence at age 20 Reference 
Mother 2% (11, 12) 
Father 6% (11, 12) 
Non-twin sibling 6% (13) 
Dizygotic (fraternal) twin 10% (13, 14) 
Monozygotic (identical) twin >50% (15) 

  
The heritability pattern suggests that both genes and 
environment contribute to risk.  Curiously, the risk of 
TID in offspring is higher if the father has TID (~6%) 
as compared to if the mother has TID (~2%) (11, 12). 
Moreover, the risk to a dizygotic twin is slightly higher 
(~10%) than is the risk to a non-twin sibling with similar 
HLA risk genes (~6%) (13, 14) suggesting that the 

intrauterine environment and/or similar early life 
exposures may be important. Lastly, the risk to a 
monozygotic twin is upwards of ~50%; surprisingly the 
second twin’s diagnosis may occur many decades 
after the index twin, highlighting the complexities of 
gene and environmental interactions that underlie the 
disease (15). 
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THE NATURAL HISTORY TYPE 1 DIABETES 
  
It is now understood that TID is an immune-mediated 
disease that begins in the setting of genetic 
predisposition and then progresses along a 
predictable path: early islet autoimmunity (one 
autoantibody), established islet autoimmunity (two or 
more autoantibodies), abnormal glucose tolerance, 
clinical TID with some remaining beta cell function, 
and finally, little or no remaining beta cell function. This 
understanding comes from decades of effort by 
multiple investigators and from participation by 
thousands of patients with TID and their family 
members.  George Eisenbarth’s description of TID as 
a chronic autoimmune disease, manifested by 
autoimmunity and a gradual linear fall in beta cell 
function until there is insufficient beta cell mass to 
suppress symptomatic hyperglycemia, has served for 
decades as the TID natural history paradigm (16). The 

“Eisenbarth” model has undergone refinements in 
recent years; namely, although autoimmunity and beta 
cell dysfunction do appear prior to diagnosis, these 
changes are often step-wise and non-
linear.  Furthermore, beta cell destruction may not be 
absolute.  Nonetheless, the paradigm is largely correct 
and serves as the underlying rationale for TID trials.  
  
The long pre-symptomatic natural history of TID 
presents an opportunity to intervene earlier than is 
done currently. Diabetes-specific autoantibodies can 
appear many years before clinical diagnosis and may 
reliably be used to predict disease progression. In 
2015, JDRF, the Endocrine Society, and the American 
Diabetes Association proposed a new TID staging 
system which underscores that TID begins with islet 
autoimmunity rather than with symptomatic 
hyperglycemia (17). Stage 1 TID is defined as the 
presence of 2 or more autoantibodies with 
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normoglycemia; stage 2 TID is 2 or more 
autoantibodies, impaired glucose tolerance, and no 

symptoms; stage 3 TID is clinical disease. The staging 
system is depicted in figure 3.   

 

 
Figure 3. New staging classification of Type 1 diabetes. Stages of Type 1 Diabetes. Adapted from 
internet image. https://beyondtype1.org/clinical-trials-and-the-type-1-diabetes-cure/final-trialnet-stages-
of-diabetes-graph-2/ Used with permission. 
  
HOW TO DETERMINE RISK OF TID 
  
Risk of TID may be determined by the identification of 
autoantibodies, usually in those identified as having 
genetic risk through HLA testing or by family history. 
Autoantibodies are detectable years before the onset 
of clinical TID.  
  
Determining Risk: Genes 
  
With the knowledge that TID runs in families and with 
advances in technology, investigators have described 
the genetic risk of TID.  TID risk is strongly linked to 
HLA class II DR3 and DR4 haplotypes, with the 
highest risk in those with the DR3/DR4 genotype.  The 
importance of HLA genes to TID risk highlights the role 

of the adaptive immune system in the development of 
autoimmunity.  Newer studies have discovered 
multiple other genes that also contribute to TID risk 
(18). They are largely genes known also to impact 
immune function; however, their contribution is 
dwarfed by the impact of HLA genes. Interestingly, 
recent work suggests that HLA genes primarily 
contribute to development of autoantibodies, while 
non-HLA genes and environmental factors may be 
more important in the progression from autoantibodies 
to clinically overt disease (19, 20). The description of 
non-HLA risk genes (such as the genes for insulin, a 
major TID autoantigen) highlights other potential 
pathways to disease and potential therapies.  
Although the contribution of HLA class II risk genes 
overwhelms the contribution of non-HLA risk genes, 
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the HLA contribution may be decreasing as the overall 
incidence of TID increases.  This suggests that in a 
population with non-HLA genetic susceptibility, the 
environment may have become more conducive to the 
development of TID. This was reported in a 2004 
Lancet article by Gillespie, et al., in which the 
investigators compared the frequency of HLA class II 
haplotypes in a UK cohort of 194 individuals 

diagnosed with TID between 1922-1946 (the Golden 
Years cohort) to a cohort of 582 individuals diagnosed 
between 1985-2002 (the BOX cohort) (21). In this 
comparison, shown in Figure 4, 47% of individuals in 
the Golden Years cohort were positive for the highest 
risk genotype DR3-DQ2/DR4-DQ8, compared to 35% 
of individuals in the BOX cohort. 

  

 
Figure 4. Decreased contribution of high-risk HLA haplotypes over time. HLA class II haplotypes in 
Golden Years and BOX cohorts, adapted from Gillespie et.al Lancet 2004 (21). 
  
Determining Risk: Family History And Islet Cell 
Autoantibodies 
  
Natural history studies of relatives such as Diabetes 
Prevention Trial (DPT-1) and Diabetes TrialNet 
Pathway to Prevention have helped define the risk of 
TID in those with a family history of TID.  Since 2000, 
Diabetes TrialNet has screened over 200,000 relatives 
of people with TID, aiming to enroll at-risk individuals 
in prevention trials.  Among relatives of people with 
TID, ~5% will have at least one of five islet 
autoantibodies (22). TrialNet screens for islet cell 
antibodies (ICA), autoantibodies to insulin (IAA or 

mIAA), antibodies to a tyrosine phosphatase (IA-2; 
previously ICA512), antibodies to glutamic acid 
decarboxylase (GAD), and antibodies to a zinc 
transporter (ZnT8).  With each additional 
autoantibody, the risk of TID increases predictably. 
Unsurprisingly, those with islet autoimmunity and 
abnormal glucose tolerance are at an even further 
increased risk of symptomatic T1D. The TrialNet 
strategy to identify islet autoimmunity among relatives 
of individuals with TID is shown in Figure 5. There are 
many other screening efforts ongoing outside of 
TrialNet. (23-25) 
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Figure 5. Diabetes TrialNet process for identifying relatives with islet autoimmunity. 
  
Natural history studies have shown not only that islet 
autoimmunity predicts TID risk, but also that islet 
autoantibodies usually appear early in life; 64% of 
babies destined to develop T1D before puberty will 
have antibodies by age 2 and 95% by age 5 (26). 
Furthermore, the data from both prospective birth 
cohort studies (27) and cross-sectional studies (28-31) 
is remarkably consistent and suggests that the risk of 

progression from established autoimmunity to clinical 
TID is in the range of 40% after 5 years, 70% after 10 
years, and 85% after 15 years. This risk over time is 
depicted in Figure 6. The key understanding from 
natural history studies is that essentially all individuals 
with confirmed islet autoimmunity will eventually 
develop clinical T1D at a rate of 11% per year. 
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Figure 6. Established islet autoimmunity inevitably progresses to clinical T1D. Extrapolated data from 
multiple studies in genetically at-risk individuals; Ziegler et al. JAMA 2013; DPT-1 Study Group Diabetes 
1997; Sosenko et al. Diabetes Care 2014; Mahon et al. Pediatric Diabetes 2009. 
  
Identifying individuals with islet autoimmunity has two 
potential benefits; namely, the opportunity to monitor 
closely for disease progression, conferring a reduced 
risk of morbidity and mortality at the time of TID 
diagnosis, and the identification of individuals who are 
eligible for prevention trials.  It is perhaps 
underappreciated that there is potentially a direct 
clinical benefit to identifying those with islet 
autoimmunity.  Individuals with islet autoimmunity 

followed regularly until clinical diagnosis present with 
lower HbA1c and experience less DKA than those 
diagnosed in the community (Table 2) (32-36). For this 
reason, since 2009, the ADA has recommended that 
all individuals with a relative with T1D be counseled 
about the opportunity to be screened for diabetes 
autoantibodies in the context of a clinical research trial 
(37). 

  
 
 
 
 
 
 
 
 
 
 
 



 
 

 
www.EndoText.org 10 

Table 2.  Individuals Diagnosed with T1D While Enrolled in a Clinical Trial have Less 
Morbidity at the Time of Diagnosis. (32-36) 
  
STUDY 

HbA1c at time of TID 
diagnosis 

% with DKA at time of TID 
diagnosis 

  Enrolled in study Usual care Enrolled in study Usual care 
SEARCH       25.5% 
BABYDIAB 8.6% 11.0% 3.3% 29.1% 
DPT-1 6.4%   3.7%   
DAISY 7.2% 10.9% < 4%   
TEDDY < age 5     13.1%   
SEARCH < age 5       36.4% 
BABYDIAB < age 5       32.3% 

  
STRATEGIES TO BRING SCREENING FOR RISK 
TO CLINICAL PRACTICE 
  
Screening relatives does identify a population of those 
at risk for clinical T1D; however, at least 85% who get 
T1D have no relatives with disease.  Thus, to truly 
prevent all T1D, testing of the general population 
would have to occur. This could be done with current 
technology by testing all babies for genetic (HLA) risk 
at birth and then following with antibody testing. The 
Population Level Estimate of type 1 Diabetes risk 
Genes in children (PLEDGE) study enrolls newborns 
from the general population and offers one-time 
genetic testing and follow-up autoantibody testing at 2 
and 4 years of age (38). The study aims to 
demonstrate feasibility and to develop evidence to 
support eventual inclusion of a T1D screening 
program in standard primary care. 
  
Other studies, such as The Environmental 
Determinants of Diabetes in the Young (TEDDY) 
study, the Diabetes Autoimmunity Study in the Young 
(DAISY), and the Global Platform for the Prevention of 
Autoimmune Diabetes (GPPAD) are exploring similar 
methodologies to screen and monitor for risk (24, 39, 
40).  However, with an increasing number of 
individuals developing T1D even without the high-risk 
HLA types, such approaches may still miss some 
destined to develop disease.  

  
An alternative risk detection strategy for those without 
a family history may be to perform point-of-care 
antibody testing in a routine pediatric visit.  Since 
almost all who will develop diabetes before puberty will 
have antibodies by age 5; such testing could be done 
at age 4-5 and perhaps once again in the teenage 
years.  This method will still miss those who develop 
T1D before this age, but would likely be a cost-
effective approach to finding those at risk.  If these at-
risk subjects are monitored regularly until 
development of clinical disease they would benefit 
from reduced morbidity at time of diagnosis even if a 
prevention therapy were not yet available. 
  
There are many ongoing projects aimed at screening 
members of the general population for diabetes 
autoantibodies even without prior HLA testing (23, 25, 
41, 42). 
  
As risk-screening programs employ varying assays 
and recruit from different populations, interpretation 
and translation of results is unclear. It is not yet known 
whether those found to be autoantibody positive 
through one program will experience the same rates 
of T1D progression and/or benefit from the same 
therapies as individuals who have participated in other 
screening and intervention efforts. 
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Source: (37). 

 
PRENATAL INFLUENCES   
  
The prenatal environment can have profound effects 
on the developing fetus. With the recognition that 
antibodies often develop early in life and that 
essentially all those with established islet 
autoimmunity (two or more autoantibodies) will 
eventually develop TID, investigators have looked to 
the prenatal period to search for factors that could 
contribute to disease development in utero.  As shown 
in Table 3, decades of observational studies have 
yielded inconsistent results.  Yet this remains an 
important area of investigation and one that may lead 
to primary prevention strategies for T1D. The 

Environmental Determinants of Islet Autoimmunity 
(ENDIA) study is an ongoing prospective birth cohort 
study in Australia that enrolled infants and unborn 
infants of first degree relatives with T1D. Biologic 
samples including blood, stool, and saliva will be 
collected longitudinally for investigation of factors 
including viral exposures during pregnancy and early 
childhood, maternal and fetal microbiome, delivery 
method, maternal and early infant nutrition, pregnancy 
and early childhood body weight, and both innate and 
adaptive immune function. In 2018, the ENDIA study 
completed target enrollment of ~1500 subjects, who 
will be followed regularly until the development of islet 
autoimmunity (43). 
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Table 3.  Potential Prenatal Influences on TID Risk 
Pre-natal or intrauterine exposure Relative risk to offspring Reference 
Maternal age Inconsistent data (44-46) 
Birth weight > 2 SD above norm (~4000g) Inconsistent data (47-51) 
Birth weight < 2 SD below norm (~2500g) Inconsistent data (49-51) 
Birth order: second and later born Inconsistent data (46, 52, 53) 
Birth interval < 3 years Inconsistent data (46, 54) 
Caesarean delivery Inconsistent data (51, 55, 56) 
Pre-eclampsia Inconsistent data (51, 57) 
Pre-term delivery (<37 weeks gestation) Inconsistent data (51, 58) 
Maternal vitamin D supplementation Inconsistent data (59-62) 
Maternal antibiotic use No association (53, 63) 
maternal BMI/pregnancy weight gain No association (51, 64) 
Maternal omega 3 fatty acid supplementation No association (60, 65, 66) 

  

 
Source: (67). 
 

 
 
Investigators also have studied the early childhood 
period for clues to the causes of islet autoimmunity 
and TID; these have included both observational 
studies and randomized clinical trials. Such influences 
might be divided into early nutritional exposures and 
early microbial/infectious exposures, both of which 
can affect development of the normal immune system. 
  
The inconsistent findings relating to environmental 
factors reported from observational studies and 

clinical trials led to the design and implementation of a 
large international comprehensive evaluation of 
genetically at-risk babies using cutting edge 
technologies to study genetics, genomics (gene 
function), metabolomics, and the microbiome. The 
Environmental Determinants of Diabetes in the Young 
(TEDDY) is an international prospective birth cohort 
study that recruited almost 8,000 babies at increased 
risk for TID (based on HLA and family history) from 
Finland, Germany, Sweden, and the US from 2004-



 
 

 
www.EndoText.org 13 

2010.  Information on environmental exposures such 
as diet (including breastfeeding history), infections, 
vaccinations, and psychosocial stressors will be 
collected. Participants will be followed until the age of 
15 for the development of islet autoimmunity or TID. 
The wealth of data from this study will provide a 
foundation for future randomized clinical trials (24). 
One interesting finding reported in December 2019 is 
that there are subtle differences in the gut 
microbiome—such as, persistent stool enterovirus B 
species--in children who develop islet autoimmunity 
compared to children who do not develop 
autoimmunity (68). 
  
EARLY NUTRITIONAL EXPOSURES 
  
Breastfeeding 
  
The hypothesis that human breastmilk may protect 
against future TID development was presented as 
early as 1984 (69). Since then, there have been 
several prospective cohort studies to suggest that 
breastmilk lowers the risk of islet autoimmunity and 
TID, including the German BABYDIAB/BABYDIET 
study (70), the Colorado-based DAISY study (71), and 
the Norwegian MIDIA study (72), but others show no 
effect (73).  Although the data on whether breastmilk 
is protective against TID isn’t clear, it certainly isn’t 
harmful.  Given the well-established general benefits 
of breastfeeding, patients may safely be advised to 
follow the American Academy of Pediatrics’ guidelines 
related to infant feeding. The mechanism by which 
breastmilk may lower the risk of TID is uncertain, but 
one theory suggests that breastmilk has positive 
effects on the infant microbiome. The microbiome is 
discussed in greater detail below.   
  
Cow’s Milk And Bovine Insulin Exposure 
  
In contrast to considering breastfeeding as potentially 
beneficial in protecting against autoimmunity, it was 
hypothesized that early introduction of cow’s milk or 
cow protein might accelerate disease.  This concept 
was tested in the Trial to Reduce IDDM in the 
Genetically at Risk (TRIGR) which asked whether 

weaning to hydrolyzed casein (which is free of bovine 
proteins including insulin) formula (n=1081) instead of 
regular cow’s milk formula (n=1078) in genetically at-
risk infants could prevent or delay TID.  Though the 
TRIGR pilot study was suggestive of benefit, no 
benefit was seen in the fully powered study (74) 
(75). Similarly, The Finnish Dietary Intervention Trial 
for the Prevention of Type 1 Diabetes of (FINDIA) 
suggested that weaning to hydrolyzed cow’s milk 
formula was not effective in reducing the appearance 
of autoantibodies, though they did report that a 
patented cow’s milk formula specifically removing 
bovine insulin appeared to be beneficial in this pilot 
study (76).  While additional studies may be 
informative, current data does not support that 
weaning to hydrolyzed cow’s milk formula is protective 
against islet autoimmunity.  
  
Gluten Exposure 
  
Both BABYDIAB (77) and DAISY (78) were 
observational studies that suggested an association 
between introduction of gluten and islet 
autoimmunity.  However, these studies had different 
results as to the timing of gluten introduction. Similarly, 
no effect was found in the BABYDIET study; a 
randomized controlled trial that asked whether 
delayed introduction of gluten to 6 vs 12 months would 
affect the risk of diabetes autoimmunity (79, 80). 
  
Vitamin D And/Or Omega 3 Fatty Acids 
  
Vitamin D is an important component of a normal 
immune response; moreover, the higher incidence of 
TID in northern climates suggests that vitamin D 
deficiency could contribute to autoimmunity and 
TID.  However, data from observational studies is 
mixed on whether vitamin D and/or omega 3 
supplementation is beneficial or not (60, 81-86). A pilot 
randomized trial of omega 3 supplementation to 
pregnant mothers and infants failed to demonstrate a 
profound immunologic effect of treatment (87). With 
routine vitamin D supplementation recommended for 
infants (88), it is unlikely that a fully powered 
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randomized trial would be feasible to assess the 
impact on autoimmunity.  
  
MICROBIAL EXPOSURES 
  
The Hygiene Hypothesis 
  
Parallel to the rising incidence of TID and other 
autoimmune diseases, there has been a worldwide 
trend towards urbanization, increased standard of 
living, smaller family sizes, less crowded living 
conditions, safer water and food supplies, less 

cohabitation with animals, wide use of antibiotics, 
childhood vaccination, etc.  While these trends are 
generally considered improvements in human 
existence, the so-called “hygiene hypothesis,” 
proposed by Strachan in 1989 (89) suggests a 
possible downside; that is, that early microbial 
exposures might have a protective effect via the early 
education of the immune system and the development 
of normal tolerance to self-antigens. Data cited in 
support of the hygiene hypothesis comes from 
comparisons between eastern Finland and Russian 
Karelia (Figure 7) (90-92). 

  

 
Figure 7. Border between Finland and Russian Karelia, with a 6-fold difference in the incidence of TID, 
from "Karelia today”. The countries share a common border and ancestry and thus have similar 
geography, climate, vitamin D levels, and prevalence of HLA risk haplotypes. However, Finland has 6-
fold higher incidence of TID. This markedly higher rate of TID is accompanied by a much lower rate of 
infectious disease. In Finland as compared to Karelia 2% vs 24% had hepatitis A; 5% vs 24% had 
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toxoplasma gondii; and 5% vs. 73% for helicobacter pylori. There is an ongoing study aiming to better 
understand the mechanisms that may underlie these differences. 
  
The Microbiome 
  
Another possible interface between microbial 
exposure and human disease is through the 
microbiome; that is the gut flora established within the 
first 3 years of life (93).  It has been hypothesized that 
perturbations in normal early microbiome 
development might pre-dispose to disease whether 
through direct modulation of innate immunity or via 
alteration of intestinal permeability and the 
downstream effects on adaptive immunity. 
Interestingly, it appears that the gut microbiome is less 
diverse and less “protective” in individuals with islet 
autoimmunity or recent onset TID (94-96).  Whether 
this difference is cause, effect, or correlation isn’t 
known. Nonetheless, multiple factors might affect the 
early intestinal microbiome, some of which also have 
been shown to correlate with risk of islet autoimmunity 
and TID.  For example, breastfeeding can alter the 
intestinal microbiome of the infant by increasing the 
number and diversity of beneficial microbiota (97, 98). 
As previously discussed, multiple prospective 
observational studies suggest that breastfeeding 
protects against future development of islet 
autoimmunity and TID, but there’s no evidence to 
connect this directly to the infant microbiome. 
   
Viral Infections 
  
A viral etiology for initiation of autoimmunity is an 
attractive idea; a beta cell trophic virus could 
contribute to disease by directly killing beta cells, by 
leading to a chronic infection which triggers an 
immune response, or by molecular mimicry in which 
self-antigens are erroneously recognized as viral 
epitopes targeted for destruction.  Notably, these 
possible mechanisms would not necessarily point to a 

particular virus; any virus widespread in a population 
could theoretically lead to autoimmunity in genetically 
susceptible individuals if encountered at a vulnerable 
time in immune system or beta cell development.  With 
the notable exception of congenital rubella which is 
associated with type 1 diabetes (99), other data 
relating viruses to initiation of autoimmunity is less 
conclusive.  While some studies have reported viral 
“footprints” in islets from individuals who have died 
from TID, these have not been consistently 
confirmed.  Similarly, many studies have focused on 
enteroviruses, including coxsackie B, due to 
observations suggesting seasonal variation in 
antibody development that is reminiscent of the timing 
of such infections (100) (101), yet this remains 
controversial.  Aside from a viral role in the initiation of 
autoimmunity, others have proposed that acute viral 
infections may impact the transition from islet 
autoimmunity to clinical TID due to increased insulin 
demand during infections.  Patients commonly report 
an acute viral illness preceding the diagnosis of TID, 
and the clinical onset of TID more commonly presents 
in the fall and winter months in both the northern and 
southern hemispheres (102); but this does not imply a 
causal relationship. 
  
Vaccinations 
  
In recent decades, an increasing number of parents in 
Western countries have declined routine childhood 
vaccination of their children, which has created a 
situation with significant personal and public health 
consequences.  Multiple high-quality studies have 
thoroughly investigated vaccinations and TID, and 
none have found any association with islet 
autoimmunity or TID (103-107) 
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Sources: (88, 103-108). 
 
FUTURE CONSIDERATIONS 
 
Despite advances in glucose monitoring and insulin 
delivery, the daily psychological and financial burden 
of disease on individuals, their families, and society 
together with the persistence of complications and 
reduced life span demand a paradigm shift.  
 
As of 2021, we know much about the natural history of 
disease. We know that antibodies can develop early in 
life and that essentially all of those with established 
islet autoimmunity will develop clinically overt disease. 
We also know that identifying these individuals is of 
significant clinical benefit. Those with islet 
autoimmunity followed carefully until diagnosis have 
markedly less morbidity at the time of diagnosis and 

lower HbA1c values. Family members of T1D 
probands should be made aware of their disease risk 
and should be offered autoantibody screening and 
enrollment in monitoring trials. Correspondingly, 
patients with TID should be informed of the opportunity 
to have their relatives screened for TID risk in the 
setting of a clinical research study.  
 
While the interaction of humans with their environment 
must contribute to disease; how this occurs is still 
being elucidated. It is likely that there are many 
different paths by which individual gene/environment 
interactions result in T1D; suggesting that dissecting 
this heterogeneity will provide better insights and 
therapies. 
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ADDITIONAL INFORMATION (From prior chapter by Aaron W. Michels, MD and Peter Gottlieb, MD) 

 
INTRODUCTION 
 
Type 1 diabetes mellitus is defined as immune 
mediated diabetes mellitus (1-6). It can become 
manifest with hyperglycemia presenting in the first 
days of life or in adults over the age of 60. Current 
estimates indicate that immune mediated diabetes 
represents approximately 5 to 10% of the diabetes 
developing in adults and that approximately as many 
individuals develop this form of diabetes as adults as 
do children (7-9). In the United States the great 
majority (>90%) of Caucasian children developing 
diabetes have type 1 diabetes; whereas, 
approximately 50% of African American and Hispanic 
American children developing diabetes lack the 
autoantibody and immunogenetic markers of typical 
type 1 diabetes (10-12). Most of these latter children 
appear to have variants of type 2 diabetes with a small 
number having specific characteristic genetic 
syndromes (e.g. MODY: Maturity Onset Diabetes of 
Youth) with identified mutations of genes such as 
glucokinase and HNF (Hepatic Nuclear Factors) (13). 
In addition, studies of the pathology of the pancreas of 
Hispanic and African American children who lack islet 

autoantibodies show that all islets have some beta 
cells, but in decreased numbers (11). In contrast, in 
the pancreas of patients with type 1 diabetes, there is 
lobular loss of beta cells (termed pseudoatrophic 
islets) (11). 
 
When an individual presents with type 1 diabetes it 
indicates that they and their relatives have an 
increased risk of having or developing a series of 
autoimmune disorders (12). Celiac disease, 
hypothyroidism, hyperthyroidism, Addison's disease, 
and pernicious anemia are some of the most 
prominent associated diseases. For example, 
approximately 1/20 patients with type 1 diabetes have 
celiac disease (14,15). Most of these patients are 
asymptomatic and the disorder is only discovered if 
anti-transglutaminase autoantibodies are measured 
and individuals with positive antibodies biopsied. In 
that the therapy for celiac disease, namely gluten 
avoidance, is highly effective, and we routinely screen 
all type 1 diabetic patients. We also screen for thyroid 
disease, which has an incidence of approximately 
20% in type 1 diabetes, with yearly TSH 
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measurements and for Addison's disease (21-
hydroxylase autoantibodies) (16). 
 
GENETIC SUSCEPTIBILITY 
 
Type 1 diabetes is itself heterogeneous, with several 
forms of immune mediated diabetes with known 
genetic causes as parts of autoimmune syndromes 
(thus likely to be classified as other Specific Forms of 
Diabetes). In particular, patients develop immune 
mediated diabetes when they have mutations of the 
AIRE (Autoimmune Regulator) gene (21). Mutations of 
the AIRE gene result in Autoimmune Polyendocrine 
Syndrome Type I (23,24). Most forms of type 1 
diabetes are polygenic in etiology, and polymorphisms 
of genes within the major histocompatibility complex 
(HLA genes) play a major role in determining disease 
susceptibility (27,28).  
 
The alleles of different HLA genes (e.g., DRB1 and 
DQB1) are non-randomly associated with each other, 
such that with DRB1*0401 one usually finds one of 
three DQ alleles (e.g., DQB1*0301, DQB1*0302, 
DQB1*0303) rather than any one of more than forty 
different DQB molecules. Such non-random 
association of alleles of different genes on the same 
chromosome is termed linkage disequilibrium. The 
histocompatibility complex is divided into three 
regions, class II, class III and class I. The most 
important determinants of type 1 diabetes are the HLA 
DQ and DR alleles. These molecules on the surface of 
antigen presenting cells (e.g., macrophages) bind and 
present short peptides that are recognized by T cell 
receptors of T lymphocytes (27,35,36). They are 
termed immune response genes in that the specific 
amino acid sequence of these molecules determines 
which peptides will be bound and to a large extent 

determine which peptides an individual will respond to. 
Each different amino acid sequence is given a 
number. For the DQ molecules both its alpha and beta 
chain gene are polymorphic, and thus to specify a DQ 
molecule one must specify both chains. For DR 
molecules only the DRB chain is polymorphic and thus 
only this chain is specified. Each number after the star 
indicates a specific amino acid sequence of the HLA 
allele and the letters and first number the gene (e.g., 
DRB1*0401, DR B chain gene number 1, allele 0401). 
 
There is a tremendous spectrum of diabetes risk 
associated with different DR and DQ genotypes (37-
39) (Figure 8). For Caucasians with type 1 diabetes 
the most common diabetes-associated haplotypes are 
DR3 and DR4. More than 90% of patients with type 1A 
diabetes have one or both of these alleles versus 
approximately 40% of the general U.S. population. 
With the finer sequence information that is now 
available, DR4 haplotypes are subdivided based on 
specific variants of DRB1 and DQB1. The highest risk 
DR4 haplotypes have DRB1*0401, DRB1*0402, 
DRB1*0405, while DRB1*0403 is moderately 
protective. The highest risk DR4 haplotypes have 
DQB1*0302, with DQB1*0301 and DQB1*0303 of 
lower risk. Thus, both DR and DQ alleles contribute to 
diabetes risk. DR3 haplotypes are almost always 
conserved with DRB1*03 combined with DQA1*0501, 
DQB1*0201 (40). The highest risk genotype has both 
DR4/DR3 DQB1*0302/DQB1*0201. This genotype 
occurs in 2.4% of newborns in Denver, Colorado, and 
between 30 and 50% of children developing type 1 
diabetes. Approximately 50% of children developing 
type 1 diabetes early (i.e., less than age 5) are DR3/4 
heterozygotes versus 30% of young adults presenting 
with type 1A diabetes. 
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Figure 8. Hierarchy of diabetes risk with examples of haplotypes that lead to diabetes susceptibility, are 
neutral, or protective. Modified from teaching slides www.barbaradaviscenter.org 
 
There are three HLA molecules that provide dominant 
protection. The most common is DQB1*0602 that 
occurs in approximately 20% of U.S. individuals (41-
43). Protection is not absolute, but less than 1% of 
children with type 1 diabetes have this molecule. 
DQA1*0201 with DQB1*0303 and DRB1*1401 also 
provide dramatic protection, rarely being found in 
patients with type 1 diabetes and rarely transmitted 
from a parent with the alleles to their diabetic offspring 
(38,39). It is noteworthy that both DR and DQ alleles 
can protect. The specific mechanism underlying both 
susceptibility and protection are not fully understood. 
One attractive hypothesis is that protective alleles 
when expressed within the thymus lead to deletion of 
T cells with receptors that recognize a critical islet 
peptide (44). With deletion of such T cells, the risk of 
diabetes would be reduced. In addition, it is likely that 
high-risk HLA alleles present specific peptides of 
target islet molecules to T lymphocytes (28). 
 
Multiple additional loci (Figure 7) have been implicated 
with estimates that approximately 50% of the familial 
aggregation of type 1 diabetes is attributable to the 
HLA region, perhaps 10% to the insulin locus, with all 
other loci contributing much less, though in aggregate 
their contribution is important. In the Cox analysis 
(Figure 7) of approximately 700 sibling pairs the only 

significant LOD score was for a locus on chromosome 
16q that was not given an iddm designation with earlier 
genome screens. Several areas implicated in the past 
had suggestive scores, but there is overlap with the 
families from which the original evidence was 
generated. It is likely that contributing loci may differ 
between populations contributing to the initial difficulty 
of replicating putative loci in different studies (56,57). 
More than 40 genetic loci contributing to diabetes risk 
have been implicated (Figure 7). Polymorphisms of 
the insulin gene are well established as contributing to 
risk. A repeat sequence upstream (5') of the insulin 
gene termed a Variable nucleotide tandem repeat or 
VNTR, is divided into three general repeat sizes with 
the longest set of repeats associated with protection 
from diabetes (46-48). This set of alleles is also 
associated with greater thymic production of insulin 
messenger RNA (49), leading to the hypothesis that 
greater thymic message and presumably greater 
proinsulin production dampens anti-insulin 
autoimmunity (49-51). A functional polymorphism of 
the LYP gene (Lymphocyte Specific Phosphatase; 
PTPN22- Protein Tyrosine Phosphatase) has been 
associated with type 1 diabetes, rheumatoid arthritis, 
and lupus erythematosus (52-54). The R620W 
missense mutation (tryptophan replacing arginine) 
disrupts the binding of the phosphatase to the 
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molecule Csk and this blocks its ability to down-
regulate T cell receptor signaling. With an odds ratio 
of between 1.7 and 2.0 of the "autoimmunity” allele 
which is relatively common (5-10% allele frequency) 
there is a large genetic effect that is much greater than 
CTLA-4 polymorphisms associated with diabetes risk 
(55). Combining known diabetogenic polymorphisms 
of LYP, the insulin gene, alleles of DP, DQ, and DR 
class II immune response genes, as well all of the new 
loci account for approximately 48% of the familial 
aggregation of type 1A diabetes, with DR and DQ loci 
accounting for 41% of this 48% (45).  A recent study 
suggests that for a major subset of individuals with the 
highest risk HLA genotype (DR3/4-DQ2/DQ8 
heterozygotes) who share both HLA haplotypes with a 
diabetic sibling, risk of activating anti-islet 
autoimmunity is as high as 80% (33). 
 
AUTOIMMUNITY 
 
Insulin autoantibodies are usually the first 
autoantibody to appear in children followed from birth 
for the development of type 1 diabetes (84,85). These 
autoantibodies can appear in the first six months of 
life. Once insulin autoantibodies appear in such young 
children there is a high risk of development of 
additional anti-islet autoantibodies and progression to 
diabetes. More than 90% of children developing type 
1 diabetes prior to age 5 have insulin autoantibodies 
while less than 50% of children developing diabetes 
after age 12 have such autoantibodies (86). Therapy 
with human insulin induces insulin antibodies that 
cannot at present be distinguished from insulin 
autoantibodies. Thus, if an individual has been treated 
with insulin for more than several weeks, positive 
insulin autoantibodies are not interpretable. For all 
autoantibodies measured in the first 9 months of life, 
the antibodies may be transplacental in origin, a 
particular problem if a mother has type 1 diabetes and 
is treated with insulin.  
 
There are a number of important caveats in the 
utilization of anti-islet autoantibody assays. The field 
developed from the initial observation that patient's 
sera "stained” islets of cut sections of human 

pancreas, the cytoplasmic islet cell antibody (ICA) 
assay (83). This assay, given its utilization of human 
pancreas from cadaveric donation and subjective 
reading of slides, has proven the most difficult to 
standardize (69). The assay predominantly detects 
antibodies reacting with GAD65, IA-2 and ZnT8, but 
does not detect anti-insulin autoantibodies. Given the 
difficulty in standardization, reliability over time, and 
major overlap with defined autoantibody assays, a 
number of investigators no longer utilize this assay. 
For research purposes and potentially in older adults 
with what has been termed LADA (latent autoimmune 
diabetes of adults) the ICA assay may have utility in 
that there is evidence of one or more additional 
autoantibodies detected with this assay and not with 
GAD65, IA-2, ZnT8 and insulin autoantibody 
determination. 
 
A single autoantibody, even when present on multiple 
occasions, is associated with only a modest risk of 
progression to diabetes: approximately 10% (87,88). 
Once two or more anti-islet autoantibodies are present 
in children, progression to diabetes is very high, 
approaching almost 100% after 15 years of follow-up 
(89). In addition, once multiple autoantibodies are 
present it is very unusual for an individual to lose all 
expression of autoantibodies prior to the development 
of overt diabetes. Following the development of 
diabetes, IA-2 and more slowly GAD65 (over decades) 
autoantibodies wane. Following islet or pancreatic 
transplantation expression of GAD65 and IA-2 
autoantibodies can be induced in patients with long-
standing diabetes (90). 
 
The most specific of the autoantibodies react with the 
molecule IA-2, but IA-2 autoantibodies are usually 
detected following the appearance of insulin and/or 
GAD65 autoantibodies (84). Even with IA-2 
autoantibodies, however, there are apparent "false” 
positives in terms of diabetes risk. We evaluated 
approximately 10 individuals with either transient IA-2 
autoantibodies or normal controls with IA-2 
autoantibodies. None of these individuals expressed 
an additional anti-islet autoantibody. In contrast to 
patients diagnosed with or developing type 1 diabetes, 
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the ICA512/IA-2 autoantibodies of nine out of ten of 
these normal individuals did not recognize multiple 
ICA512 epitopes and did not react with the dominant 
ICA512 autoantigenic domain (91). This indicates that 
even with a highly specific radioassay, if one screens 
tens of thousands of sera, one can find sera that 
presumably by chance cross-react with some epitope 
of the IA-2 molecule. It is much less likely to find an 
individual with antibodies that by chance react with two 
different islet autoantigens using fluid phase 
radioassays set with specificity at the 99th percentile 
of controls. 
 
LOSS OF INSULIN SECRETION 
 
At present, beta cell mass is not readily measured over 
time in humans, so it is not possible to absolutely 
define progression of beta cell loss. There is however 
no doubt that measurable anti-islet autoimmunity 
precedes the development of diabetes in terms of anti-
islet autoantibodies in humans, and autoantibodies 
and T cell invasion in animal models. In the NOD 
mouse there is evidence of some beta cell destruction 
and beta cell regeneration prior to the onset of 
diabetes (92). There is also evidence for a change in 
the immune system close to the time of onset of 
diabetes (i.e., Th2 to Th1) (93-96). This change is 
associated with more rapid disease progression, 
ability to transfer diabetes by T cells, and a time 
window during which a specific immunotherapy 
(monoclonal anti-CD3 antibodies) is effective (97). In 
humans the best evidence for progressive loss of beta 
cell function comes from studies of insulin and C-
peptide secretion (98). C-peptide, the connecting 
peptide of proinsulin, is secreted in equimolar amount 
to insulin, but C-peptide is not present in insulin 
preparations utilized to treat diabetes. Thus, C-peptide 
has become an important indicator of remaining beta 
cell function. Following the onset of diabetes, it has 
long been appreciated that C-peptide secretion 
progressively declines, until for most patients with type 
1 diabetes C-peptide becomes non-detectable, 
associated with true insulin dependence. In a similar 
manner, first phase insulin secretion following a bolus 
of glucose on intravenous glucose tolerance testing is 

progressively lost for relatives followed to the 
development of type 1 diabetes (99). Such metabolic 
abnormalities may result in part from functional 
inhibition of beta cell secretion, but pathologic studies 
indicate that beta cell mass is normal for identical twins 
of patients that have not activated anti-islet 
autoimmunity, and for new onset patients that bulk of 
beta cells are destroyed (100). Within the pancreas of 
a patient with type 1 diabetes there is heterogeneity of 
islet lesions, with most islets lacking all beta cells and 
with no lymphocytic infiltrates (pseudoatrophic islets), 
few normal islets with no infiltrates, and few islets with 
remaining beta cells and infiltrates. This is perhaps 
analogous to the progressive development of vitiligo in 
patients, with patches of skin with all melanocytes 
destroyed, whereas other skin is normal. 
 
OVERT DIABETES 
 
The development of type 1 diabetes is usually 
perceived as an abrupt event, and some individuals 
may rapidly manifest severe hyperglycemia. Now that 
we can follow individuals to the development of type 1 
diabetes, we can see that anti-islet autoantibodies can 
precede hyperglycemia by years, and there is usually 
some deterioration in glucose tolerance more than one 
year prior to diabetes onset (particularly with 
intravenous glucose tolerance testing) (101). The 
majority of individuals identified to be diabetic 
following autoantibody testing are found to have a 
diabetic 2-hour glucose on oral glucose tolerance 
testing (>200mg/dl) rather than fasting hyperglycemia. 
The acute presentation with severe hyperglycemia 
and ketoacidosis is life threatening, and it is estimated 
that approximately 1/200 children die at the onset of 
type 1 diabetes (102,103). Such children typically 
have a medical history where the first health care 
providers have failed to make the diagnosis of 
diabetes; the child then presents again later and dies 
with cerebral edema. The classic symptoms of 
polyuria, polydipsia, and weight loss are usually 
present but the initial diagnosis is still missed. The 
alternative diagnosis of nausea and vomiting due to 
viral illness is the most common mistaken diagnosis, 
and with the ready availability of glucose 
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determination from a finger or heel stick, there should 
be a low threshold in emergency rooms and 
physicians’ offices for ruling out diabetes. Though 
transient hyperglycemia can occur, such children 
obviously need close follow up. We usually arrange 
glucose monitoring for children thought to have 
transient hyperglycemia, and measure anti-islet 
autoantibodies (104). Of those with anti-islet 

autoantibodies and transient hyperglycemia, almost all 
progress to type 1 diabetes within several months. 
 
At the onset of type 1 diabetes, almost all individuals 
have residual insulin secretion, and there is convincing 
evidence that residual insulin secretion as measured 
by C-peptide secretion is of clinical benefit (less 
hypoglycemia, less microvascular complications, and 
much easier diabetes management).  
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