
PATHOGENESIS OF TYPE 1A DIABETES 

Aaron Michels, MD, aaron.michels@ucdenver.edu, Assistant Professor of Pediatrics, Barbara Davis Center 
for Childhood Diabetes, Aurora. CO

Peter Gottlieb, MD, peter.gottlieb@ucdenver.edu, Professor of Pediatrics, Medicine & Immunology, Barbara 
Davis Center for Childhood Diabetes, Aurora, CO 

Last updated: March 4, 2015 

ABSTRACT

Type 1A diabetes (T1D) represents an autoimmune disorder that can affect individuals from 
within a year of birth until age 60.  A number of genes strongly influence the development of 
disease, including genes found within the human lymphocyte antigen (HLA) complex.  The 
role of non-HLA genes is being defined in recent studies, and we are beginning to identify 
pathways that lead to autoimmunity and eventually pancreatic islet cell destruction.  Although 
genes can predispose one to type 1A diabetes, environmental factors may also play a 
significant role in the pathogenesis.  These as-yet-undefined factors appear to have 
accelerated the onset and markedly increased the frequency of disease in many populations 
around the world over the last 30 years.  The development of ever more sophisticated 
immunoassays to detect antibodies directed against pancreatic antigens have helped define 
the autoimmune nature of the disorder, but as importantly have also provided an opportunity 
to identify those individuals with prediabetes and to stratify their risk of developing overt 
hyperglycemia.  Immunologic assays as well as intervention trials are allowing us to learn 
more about the immune pathways that are disordered and offer hope for future therapeutic 
approaches to prevent and reverse type 1A diabetes.

INTRODUCTION 

Type 1A diabetes mellitus is defined as immune mediated diabetes mellitus.(1-6). It can become 
manifest with hyperglycemia presenting in the first days of life or in adults over the age of 60. Current 
estimates indicate that immune mediated diabetes represents approximately 5 to 10% of the diabetes 
developing in adults and that approximately as many individuals develop this form of diabetes as 
adults as do children(7-9). In the United States the great majority (>90%) of Caucasian children 
developing diabetes have type 1A diabetes; whereas, approximately 50% of African American and 
Hispanic American children developing diabetes lack the autoantibody and immunogenetic markers of 
typical type 1A diabetes(10-12). Most of these latter children appear to have variants of type 2 
diabetes with a small number having specific characteristic genetic syndromes (e.g. MODY: Maturity 
Onset Diabetes of Youth) with identified mutations of genes such as glucokinase and HNF (Hepatic 
Nuclear Factors)(13). In addition, studies of the pathology of the pancreas of Hispanic and African 
American children who lack islet autoantibodies show that all islets have some beta cells, but in 
decreased numbers(11).  In contrast, in the pancreas of patients with type 1A diabetes, there is lobular
loss of beta cells (termed pseudoatrophic islets)(11). 

When an individual presents with type 1A diabetes it indicates that they and their relatives have an 
increased risk of having or developing a series of autoimmune disorders(12). Celiac disease, 
hypothyroidism, hyperthyroidism, Addison's disease and pernicious anemia are some of the most 
prominent associated diseases. For example approximately 1/20 patients with type 1 diabetes have 
celiac disease(14,15). Most of these patients are asymptomatic and the disorder is only discovered if 
anti-transglutaminase autoantibodies are measured and individuals with positive antibodies biopsied. 
In that the therapy for celiac disease, namely gluten avoidance, is highly effective, at the Barbara 
Davis Center we routinely screen all type 1 diabetic patients. We also screen for thyroid disease, 
which has an incidence of approximately 20% in type 1 diabetes, with yearly TSH measurements and 
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for Addison's disease (21-hydroxylase autoantibodies)(16). 

Studies of the pathogenesis of type 1 diabetes have blossomed during the past two decades and 
there are now complete books devoted to this subject (e.g., Immunology of Type 1 Diabetes available 
at www.barbaradaviscenter.org with appended "Teaching" slides). In terms of summarizing the 
pathogenesis of this disorder it is convenient to divide the disease into a series of stages (Figure 1) 
beginning with genetic susceptibility and ending (from an immunologic standpoint) with complete islet 
beta cell destruction(16). This is only a general description of the disease process. It is likely for 
instance that genetic determinants influence many of the stages of disease progression and are 
important determinants of individuals who express anti-islet autoantibodies but do not progress to 
diabetes (e.g., a major subset of those with anti-islet autoantibodies and the protective HLA allele 
DQB1*0602 allele)(17). 

Figure 1. Hypothetical stages and loss of beta cells in an individual progressing to type 1A diabetes. 
From Eisenbarth, NEJM, 1986 (18) 

STAGE I. GENETIC SUSCEPTIBILITY 

An expert committee of the American Diabetes Association has divided type 1 diabetes into type 1A 
(immune mediated) and 1B (not immune mediated but with profound loss of insulin secretion)(19). The
great majority of patients with insulin dependent diabetes have type 1A, and firm examples of type 1B 
are either lacking or controversial. One recent example is a description from Japan of patients who 
extremely rapidly developed type 1 diabetes (fulminant diabetes) such that they had marked 
hyperglycemia, but at diabetes presentation their HbA1c was near normal, suggesting very recent 
onset of hyperglycemia(20). These patients lacked anti-islet autoantibodies, a subset had elevated 
serum pancreatic enzymes, but many had HLA alleles associated with type 1A diabetes. On biopsy 
beta cells were destroyed, there were lymphocytes in the acinar pancreas, but no typical insulitis 
(invasion of islets by lymphocytes). Whether this is truly type 1B or an extremely rapid variant of type 
1A is currently debated. 
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Figure 2. Genetic heterogeneity of immune mediated type 1 diabetes with monogenic, polygenic, and
oligogenic forms. Modified from teaching slides www.barbaradaviscenter.org 

Type 1A diabetes is itself heterogeneous, with several forms of immune mediated diabetes with known
genetic causes as parts of autoimmune syndromes (thus likely to be classified as other Specific Forms
of Diabetes). In particular, patients develop immune mediated diabetes when they have mutations of 
the AIRE (Autoimmune Regulator) gene(21) and the human gene homologous to the mutated gene 
causing Scurfy in mice (22)(figure 2: monogenic disorders). Mutations of the AIRE gene result in 
Autoimmune Polyendocrine Syndrome Type I (23,24). Mutations of the Scurfy homologue lead to 
overwhelming neonatal autoimmunity (IPEX syndrome: Immune dysregulation, Polyendocrinoptahy, 
Enteropathy, X-linked)(21). A mutation of the FoxP3 genes, an essential transcription factor for 
CD4+CD25+ regulatory T cells, is the cause of the IPEX syndrome(25,26). These children can 
develop type 1 diabetes in the first days of life and illustrate the importance of T cell regulation. Most 
other forms of type 1A diabetes are polygenic in etiology, and polymorphisms of genes within the 
major histocompatibility complex (HLA genes) play a major role in determining disease 
susceptibility(27,28). Such heterogeneity is also apparent in three spontaneous animal models of type 
1A diabetes, the BB rat (Biobreeding), the NOD (Non-obese diabetic), and the Tokushima rat (Figure 
3). For all three strains polymorphisms of genes homologous to HLA DR and DQ of man are essential 
for disease(29). In addition, more than 15 other loci play an important role in diabetes susceptibility of 
the NOD mouse, but each locus contributes relatively little (polygenic inheritance) by itself. 
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Figure 3. Three rodent strains that develop immune mediated diabetes. Modified from teaching slides
www.barbaradaviscenter.org 

For the BB rat and Tokushima rat there are major loci outside of the MHC contributing to disease 
(Oligogenic inheritance)(30,31). It is not likely that human type 1 diabetes is less heterogeneous than 
these few animal models. 

Identical twins of patients with type 1A diabetes have an overall risk of developing type 1 diabetes 
approaching seventy percent.(32) Consistent with heterogeneity, that risk varies dramatically with the 
diabetic twin's age of diabetes onset. If one identical twin develops diabetes prior to age 5, the risk for 
the other twin exceeds 50%. In contrast if the twin develops diabetes after age 25, the other twin’s risk
is less than 10%(29). The risk of developing diabetes is approximately 1/20 for a sibling or offspring of 
a patient with type 1A diabetes. The U.S. population risk for type 1A diabetes is approximately 1/300 
and the country with the highest incidence in the world (Finland) has a risk of approximately 1/100. As 
will be discussed subsequently, genetic polymorphisms greatly influence disease risk. A sibling of a 
patient with type 1 diabetes who has the highest risk genotype DR3/4 DQB1*0302 has an almost 50% 
risk of developing anti-islet autoantibodies and progressing to diabetes(33). 

Polymorphisms of genes within the major histocompatibility complex contribute to disease of both 
humans and rodent models. 
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Figure 4. Schematic of the human major histocompatibility complex approximately 4 million base 
pairs in length. Redondo MJ, et al. Recent Prog Horm Res, 56: 69-89, 2001.(34) Copyright The 
Endocrine Society. 

The histocompatibility complex is divided into three regions, class II, class III and class I (Figure 4). 
The most important determinants of type 1 diabetes are the HLA DQ and DR alleles. These molecules
on the surface of antigen presenting cells (e.g., macrophages) bind and present short peptides that 
are recognized by T cell receptors of T lymphocytes(27,35,36). They are termed immune response 
genes in that the specific amino acid sequence of these molecules determines which peptides will be 
bound and to a large extent determine which peptides an individual will respond to. Each different 
amino acid sequence is given a number. For the DQ molecules both its alpha and beta chain gene are
polymorphic, and thus to specify a DQ molecule one must specify both chains. For DR molecules only 
the DRB chain is polymorphic and thus only this chain is specified. Each number after the star 
indicates a specific amino acid sequence of the HLA allele (Figure 5) and the letters and first number 
the gene (e.g., DRB1*0401, DR B chain gene number 1, allele 0401). 

Figure 5. Hierarchy of HLA terminology with specific alleles, groups of alleles of different genes on 



the same chromosome, and finally genotype. Modified from teaching slides 
www.barbaradaviscenter.org 

The alleles of different HLA genes (e.g., DRB1 and DQB1) are non-randomly associated with each 
other, such that with DRB1*0401 one usually finds one of three DQ alleles (e.g., DQB1*0301, 
DQB1*0302, DQB1*0303) rather than any one of more than forty different DQB molecules. Such non-
random association of alleles of different genes on the same chromosome is termed linkage 
dysequilibrium. 

Figure 6. Hierarchy of diabetes risk with examples of haplotypes that lead to diabetes susceptibility, 
are neutral, or protective. Modified from teaching slides www.barbaradaviscenter.org 

There is a tremendous spectrum of diabetes risk associated with different DR and DQ genotypes(37-
39)(Figure 6). For Caucasians with type 1A diabetes the most common diabetes-associated 
haplotypes are DR3 and DR4. More than 90% of patients with type 1A diabetes have one or both of 
these alleles versus approximately 40% of the general U.S. population. With the finer sequence 
information that is now available, DR4 haplotypes are subdivided based on specific variants of DRB1 
and DQB1. The highest risk DR4 haplotypes have DRB1*0401, DRB1*0402, DRB1*0405, while 
DRB1*0403 is moderately protective. The highest risk DR4 haplotypes have DQB1*0302, with 
DQB1*0301 and DQB1*0303 of lower risk. Thus both DR and DQ alleles contribute to diabetes risk. 
DR3 haplotypes are almost always conserved with DRB1*03 combined with DQA1*0501, 
DQB1*0201(40). The highest risk genotype have both DR4/DR3 DQB1*0302/DQB1*0201. This 
genotype occurs in 2.4% of newborns in Denver, Colorado, and between 30 and 50% of children 
developing type 1A diabetes. Approximately 50% of children developing type 1A diabetes early (i.e., 
less than age 5) are DR3/4 heterozygotes versus 30% of young adults presenting with type 1A 
diabetes. 

There are three HLA molecules that provide dominant protection. The most common is DQB1*0602 
that occurs in approximately 20% of U.S. individuals(41-43). Protection is not absolute, but less than 
1% of children with type 1A diabetes have this molecule. DQA1*0201 with DQB1*0303 and 
DRB1*1401 also provide dramatic protection, rarely being found in patients with type 1 diabetes and 
rarely transmitted from a parent with the alleles to their diabetic offspring(38,39). It is noteworthy that 
both DR and DQ alleles can protect. The specific mechanism underlying both susceptibility and 
protection are not fully understood. One attractive hypothesis is that protective alleles when expressed
within the thymus lead to deletion of T cells with receptors that recognize a critical islet peptide(44). 
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With deletion of such T cells, the risk of diabetes would be reduced. In addition it is likely that high-risk 
HLA alleles present specific peptides of target islet molecules to T lymphocytes(28). 

Figure 7. Summary of subset of confirmed loci from whole genome screens associated with type 1A 
diabetes (from Teaching Slides www.barbaradaviscenter.org) www.barbaradaviscenter.org. Modified 
from Todd et al. Robust Association of four new chromosomes regions from genome-wide analyses of
type 1 diabetes, Nature Genetics, June 6, 2007. (45) 

More than 40 genetic loci contributing to diabetes risk have been implicated (Figure 7). 
Polymorphisms of the insulin gene are well established as contributing to risk. A repeat sequence 
upstream (5') of the insulin gene termed a Variable nucleotide tandem repeat or VNTR, is divided into 
three general repeat sizes with the longest set of repeats associated with protection from diabetes(46-
48). This set of alleles is also associated with greater thymic production of insulin messenger 
RNA(49), leading to the hypothesis that greater thymic message and presumably greater proinsulin 
production dampens anti-insulin autoimmunity(49-51). A functional polymorphism of the LYP gene 
(Lymphocyte Specific Phosphatase; PTPN22- Protein Tyrosine Phosphatase) has been associated 
with type 1 diabetes, rheumatoid arthritis, and lupus erythematosus(52-54). The R620W missense 
mutation (tryptophan replacing arginine) disrupts the binding of the phosphatase to the molecule Csk 
and this blocks its ability to down-regulate T cell receptor signaling. With an odds ratio of between 1.7 
and 2.0 of the "autoimmunity” allele which is relatively common (5-10% allele frequency) there is a 
large genetic effect that is much greater than CTLA-4 polymorphisms associated with diabetes 
risk(55). Combining known diabetogenic polymorphisms of LYP, the insulin gene, alleles of DP, DQ, 
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and DR class II immune response genes, as well all of the new loci account for approximately 48% of 
the familial aggregation of type 1A diabetes, with DR and DQ loci accounting for 41% of this 48%(45).  
A recent study suggests that for a major subset of individuals with the highest risk HLA genotype 
(DR3/4-DQ2/DQ8 heterozygotes) who share both HLA haplotypes with a diabetic sibling, risk of 
activating anti-islet autoimmunity is as high as 80%(33).  

Multiple additional loci (Figure 7) have been implicated with estimates that approximately 50% of the 
familial aggregation of type 1 diabetes is attributable to the HLA region, perhaps 10% to the insulin lo-
cus, with all other loci contributing much less, though in aggregate their contribution is important. In 
the Cox analysis (Figure 7) of approximately 700 sibling pairs the only significant LOD score was for a 
locus on chromosome 16q that was not given an iddm designation with earlier genome screens. Sev-
eral areas implicated in the past had suggestive scores, but there is overlap with the families from 
which the original evidence was generated. It is likely that contributing loci may differ between popula-
tions contributing to the initial difficulty of replicating putative loci in different studies(56,57). 

STAGE II: TRIGGERING 

Anti-islet autoimmunity (i.e., insulin autoantibodies), insulitis, and immune mediated diabetes can be 
triggered in a number of animal models by a large number of immunologic and genetic 
manipulations(58-60). Perhaps the most relevant of these manipulations is the administration of poly-
IC (poly inosinic cytodylic acid) to normal rat strains that have the diabetes susceptible major 
histocompatibility RT1-U haplotype(61). Administration of poly-IC in some of these normal strains 
leads to insulitis while in others it leads to overt diabetes with islet beta cell destruction. Poly-IC 
interacts with Toll 3 receptors of the innate immune system leading to a cascade of intracellular and 
cytokine mediated events. Infection of Diabetes Resistant BB rats, a strain of rats that does not 
develop diabetes and lacks the lymphopenia gene of the spontaneously diabetic BB rat strain, leads to
diabetes probably by a pathogenic mechanism similar to the effects of poly-IC(62). Poly-IC is a mimic 
of viral double stranded RNA and thus it is easy to envision that many common RNA viral infections 
may induce diabetes in genetically susceptible patients. Normal mouse strains such as Balb/c mice 
rapidly develop insulin autoantibodies if challenged with an insulin peptide (B chain peptide, amino 
acids 9 to 23)(58). If the peptide is administered with poly-IC, insulitis is induced and in genetically 
susceptible mice diabetes can be induced. These and many other studies in animal models indicate 
that normal animals harbor autoreactive B and T lymphocytes that can be expanded and activated, 
with resultant diabetes. Though these strains are "normal” they have variants of MHC molecules that 
determine disease susceptibility, by influencing T cell responses to relevant peptides. The class II 
MHC molecules (equivalent of DR and DQ of man) appear to be most important, and these molecules 
probably influence disease either by the peptides they bind and present to T cells within islets and 
draining lymph nodes and by their influence on the thymic T cell repertoire(63).  It has recently been 
appreciated that the position or “register” of insulin B chain amino acids 9-23 presented by the class II 
MHC molecule activates insulin specific T cells towards islet autoimmunity in a spontaneous mouse 
model of autoimmune diabetes.  With the remarkable homology between mouse and humans (e.g., 
similar MHC class II molecules contributing genetic risk, identical amino acid sequences for insulin B 
chain amino acids 9-23, and similar T cell receptors responding to insulin), the underlying biology of 
insulin presentation may be identical in mouse and humans(64,65).

In humans, environmental factors that trigger anti-islet autoimmunity are largely unknown. Congenital 
rubella infection is associated with a risk of type 1 diabetes that exceeds 1/5(66,67). It is however only 
congenital infection that increases the risk of diabetes, and leads to a series of autoimmune disorders 
(e.g., thyroid autoimmunity). It is thus likely that the congenital infection damages the developing 
immune system leading to relatively broad disease susceptibility(68). 

Figure 8 lists a number of additional environmental factors that may impact on the development of 
type 1A diabetes. The enteroviruses are probably the most extensively studied(69,70). Investigators 
have associated for instance antibodies to Coxsackie viruses and Coxsackie viral RNA with type 1A 
diabetes(71). An important study from Finland has provided 



Figure 8. Environmental factors that may increase or decrease diabetes risk. Congenital rubella 
infection is bolded as it is the only clearly defined factor. 

evidence that enterovirus infection may be associated with the activation of anti-islet autoimmunity as 
measured by the appearance of anti-islet autoantibodies. Such studies have been difficult to replicate, 
and the DAISY study from Denver, Colorado, that also follows newborns from birth for evidence of 
anti-islet autoimmunity has not found an association with the enteroviral infection(70). 

Figure 9. Secular trend in the incidence of type 1A diabetes in Finland subdivided by the age of 
appearance of diabetes. Modified from teaching slides www.barbaradaviscenter.org 

Dietary factors that may contribute to diabetes are being extensively studied. One hypothesis is that 
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bovine milk ingestion, particularly in the first months of life, is associated with development of 
diabetes(72). Again there is conflicting data with reports that bovine milk ingestion increases the 
development of anti-islet autoantibodies, and reports from Denver, Munich, and Melbourne, that it 
does not(73). Recently two studies (Germany and Denver) have implicated early (<3 months) 
introduction of cereals as a risk factor for type 1 diabetes(74,75). In the Denver study, late introduction 
(>7 months) also increased risk. At present it is my view that the data do not allow any firm 
recommendation in terms of changing infant diet, except to emphasize the current standard 
recommendation for introduction of cereals between 3 and 7 months. 

Environmental factors might not only increase the development of diabetes but may also provide 
protection. There is a very wide range in the risk of type 1 diabetes ranging from an annual incidence 
of less than 1/100,000 in China to approximately 50/100,000 in Finland(76). Much of this difference 
may relate to genetic factors, but there is strong evidence that environmental factors are influencing 
diabetes risk. The strongest evidence comes from a marked secular trend in terms of increasing 
diabetes incidence in multiple populations(77). As shown in figure 9, the incidence has increased 
dramatically particularly for children developing diabetes prior to age 5, increasing more than 3 fold 
over the past three decades. Such a rapid change in disease incidence cannot be due to changes in 
gene pool. Something that increases risk has been added, or more likely an environmental factor that 
decreases risk, has been removed from the population. With increasing public health, a "hygiene” 
hypothesis has been advanced, particularly directed at asthma and type 1 diabetes(78). It is 
hypothesized that as the environment becomes "cleaner” the normal development of the immune 
system is disrupted (e.g., regulatory T cell development is subnormal) resulting in increases of both 
presumed Th2 (asthma) and Th1 (Type 1 diabetes) mediated diseases. For instance, one review 
discusses decreasing pinworm infection as a potential factor(78). 

STAGE III AUTOIMMUNITY 

The assays for anti-islet autoantibodies have improved remarkably over the past three decades(79). A 
series of anti-islet autoantibody workshops where sera is sent blinded to multiple laboratories 
throughout the world has stimulated assay improvements and standardization(69). Such workshops 
have evaluated not only anti-islet autoantibodies of humans but also of the NOD mouse model of type 
1 diabetes. In the mouse model the only specific autoantibody detected reacted with insulin(80) and 
similar to studies in humans, fluid phase radioassays provided better sensitivity and specificity 
compared to ELISA. Newer assays using electrochemiluminescence to detect islet autoantibodies has
allowed for higher sensitivity and specificity and the potential to multiplex each individual assay.(81,82)

The autoantibodies that are primarily measured in humans react with insulin, glutamic acid 
decarboxylase 65, and ICA512 (IA-2) and ZnT8 (zinc transporter 8) (Figure 10). GAD67 
autoantibodies are primarily a subset of antibodies that cross-react with GAD65, and similarly IA-2beta
antibodies are predominantly a subset of ICA512 autoantibodies. 



Figure 10. Five characterized islet autoantigens with specific/sensitive autoantibody assays. Modified
from teaching slides www.barbaradaviscenter.org 

There are a number of important caveats in the utilization of anti-islet autoantibody assays. The field 
developed from the initial observation that patient's sera "stained” islets of cut sections of human 
pancreas, the cytoplasmic islet cell antibody (ICA) assay(83). This assay, given its utilization of human
pancreas from cadaveric donation and subjective reading of slides, has proven the most difficult to 
standardize(69). The assay predominantly detects antibodies reacting with GAD65, IA-2 and ZnT8, 
but does not detect anti-insulin autoantibodies. Given the difficulty in standardization, reliability over 
time, and major overlap with defined autoantibody assays, a number of investigators no longer utilize 
this assay. For research purposes and potentially in older adults with what has been termed LADA 
(latent autoimmune diabetes of adults) the ICA assay may have utility in that there is evidence of one 
or more additional autoantibodies detected with this assay and not with GAD65, IA-2, ZnT8 and insulin
autoantibody determination. 

Insulin autoantibodies are usually the first autoantibody to appear in children followed from birth for the
development of type 1A diabetes(84,85). These autoantibodies can appear in the first six months of 
life. Once insulin autoantibodies appear in such young children there is a high risk of development of 
additional anti-islet autoantibodies and progression to diabetes. More than 90% of children developing 
type 1A diabetes prior to age 5 have insulin autoantibodies while less than 50% of children developing 
diabetes after age 12 have such autoantibodies(86). Therapy with human insulin induces insulin 
antibodies that cannot at present be distinguished from insulin autoantibodies. Thus if an individual 
has been treated with insulin for more than several weeks, positive insulin autoantibodies are not 
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interpretable. For all autoantibodies measured in the first 9 months of life, the antibodies may be 
transplacental in origin, a particular problem if a mother has type 1 diabetes and is treated with insulin.

Figure 11. Progression to diabetes of first-degree relatives of patients with type 1 diabetes subdivided
by the number of autoantibodies expressed (of GAD65, IA-2, and insulin). Adapted from Verge et al, 
Diabetes 1996 (87)

A single autoantibody, even when present on multiple occasions, is associated with only a modest risk 
of progression to diabetes:  approximately 10%(87,88). Once two or more anti-islet autoantibodies are 
present in children, progression to diabetes is very high, approaching almost 100% after 15 years of 
follow up(89) (Figure 11). In addition, once multiple autoantibodies are present it is very unusual for an
individual to lose all expression of autoantibodies prior to the development of overt diabetes. Following
the development of diabetes, IA-2 and more slowly GAD65 (over decades) autoantibodies wane. 
Following islet or pancreatic transplantation expression of GAD65 and IA-2 autoantibodies can be 
induced in patients with long-standing diabetes(90).

The most specific of the autoantibodies react with the molecule IA-2, but IA-2 autoantibodies are 
usually detected following the appearance of insulin and/or GAD65 autoantibodies(84). Even with IA-2
autoantibodies, however, there are apparent "false” positives in terms of diabetes risk. We evaluated 
approximately 10 individuals with either transient IA-2 autoantibodies or normal controls with IA-2 
autoantibodies. None of these individuals expressed an additional anti-islet autoantibody. In contrast 
to patients diagnosed with or developing type 1 diabetes, the ICA512/IA-2 autoantibodies of nine out 
of ten of these normal individuals did not recognize multiple ICA512 epitopes and did not react with 
the dominant ICA512 autoantigenic domain(91). This indicates that even with a highly specific 
radioassay, if one screens tens of thousands of sera, one can find sera that presumably by chance 
cross-react with some epitope of the IA-2 molecule. It is much less likely to find an individual with 
antibodies that by chance react with two different islet autoantigens using fluid phase radioassays set 
with specificity at the 99th percentile of controls. 

Not all individuals with two or more autoantibodies are destined to progress to type 1 diabetes. For 
instance the diabetes risk is unknown for individuals with expression of two or more anti-islet 
autoantibodies with the protective HLA molecule DQA1*0102, DQB1*0602. Figure 12 is a life table of 
progression to diabetes of first-degree relatives with high titer cytoplasmic autoantibodies with a 
subset of relatives having the protective HLA allele DQB1*0602. Two of the DQB1*0602 relatives 



expressed multiple "biochemical” anti-islet autoantibodies (one with two autoantibodies and the other 
three) and neither of these individuals has yet progressed to diabetes. In that approximately 1% of 
patients with type 1 diabetes have DQB1*0602 it is possible that these individuals will eventually 
progress to diabetes. 

Figure 12. Lack of progression to diabetes of cytoplasmic ICA positive first-degree relatives that have
the protective HLA allele DQB1*0602. Modified from teaching slides www.barbaradaviscenter.org 

STAGE IV. LOSS OF INSULIN SECRETION 

There are three general hypotheses in terms of progression to type 1A diabetes (Figure 13). At 
present, beta cell mass is not readily measured over time in humans, so it is not possible to absolutely
define progression of beta cell loss. There is however no doubt that measurable anti-islet 
autoimmunity precedes the development of diabetes in terms of anti-islet autoantibodies in humans, 
and autoantibodies and T cell invasion in animal models. In the NOD mouse there is evidence of some
beta cell destruction and beta cell regeneration prior to the onset of diabetes (92). There is also 
evidence for a change in the immune system close to the time of onset of diabetes (i.e., Th2 to Th1)
(93-96). This change is associated with more rapid disease progression, ability to transfer diabetes by 
T cells, and a time window during which a specific immunotherapy (monoclonal anti-CD3 antibodies) 
is effective(97). In humans the best evidence for progressive loss of beta cell function comes from 
studies of insulin and C-peptide secretion(98). C-peptide, the connecting peptide of proinsulin, is 
secreted in equimolar amount to insulin, but C-peptide is not present in insulin preparations utilized to 
treat diabetes. Thus C-peptide has become an important indicator of remaining beta cell function. 
Following the onset of diabetes it has long been appreciated that C-peptide secretion progressively 
declines, until for most patients with type 1 diabetes C-peptide becomes non-detectable, associated 
with true insulin dependence. In a similar manner, first phase insulin secretion following a bolus of 
glucose on intravenous glucose tolerance testing is progressively lost for relatives followed to the 
development of type 1 diabetes(99). Such metabolic abnormalities may result in part from functional 
inhibition of beta cell secretion, but pathologic studies indicate that beta cell mass is normal for 
identical twins of patients that have not activated anti-islet autoimmunity, and for new onset patients 
that bulk of beta cells are destroyed(100). Within the pancreas of a patient with type 1 diabetes there 
is heterogeneity of islet lesions, with most islets lacking all beta cells and with no lymphocytic infiltrates
(pseudoatrophic islets), few normal islets with no infiltrates, and few islets with remaining beta cells 
and infiltrates. This is perhaps analogous to the progressive development of vitiligo in patients, with 
patches of skin with all melanocytes destroyed, whereas other skin is normal. 
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Figure 13. Three hypotheses of progression to type 1A diabetes. Modified from teaching slides 
www.barbaradaviscenter.org 

STAGE V. OVERT DIABETES 

The development of type 1 diabetes is usually perceived as an abrupt event, and some individuals 
may rapidly manifest severe hyperglycemia. Now that we can follow individuals to the development of 
type 1A diabetes, we can see that anti-islet autoantibodies can precede hyperglycemia by years, and 
there is usually some deterioration in glucose tolerance more than one year prior to diabetes onset 
(particularly with intravenous glucose tolerance testing)(101). The majority of individuals identified to 
be diabetic following autoantibody testing are found to have a diabetic 2-hour glucose on oral glucose 
tolerance testing (>200mg/dl) rather than fasting hyperglycemia. The acute presentation with severe 
hyperglycemia and ketoacidosis is life threatening, and it is estimated that approximately 1/200 
children die at the onset of type 1 diabetes(102,103). Such children typically have a medical history 
where the first health care providers have failed to make the diagnosis of diabetes; the child then 
presents again later and dies with cerebral edema. The classic symptoms of polyuria, polydipsia, and 
weight loss are usually present but the initial diagnosis is still missed. The alternative diagnosis of 
nausea and vomiting due to viral illness is the most common mistaken diagnosis, and with the ready 
availability of glucose determination from a finger or heel stick, there should be a low threshold in 
emergency rooms and physicians’ offices for ruling out diabetes. Though transient hyperglycemia can 
occur, such children obviously need close follow up. We usually arrange glucose monitoring for 
children thought to have transient hyperglycemia, and measure anti-islet autoantibodies(104). Of 
those with anti-islet autoantibodies and transient hyperglycemia, almost all progress to type 1 diabetes
within several months. 

A report by Barker and coworkers illustrates the potential importance of screening for anti-islet 
autoantibodies and monitoring high-risk children. Less than 5% of children in such intensive follow-up 
who developed diabetes were hospitalized with ketoacidosis compared to 40% of children not being 
screened. Figure 14 illustrates the blood glucose for the two groups at the time of diagnosis with 
markedly elevated levels in the non-screened children, including values greater than 1,000 mg/dl 
associated with severe metabolic decompensation(105). 

http://www.barbaradaviscenter.org/


Figure 14. Glucose at diagnosis in children screened for anti-islet autoantibodies and metabolically 
monitored, versus children from the general population presenting with diabetes(105). Modified from 
teaching slides www.barbaradaviscenter.org of Type 1 Diabetes: Molecular, Cellular and Clinical 
Immunology. 

SUMMARY 

At the onset of type 1 diabetes, almost all individuals have residual insulin secretion, and there is 
convincing evidence that residual insulin secretion as measured by C-peptide secretion is of clinical 
benefit (less hypoglycemia, less microvascular complications, and much easier diabetes 
management). With many immunologic therapies it is possible to prevent diabetes in animal models, 
and as reviewed, the disorder is predictable in humans. At present there is no proven therapy to either 
prevent progression to type 1 diabetes or to halt beta cell loss after presentation with diabetes. One 
arm of the DPT-1 prevention trial, where low doses of subcutaneous insulin were administered, did not
delay progression to diabetes(106). The DPT-1 trial of oral insulin indicated that overall, oral insulin did
not delay progression to diabetes.  A subset analysis of antibody positive relatives entering the trial 
with elevated levels of insulin autoantibodies, however, suggests a delay in progression to diabetes of 
approximately 4 years.  A repeat trial of oral insulin for diabetes prevention is underway by 
TrialNet(107). Several studies of anti-CD3 monoclonal antibody modified to reduce cytokine release 
have shown promise in patients with new onset and recent onset diabetes(108-111), but these 
monoclonal antibodies only transiently delay the loss of c-peptide secretion(112-114). Other therapies 
include anti-CD20 monoclonal antibody (rituximab targeted to B cells). Treatment with CTLA-4 Ig and 
alefacept (anti-CD2) similarly transiently delays the loss of c-peptide(115-117). In contrast, trials of a 
GAD/alum vaccine did not delay the loss of endogenous c-peptide production nor did therapies 
targeting the IL-1 pathway(118-120). It is our belief that more specific therapies targeting autoreactive 
immune cells such as recently reported by Roep and colleagues(121) used in combination will allow 
for disease prevention and potentially a cure of type 1 diabetes when done in conjunction with islet 
replacement.  

The National Institutes of Health has created a cooperative trial network to develop therapies to 
prevent beta cell loss in prediabetics and new onset patients, termed TrialNet. Relatives of type 1 
patients throughout North America can be screened for diabetes risk, and trials are underway to 
preserve beta cell function in new onset patients. A contact number for TrialNet is 1-800-HALT-DM1. In
addition, the Immune Tolerance Network is evaluating therapies in a series of disorders designed to 
restore "tolerance,” including type 1A diabetes. They are seeking applications to test innovative 
therapies at immunetolerance.org. 
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