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ABSTRACT 
 
Gonadotropin hormone-releasing hormone (GnRH) is 
the key regulator of the reproductive axis.  Its pulsatile 
secretion determines the pattern of secretion of the 
gonadotropins, follicle stimulating hormone and 
luteinizing hormone, which then regulate both the 
endocrine function and gamete maturation in the 
gonads. Recent years have seen rapid developments 
in how GnRH secretion is regulated, with the discovery 
of the kisspeptin-neurokinin-dynorphin neuronal 
network in the hypothalamus. This mediates both 
positive and negative sex steroid feedback control of 
GnRH secretion, in conjunction with other 
neuropeptides and neurotransmitters. This chapter 
describes the main features of this regulatory system, 
including how its anatomical arrangements interact 
with functional control, and describes key differences 
between rodent and larger mammalian systems. 
 
INTRODUCTION 
 
Since the discovery of Gonadotropin Releasing 
Hormone (GnRH), an extensive body of literature has 
established it as the pivotal central regulator of human 

reproduction. However, the GnRH neuronal network, 
per se lacks the cellular machinery to fully integrate 
developmental, environmental, endocrine, and 
metabolic factors that influence its secretion. For 
example, GnRH neurons do not express the principal 
estrogen receptor alpha (ER-alpha), which is required 
for sex-steroid mediated control of gonadotropin 
secretion (1). Intermediate signaling pathways must 
therefore exist to mediate gonadal steroid feedback. 
Current evidence, accumulated since the discovery of 
Kisspeptin-Neurokinin B-Dynorphin (KNDy) neuronal 
network in the last decade, suggests a pivotal role for 
this network in the regulation of pulsatile GnRH 
secretion by integrating nutrient, endocrine, and 
environmental signals, and thus the control of 
downstream hypothalamic-pituitary-gonadal (HPG) 
axis.  
 
The HPG axis anatomically comprises:  
 
1. The hypothalamus (especially the infundibular 

nucleus, the human homologue of the arcuate 
nucleus) where the KNDy and GnRH-producing 
neurons are located. 
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2. The anterior pituitary, where Luteinizing Hormone 
(LH) and Follicle-Stimulating Hormone (FSH) are 
secreted by gonadotropes. 

3. The gonads, responsible for the production of 
both sex steroids and gametes, under the 
influences of LH and FSH.  

 
As with other endocrine systems, positive and 
negative feedback regulate HPG axis (2,3). In this 
chapter, we have focused on human data. Where 
human data is limited, data from other species are 
leveraged.  
 
GONADOTROPIN RELEASING HORMONE (GnRH) 
– THE PRINCIPAL REGULATOR OF 
REPRODUCTION 
 
The Discovery of GnRH 
 
GnRH was isolated from porcine hypothalami and 
structurally identified as a decapeptide (pGlu-His-Trp-
Ser-Tyr-Gly-Leu-Arg-Pro-Gly·NH2) five decades ago 
(4-6). This decapeptide was shown to potently 
stimulate LH and FSH release from the pituitary in a 
number of mammalian species (6,7). Early literature 
referred to this peptide as the ‘Luteinizing Hormone-
Releasing Hormone (LH-RH)’, but more recently, it is 
widely referenced as Gonadotropin Releasing 
Hormone (GnRH) -reflecting the stimulatory role on 
the secretion of both gonadotropins – i.e., LH and FSH 
(8).  
 
Diverse forms of GnRH and its receptor exist among 
vertebrates, with over twenty primary structures 
across species, suggesting that GnRH system 
developed early in the evolutionary sequence (9,10). 
The GnRH structure was first identified in mammals 
and is therefore referred to as GnRH I (9,11).  
Subsequently, another structurally different vertebrate 
GnRH sequence was first identified from chicken brain 
-this is now referred to as GnRH II (pGlu-His-Trp-Ser-
His-Gly-Trp-Tyr-Pro-Gly-NH2) (10,12). A third form 
has also been described in fish - GnRH III (9,12). In 
mammals, hypophysiotropic functions are limited to 

GnRH I, therefore in the human context GnRH I is 
referred to as GnRH (13) and we will use this 
terminology for this review. 
 
Neuroanatomy of GnRH Neurons 
 
GnRH neurons originate in the medial olfactory 
placode during embryological development and 
migrate along the olfactory bulb to their final positions 
within the hypothalamus (14,15). A number of factors 
contributing to this GnRH neuron migratory process 
have been identified: anosmin-1 (the product of KAL 
gene) (16), neuropilins (17), leukemia inhibitory factor 
(18), fibroblast growth factor receptor 1 (19), fibroblast 
growth factor receptor 8 (20), polysialic form of neural 
adhesion molecule (PSA-NCAM) (21), among others 
(22). Defective GnRH migration leads to Kallmann 
syndrome, characterized by hypogonadotropic 
hypogonadism due to GnRH deficiency and anosmia 
(15). Mutations in prokineticin genes (PROK1 and 
PROK2) lead to hypogonadotropic hypogonadism 
without anosmia, suggesting that factors other than 
suboptimal migration can also lead to functional 
deficiencies in GnRH (15,23,24). 
 
GnRH cell bodies are located in the medial preoptic 
area (POA) and in the arcuate/infundibular nucleus of 
the hypothalamus, forming a neuronal network with 
projections to the median eminence (25). GnRH is 
secreted from the median eminence into the 
fenestrated capillaries of portal circulation, carried to 
the anterior pituitary (25). In humans, the number of 
GnRH neurons has been estimated to range between 
1000 to 1500 (9,14). The co-location of GnRH neurons 
with other central regulators allows the GnRH network 
to be influenced by a range of neuroendocrine and 
metabolic inputs (26). 
 
GnRH Secretion and Pulsatility 
 
Two distinct modes of GnRH secretion have been 
described: pulsatile and surge modes (26). Pulsatile 
mode refers to episodic release of GnRH, with distinct 
pulses of GnRH secretion into the portal circulation 

http://www.endotext.org/


 
 

 
www.EndoText.org 3 

with undetectable GnRH concentrations between 
pulses. The surge mode of GnRH secretion occurs in 
females, during the pre-ovulatory phase, in which the 
presence of GnRH in the portal circulation appears to 
be persistent (26,27). 
 
Direct pulsatile GnRH release was initially 
demonstrated in ovariectomized rhesus monkeys 
using serial samples of portal blood (28). Pulsatile 
pattern of GnRH secretion was demonstrated 
subsequently in humans through serial blood sampling 
during pituitary surgery (29). Abolishment of LH pulses 
by GnRH antisera (30,31) and its reestablishment with 
GnRH analogues (30) suggest that LH pulses are 
determined by the underlying GnRH pulsatility.  The 
LH pulsatility was first detected during an attempt to 
validate a radioimmunoassay to measure serum LH in 
rhesus monkeys, where marked variations in LH levels 
was noticed (32). Further studies confirmed the 
pulsatile nature of LH secretion (33-35). In women, the 
frequency and amplitude of LH pulses were noted to 
be dependent on the menstrual cycle phase, with 
pulses every 1 to 2 hours during the early follicular 
phase eventually merging into a continuous mid-cycle 
surge, and decreased pulse frequency to every 4 
hours during the luteal phase (36). In humans, LH 
pulse frequency is used as a surrogate of GnRH 
pulsatility, as ethical considerations and technical 
challenges preclude sampling of hypophyseal blood or 
cerebrospinal fluid to measure GnRH concentrations 
directly (37,38).  
 
The importance of GnRH pulsatility on LH and FSH 
secretion was first demonstrated in rhesus monkeys, 
where endogenous GnRH secretion was abolished by 
hypothalamic radiofrequency. Pulsatile GnRH 
reinstated gonadotropin secretion in these animals, 
whereas continuous GnRH only elicited a transient 
response. Moreover, the switch from continuous to 
pulsatile GnRH administration allowed recovery of 
gonadotropin secretion (39). 
 
GnRH neurons coordinate their activity, but the 
precise mechanism of this remains unclear (27,40), 

and is the subject of continuing investigations. 
Episodic multi-unit electrical activity at medial basal 
hypothalami (MBH) is correlated with LH release, 
suggesting that ‘GnRH pulse generator’ is 
anatomically located at MBH – or closely linked to it 
neurohormonally (41,42). GnRH neurons show 
intrinsic electrical pulsatility. GnRH cell lines derived 
from mouse hypothalamic and fetal olfactory placode 
GnRH neurons both demonstrate intrinsic pulsatility in 
vitro (26,43,44). Functionally, the ‘GnRH pulse 
generator’ relies on complex relations between 
glutamatergic cells, GnRH and other neurons, and 
likely other elements are involved, of which the 
kisspeptin-neurokinin B-opioid pathway may have a 
pivotal intermediary role in the regulation of GnRH 
pulsatility (45). 
 
Differential Regulation of LH and FSH  
 
The stimulatory effects of GnRH on LH and FSH 
secretion are not identical (46).  FSH secretion is more 
irregular than LH in both humans and sheep, which is 
essentially related to the pulsatility and different 
stimulatory effects of GnRH, but other factors also 
might be relevant, such as differences in LH and FSH 
storage (more scarce for the FSH), existence of 
different gonadotropes subpopulations, or diverse 
response times to GnRH (47). In ovariectomized 
sheep administered GnRH antisera, pulsatile 
secretion of LH was completely inhibited 
(undetectable LH levels within 24 hours), while the 
FSH concentration fell more slowly and remained 
detectable (30). It has been estimated that 93% of the 
GnRH pulses were associated with FSH pulses and, 
unlike LH, a constitutive secretion of FSH appears to 
exist (48). The frequency of GnRH input has been 
demonstrated to selectively regulate gonadotropin 
subunit gene transcription: rapid GnRH pulse rates 
increase α and LH-β and slow GnRH pulse frequency 
increases FSH-β gene transcription (49-51). 
Moreover, with progressive increases in GnRH 
frequency (from one pulse every 120 to 60 min, from 
60 to 30 min, and from 30 to 15 min) in GnRH deficient 
men, mean LH rose concurrently with a decrease in 
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LH pulse amplitude, while FSH remained unchanged 
(52).  
 
Biological and Clinical Relevance of GnRH 
Pulsatility 
 
Appropriate modulation of LH pulse frequency is 
essential for pubertal maturation and reproductive 
function. In infancy, LH pulsatile secretion is increased 
(often termed mini-puberty), likely reflecting pulsatile 
GnRH secretion, but soon becomes quiescent (53). 
This pre-pubertal suppression of HPG axis has been 
shown to occur in agonadal humans (54) and primates 
(55), suggesting that hypothalamo-hypophyseal 
factors play a role in post-natal quiescence of the 
reproductive axis, until puberty sets in.  
 
The onset of pubertal maturation is heralded by the 
development of a pattern of steady acceleration in LH 
pulsatility (56). In children, higher basal and GnRH 
stimulated LH concentrations are observed in early 
childhood (<5 years). This is subdued mid-childhood 
(5-11 years) and increase thereafter with pubertal 
development (54,57).  Conceptually, an abnormal 
reactivation of GnRH pulse frequency is the central 

mechanism associated with precocious or delayed 
puberty (14). 
 
In women, the pattern of GnRH secretion is essential 
for the regulation of the menstrual cycle (Figure 1) 
(58,59). LH pulse frequency is slow in the luteal phase, 
and increasingly speeds up during the follicular and 
the pre-ovulatory phases, presumably reflecting 
changes in GnRH pulse frequency (60). Abnormalities 
in GnRH - and hence LH pulse frequency - are 
associated with a number of reproductive endocrine 
disorders. In hypothalamic amenorrhea, a condition 
associated with anovulatory amenorrhea and 
hypoestrogenism, LH pulse frequency (and by 
inference GnRH) is lower than expected for the 
prevailing steroid profile and is comparable to luteal 
phase pulsatility (37). LH pulse frequency in 
hyperprolactinemic women is also lower than in 
healthy women, requiring dopaminergic agonist 
preparations, such as bromocriptine to regulate 
prolactin secretion and restore LH pulse frequency 
(38). In polycystic ovary syndrome LH pulse frequency 
and amplitude are higher throughout the menstrual 
cycle in comparison to that observed in healthy 
women, contributing to chronic anovulation (61-64). 

 

 
Figure 1. Hormonal oscillations through the menstrual cycle. In the early follicular phase of the menstrual 
cycle, the initial increase in FSH stimulates follicular recruitment and maturation. The consequent 
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secretion of estradiol (E2) selectively inhibits FSH release (needed for selection of the dominant follicle) 
and maintains rapid GnRH pulsatility during the late follicular phase. The persistent rapid GnRH pulses 
increase LH, which further stimulates E2 secretion, culminating in positive E2 feedback to produce the 
mid-cycle LH surge. During the LH surge, GnRH levels appear to be consistently elevated and remain 
elevated as LH declines, suggesting that the frequency of GnRH pulse has become very rapid or 
continuous, which results in desensitization of LH secretion (possibly the mechanism to terminate the 
LH surge). After ovulation, luteinization of the ruptured follicle results in progesterone secretion which 
reduces the frequency of GnRH pulses. With the demise of corpus luteum, E2, progesterone and inhibin 
levels fall, and the GnRH pulse frequency increases, leading to follicular maturation in the next cycle. 
(Adapted from: Marshall JC, Dalkin AC, Haisenleder DJ, Paul SJ, Ortolano GA, Kelch RP. Gonadotropin-
releasing hormone pulses: regulators of gonadotropin synthesis and ovulatory cycles. Recent Prog 
Horm Res. 1991;47:155-187). 
 
NEURONAL REGULATION OF GnRH 
SECRETION: THE KISSPEPTIN-NEUROKININ B-
DYNORPHIN (KNDy) NEURONAL NETWORK 
 
Whilst the central role attributed to GnRH remains 
undisputed, its effective function requires input from 
other neuronal networks. For instance, the absence of 
estrogen receptor alpha (ER-alpha) expression on 
GnRH neurons suggests the need for an intermediate 
signaling pathway to mediate gonadal steroid 
feedback (1). The discovery of kisspeptin signaling in 
neuroendocrine regulation of human reproduction 
revolutionized the current understanding of the HPG 
axis. Kisspeptin signaling pathway is increasingly 
recognized as essential for normal puberty, 
gonadotropin secretion, and regulation of reproduction 
(65-67). Other relevant kisspeptin roles have been 
identified such as regulation of sexual and social 
behavior, emotional brain processing, mood, audition, 
olfaction, metabolism, body composition, cardiac 
function, among others (68-74). 
 
Discovery of KNDy Neuronal Network  
 
KiSS1, the gene encoding kisspeptins, was first 
described in 1996 as a suppressor of metastasis in 
human malignant melanoma (75,76). This gene was 
discovered in Hershey and named in accordance with 
the famous chocolates ‘Hershey’s Kisses’; the 
inclusion of ‘SS’ is indicative of ‘suppressor sequence’. 
The KiSS1 gene maps to chromosome 1q32 and 

includes four exons of which the first two are not 
translated (77). The gene encodes the precursor 145 
amino acid peptide, which is cleaved down to a 54 
amino acid peptide. This peptide can be truncated to 
14, 13 and 10 amino-acid peptides, all sharing the C-
terminal sequence (78,79). These peptides are 
collectively referred to as kisspeptins - and Kp-10, Kp-
13, Kp-14 and Kp-54 are suggested abbreviations for 
human kisspeptins (80). In 2001, kisspeptins were 
identified as ligands for the orphan G–protein receptor 
54 (GPR54) (81-83), currently named KISS1R (80). 
KISS1R is localized to human chromosome 19p13.3 
and it has five exons, encoding a 398-amino acid 
protein with seven trans-membrane domains (79,82). 
Upon binding by kisspeptin, KISS1R activates 
phospholipase C and recruits intracellular 
messengers, inositol triphosphate and diacylglycerol, 
which in turn lead to the release of calcium and 
activation of protein kinase C (82-84). 
 
A reproductive role for kisspeptin in humans became 
apparent from patients with pubertal disorders which 
were associated with KISS1R mutations (85-87). A 
number of inactivating mutations of Kiss1 and Kiss1r 
have since been reported in animal models with 
phenotypes characterized by pubertal delay (88). An 
activating mutation in KISS1R has been described in 
a girl with precocious puberty: when compared to cells 
with wild-type transfected GPR54, cells with this 
mutation showed prolonged inositol phosphate 
accumulation and phosphorylation of extracellular 
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signal–regulated kinase, suggesting extended 
activation of intracellular signaling by the mutant 
GPR54 (89). Missense mutations have also been 
reported in KISS1 gene in three unrelated children 
with central precocious puberty (90). Functional 
studies of these mutant peptides demonstrated higher 
resistance to in vitro degradation but normal affinity to 
KISS1R, thus suggestive of increased bioavailability 
as the mechanism by which these abnormal 
kisspeptins induce precocious puberty (90). 
 
Recently in an Asian cohort, potentially regulatory 
polymorphisms, as rs5780218 and rs12998, in KiSS1 
gene were significantly associated to genetic 
susceptibility to central precocious puberty in Chinese 
girls by single-locus analysis (91). Nevertheless, these 
findings are inconsistently reported in literature and 
require additional validation in functional studies. 
 
A role for neurokinin B in the hypothalamic regulation 
was also demonstrated when genetic studies in 
patients from consanguineous families with 
hypogonadotropic hypogonadism were found to have 
missense mutations in TAC3 (encodes neurokinin B) 
and TACR3 (encodes neurokinin B receptor) (92). 
Other cases have been reported since (93-96).  
 
There is also long-standing evidence for the role of 
opioid systems in reproduction. In 1980, Wilkes 
reported the localization of β endorphin in the human 
hypothalamus (97). Studies involving the 
administration of naloxone and naltrexone (opioid 
antagonists) to humans showed stimulatory effects on 
LH secretion (98,99), and other studies supported the 
notion that endogenous opioids play a role in the 
control of HPG axis (100-104). In 2007, it was 
demonstrated that dynorphin and kisspeptin are co-
localized along with neurokinin B in the same 
hypothalamic neuronal population in sheep, therefore 
termed KNDy (Kisspeptin-Neurokinin B-Dynorphin) 
neurons, highlighting the possible interconnection 
between these neuropeptides in the control of GnRH 

and gonadotropin secretion (105-107). The co-
localization of kisspeptin, neurokinin B and dynorphin 
has also been demonstrated in humans (108). 
 
Kisspeptin neurons have also other important 
neuroanatomical relationships, such as with neuronal 
nitric oxide synthase neurons as demonstrated in 
prepubertal female sheep (109), or with somatostatin 
neurons in the rat hypothalamus (110).  

 
Neuroanatomy of KNDy Neuronal Network 
 
The location of kisspeptin neurons is different between 
rodents and human species. In humans, kisspeptin 
neurons are distributed in the rostral Pre-optic Area 
(POA) and in the infundibular nucleus in the 
hypothalamus (Figure 2) (108,111). In both male and 
female autopsy samples, the majority of kisspeptin cell 
bodies are identified in the infundibular nucleus, and a 
second dense population of kisspeptin neurons in the 
rostral POA (108). The infundibular nucleus (arcuate 
nucleus in non-human species) is similar across 
species, but the rostral region is more species specific 
(108,112,113). In rodents, the rostral population is 
located in the anteroventral periventricular nucleus 
(AVPV) and the periventricular nucleus (PeN), the 
continuum of this region named as the rostral 
periventricular region of the third ventricle (RP3V) 
(112,114). Humans and ruminants lack this well-
defined RP3V population of kisspeptin neurons, which 
are more scattered within the preoptic region 
(113,115).  
 
Kisspeptin axons form dense plexuses in the human 
infundibular stalk, where the secretion of GnRH occurs 
(108). Axo-somatic, axo-dendritic, and axo-axonal 
contacts between kisspeptin and GnRH axons were 
demonstrated at this level, showing that kisspeptin 
and GnRH networks are in close proximity (108,116). 
Moreover, GnRH neurons express Kiss1r mRNA, 
reinforcing the notion of kisspeptin involvement in 
GnRH secretion (117-119). 
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Figure 2. Neuroanatomy of kisspeptin-GnRH pathway and the control of HPG axis in humans and 
rodents.  Kisspeptin signals directly to GnRH neurons, which express KISS1R. The location of kisspeptin 
neurons within the hypothalamus is species specific, residing within the anteroventral periventricular 
nucleus (AVPV) and the arcuate nucleus in rodents, and within the preoptic area (POA) and the 
infundibular nucleus in humans. Kisspeptin neurons in the infundibular nucleus (humans)/arcuate 
nucleus (rodents) co-express neurokinin B and dynorphin (KNDy neurons), which autosynaptically 
regulate kisspeptin secretion (via neurokinin B receptor and kappa opioid peptide receptor). In humans, 
infundibular KNDy neurons relay negative (red) and positive (green) feedback, whereas in rodents the 
negative and positive steroid feedback are mediated via arcuate nucleus and AVPV respectively. The 
role of human POA kisspeptin neurons in sex steroid feedback is not yet clear. (Adapted from: 
Skorupskaite K, George JT, Anderson RA. The kisspeptin-GnRH pathway in human reproductive health 
and disease. Human Reproduction Update. 2014;20:485-500). 
 
Three-quarters of kisspeptin-immunoreactive cells in 
the human infundibular nucleus of the hypothalamus 
co-express neurokinin B and dynorphin (KNDy 
neurons) (108,120). KNDy neurons in rodents and 
ruminants are localized in the arcuate nucleus of the 
hypothalamus. However, neurokinin B and dynorphin 
are absent from kisspeptin neurons in the 
hypothalamic POA (Figure 2) (67,115). This 

differential expression of neuropeptides may reflect 
distinct functions of these two kisspeptin populations 
with kisspeptin neurons in the AVPV acting as LH 
surge generators, while those in the ARC (including 
KNDy neurons) acting as LH pulse generators. 
 
Significant kisspeptin expression was also 
demonstrated in central extra-hypothalamic sites, 
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including in limbic and paralimbic brain regions, such 
as medial amygdala, cingulate, globus pallidus, 
hippocampus, putamen and thalamus, key areas of 
neurobiological control of sexual and emotional 
behaviors (reviewed in detail in (121)), as well as 
peripherally in organs like ovary, testis, uterus and 
placenta where the kisspeptin system may also play a 
part in reproduction function (122,123).  
 
Apart from reproductive and central kisspeptin 
expression, the kisspeptin signaling system has been 
demonstrated in several peripheral tissues, namely, in 
pancreas (involved in glucose-stimulated insulin 
secretion); in endothelial cells of different vascular 
beds as coronary artery, aorta and umbilical vein 
(triggering vasoconstriction); in the kidney, namely, in 
tubular cells, collecting duct cells and vascular smooth 
muscle cells (involved in function and renal 
morphogenesis); as well as in bone, fat and liver tissue 
(78,124,125). 
 
Interactions Between Kisspeptin, Neurokinin B 
and Dynorphin 
 
KDNy neurons act synergistically to induce 
coordinated and pulsatile GnRH secretion by 
regulating the neuroactivity of other KDNy cells. This 
is supported by the existence of neurokinin B and 
kappa opioid peptide receptors (receptor for 
dynorphin) within the KNDy cells, but not kisspeptin 
receptors, which are predominantly expressed on 
GnRH neurons (107,120,126). Neuron-neuron and 
neuron-glia communications via gap junctions 
contribute for the synchronized activities among KNDy 
neurons (127).   
 
Neurokinins (A and B) are members of the tachykinin 
family of peptides, which stimulate three related 
GPCRs (encoded by TACR1, TACR2 and TACR3) 
(128) This family also contains substance P, 
neuropeptide K, neuropeptide γ, hemokinin-1, and 
more recently endokinins. Neurokinin B acts 
predominantly on TACR3. Neurokinin B increases the 
membrane potential of KNDy neurons, leading to an 

increase in KNDy neuron pulsatile activity which, in 
turn, will promote the secretion of kisspeptin leading, 
ultimately, to GnRH secretion (67,129,130). 
Neurokinin B signaling regulates GnRH/LH secretion 
in healthy women, and it is crucial for the mediation of 
the estrogenic positive and negative feedback on LH 
secretion (131-133). There is rapidly increasing 
interest in the therapeutic value of neurokinin 
antagonists in several indications in reproductive 
health, recently reviewed in (134). 
 
In women with polycystic ovary syndrome, the 
relationship between kisspeptin and gonadotropin 
levels has been widely explored in those with 
anovulatory cycles (135-138). Most studies have 
shown higher serum levels of kisspeptin and LH when 
the oligomenorrhea phenotype is present, despite the 
high heterogeneity observed. In this context, potential 
treatments targeting neuroendocrine dysfunction 
emerged. The administration of neurokinin 3 receptor 
antagonists markedly reduced serum LH 
concentration and pulse frequency, as well as serum 
testosterone (139-141). A recent study confirmed a 
complex crosstalk between neurokinin B and 
kisspeptin pathways in the regulation of GnRH 
secretion in polycystic ovary syndrome. In this study, 
kisspeptin-10 infusion given to women with polycystic 
ovary syndrome increased LH secretion with a direct 
relationship to estradiol exposure. Neurokinin 3 
receptor antagonism reduced LH secretion and 
pulsatility, and whilst LH response to kisspeptin-10 
was preserved, its relationship with circulating 
estradiol was not. More interestingly, although 
kisspeptin-10 increased LH pulse frequency, changes 
in other parameters of LH secretory pattern were 
prevented when co-administered with neurokinin 3 
receptor antagonists (141). 
 
In postmenopausal women,  seven day treatment with 
neurokinin 3 receptor antagonist decreased LH 
secretion, but not FSH secretion, as well as lead to a 
remarkable reduction in hot flushes (142). Neurokinin 
3 receptor antagonism efficiency in treating 
menopausal hot flushes has been also demonstrated 
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in other clinical trials (143,144). Fezolinetant 
administrated in a single daily dose regimen (30 or 
45mg/daily) for treatment of moderate to severe 
vasomotor symptoms reduced these symptoms by 
over 50% from baseline within the first week and 
persistently during the 52-week treatment period, and 
is now approved for the treatment of menopausal 
vasomotor symptoms (145-148). 
 
A second comparable drug, elinzanetant, which differs 
in its pharmacology in that it is an antagonist at the 
NK1 as well as NK3 receptor, has also been recently 
demonstrated to reduce the severity and frequency of 
moderate-to-severe vasomotor symptoms and also to 
improve sleep quality and menopause-related quality 
of life (149). The importance of NK1 receptor 
antagonism in these effects is unclear. 
 
In healthy men, neurokinin B signaling display a 
central role for the reproductive function, and this is 
functionally upstream of kisspeptin-mediated GnRH 
secretion: LH, FSH and testosterone secretion 
decreased during the administration of a neurokinin 3 
receptor antagonist, while kisspeptin-10 
administration restored LH secretion to the same 
degree before and during neurokinin 3 receptor 
antagonist treatment (150).  
 
An increase in the expression of Kiss1 in the 
hypothalamic neurons was observed following 
senktide (agonist of neurokinin B) administration 
(151), and its stimulatory effects were abolished in 
Gpr54 knock-out male (152). In ovariectomized goats, 
neurokinin B stimulated LH secretion through 
electrical multi-unit activity corresponded to LH 
secretion, suggesting a hypothalamic site for this 
GnRH pulse generation (153). GnRH antagonists 
abolished the stimulatory effect of neurokinin B, 
demonstrating its site of action to be functionally 
higher than the GnRH receptor (154,155).  
 
Dynorphins act as the decelerator that inhibits KNDy 
neurons pulsatility. Studies involving the 
administration of opioid antagonists to humans have 

shown stimulatory effects on LH secretion in late 
follicular and mid-luteal phase (98,99), and together 
with other studies (100-104), highlight the inhibitory 
input by dynorphins on kisspeptin signalling, and 
consequently on GnRH/gonadotropin secretion. 
Through the stimulatory effects of neurokinin B and 
kisspeptin, and the inhibitory action of dynorphin, 
these neuropeptides coordinate pulsatile GnRH and 
LH secretion (Figure 2) (156,157). 
 
Kisspeptin-mediated GnRH secretion is sex steroid 
dependent. Estrogen and progesterone directly 
modulate kisspeptin activity though the sex-steroid 
receptors expressed on kisspeptin neurons at both 
AVPV and the arcuate nucleus (158-160). 
Furthermore, two distinct populations of kisspeptin 
neurons, the infundibular/arcuate region of which 
interacts with neurokinin B and dynorphin, appear to 
mediate distinct sex-steroid pathways (discussed in 
more detail in sections 4.1-4.4).  
 
Briefly, in humans, KNDy neurons in the infundibular 
nucleus alone are involved in negative and positive 
sex-steroid feedback, whereas in rodents positive sex-
steroid feedback seems to be mediated via kisspeptin 
neurons in the AVPV region and negative sex-steroid 
feedback via the arcuate KNDy neurons (Figure 2) 
(67,111,160,161).  
 
Stimulatory Effect of Kisspeptin on GnRH and 
Gonadotropin Secretion 
 
Kisspeptin is a potent stimulator of the HPG axis – and 
in fact, it is the most potent GnRH secretagogue 
currently known. Kisspeptin signals directly to the 
hypothalamic GnRH neurons via kisspeptin receptor 
to release GnRH into the portal circulation, which in 
turn stimulates the anterior pituitary gonadotropes to 
produce LH and FSH (129,162). 
 
The stimulatory effects of kisspeptin on LH secretion 
have been documented in animal models (163-166). 
This is consistent with human studies, where 
kisspeptin increases both LH and FSH secretion with 
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the preferential stimulatory effect on the former 
(67,167-177). Kissppetin-54 was first administered in 
healthy men as an intravenous infusion with dose-
dependent rise in LH secretion (169). Since then 
kisspeptin was administered in different isoforms 
(kisspeptin-54 and kisspeptin-10), different routes 
(subcutaneous and intravenous), different types of 
exposure (continuous and bolus), to healthy men and 
women and in endocrine disease models with low 
gonadotropin output, all showing stimulatory effect of 
kisspeptin on LH secretion (fully reviewed in (67)). 
 
Pulsatile GnRH secretion correlates with LH pulsatility, 
prompting investigation of the effect of kisspeptin on 
regulating LH pulse frequency. LH pulse frequency 
and amplitude were increased following intravenous 
infusion of kisspeptin-10 in healthy men (172), and 
subcutaneous bolus of kisspeptin-54 in healthy 
women (174). The hypothalamic response to 
kisspeptin-54 and the pituitary response to GnRH are 
preserved in healthy older men (178). Kisspeptin also 
stimulates LH pulse frequency in reproductive 
endocrine disorders of low LH pulsatility, including 
hypothalamic amenorrhea, defects in the neurokinin B 
pathway and hypogonadal men with diabetes 
(96,179,180). Indeed, kisspeptin-54 and kisspeptin-
10, as well as kisspeptin agonists like MVT-602 
(previously known as TAK-448) are able to stimulate 
physiological reproductive hormone secretion in 
individuals with functional hypogonadism related to 
deficient GnRH secretion, such as in hypothalamic 
amenorrhea or polycystic ovary syndrome (181,182). 
 
In addition, recent findings have explored further the 
effects of MVT-602. LH concentration increased in a 
dose-dependent manner, resembling the amplitude 
and duration found in the physiological mid-cycle LH 
surge, proving to be safe and well tolerated throughout 
the dose range (0.3 – 3.0 mg) (183). This approach to 
mimicking the physiological response during oocyte 
maturation and ovulation may have clinical utility for 
women during medically assisted reproduction. 
 

Kisspeptin regulates GnRH and subsequently 
gonadotropin secretion through Kiss1r, as suggested 
by Messager who demonstrated no detectable LH 
levels in response to kisspeptin in Kiss1r knockout 
mice (119). The prevention of the stimulatory effect of 
kisspeptin on LH secretion by GnRH antagonists 
indicate that kisspeptin action is GnRH-mediated 
(118,164,184-186). This is further supported by the 
observation that kisspeptin cause depolarization of 
GnRH neurons (117) and stimulate GnRH release 
from hypothalamic explants (187,188). The 
expression of GnRH mRNA is upregulated in GnRH 
neurons following kisspeptin administration (189). 
Moreover, in patients with impaired functional capacity 
of GnRH neurons (idiopathic hypogonadotropic 
hypogonadism), the same dose of kisspeptin failed to 
induce LH response seen in healthy men and women 
(190). In female rats, ablation of KNDy neurons 
resulted in hypogonadotropic hypogonadism, 
confirming its role in the maintenance of normal LH 
levels and to estrous cyclicity (191). 
 
Some investigators have demonstrated a direct 
stimulatory effect of kisspeptin on gonadotropes, but 
this direct stimulatory action of kisspeptin on 
gonadotropes remains debatable (192-196). Kiss1 
and Kiss1r gene expression has been shown in 
gonadotropes, and gonadotropin secretion from the 
pituitary explants was observed following exposure to 
kisspeptin (78,192-195). Moreover, LHβ and FSHβ 
gene expression was upregulated in the primary 
pituitary cells treated with kisspeptin. Whilst kisspeptin 
can directly regulate gonadotropins at the 
transcriptional level, it appears to be less relevant than 
the GnRH-mediated action (67,195,196). 

  
Desensitization Effect of Chronic or Continuous 
Exposure to Kisspeptin 
 
Continuous administration of GnRH desensitizes the 
HPG axis by downregulation of GnRH receptors and 
desensitization of gonadotropes, following an initial 
stimulatory effect (39). It is therefore important to 
ascertain the effects of continuous exposure to 
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kisspeptin on the HPG axis. Efforts have been made 
to assess the impact of continuous infusions of 
kisspeptin in a number of animal experiments 
(119,197-200). 
  
In adult rats, continuous administration of kisspeptin-
54 increased serum LH and free testosterone on day 
one, but this stimulatory effect was lost after 2 days, 
indicative of kisspeptin receptor desensitization (200). 
In rhesus monkeys, the continuous administration of 
kisspeptin-10 resulted in suppression of LH secretion, 
indicating desensitization of kisspeptin receptor (198). 
The kisspeptin receptor has been shown to 
desensitize in vitro (197). In sheep, infusion of 
kisspeptin-10 resulted in acute increase in serum LH 
levels, which declined by the end of 4-hour infusion, 
while GnRH remained elevated following the 
discontinuation of kisspeptin-10 administration. This 
suggests that desensitization to GnRH could be 
occurring at the level of pituitary gonadotropes (119).   
 
Consistent with animal studies, Jayasena et al. 
demonstrated that in women with hypothalamic 
amenorrhea an initial increase in LH and FSH 
secretion was not sustained following twice daily 
subcutaneous kisspeptin-54 administration for two 
weeks (176). Other studies in humans employing 
continuous or repeated kisspeptin administration 
provide conflicting evidence for kisspeptin-mediated 
desensitization and appear to be dose-related 
(172,180). High doses of kisspeptin may induce 
desensitization, but this is not apparent at lower doses 
(67). Sustained LH secretion and increased LH 
pulsatility was demonstrated with lower dose of 
kisspeptin-54 (0.01-1nmol/kg/h) infusion for 8 hours in 
women with hypothalamic amenorrhea (180) and 
kisspeptin-10 (3.1 nmol/kg/h) infusion for 22.5 hours in 
healthy men (172). In contrast, LH secretion was not 
maintained in three healthy men during the 24 hour 
infusion of kisspeptin-10 at 9.2 nmol/kg/h (the highest 
dose used in humans so far), although serum LH did 
not fall to the castrate levels and remained well above 
baseline at end of infusion (201).  
 

Kisspeptin receptor agonist analogues, TAK-488 and 
TAK-683, induce desensitization when administered 
to healthy men (202,203). However, the ability of 
natural kisspeptin fragments to downregulate the HPG 
axis in humans remains to be established, and is to 
date complicated by differences in study protocols, in 
terms of isoform of kisspeptin used, duration (8 hours-
2 weeks), mode and route of kisspeptin administration, 
lower doses of kisspeptin in human studies compared 
to animal, and the endocrine profile of the study 
participants (men versus women versus hypothalamic 
amenorrhea).   

 
Sexual Dimorphism in Kisspeptin Signaling 
 
The response to kisspeptin is different in men and 
women. In men, kisspeptin potently stimulates the 
release of LH, but in women the effect of kisspeptin is 
variable and dependent on the phase of menstrual 
cycle (67). Whilst men respond to the modest doses of 
kisspeptin, LH response to kisspeptin in healthy 
women is minimal and inconsistent in the early 
follicular phase but greatest in the pre-ovulatory phase 
of the menstrual cycle (169-171,177). This indicates 
that in addition to the fluctuations in sex-steroid milieu, 
other mechanisms, such as changes in pituitary 
sensitivity to GnRH or GnRH network responsiveness 
to kisspeptin regulate the sensitivity to kisspeptin 
throughout the menstrual cycle (67,126,204).  
 
Not only there is sexual dimorphism in gonadotropin 
response to kisspeptin, but there are also anatomical 
differences. Female hypothalami have significantly 
more kisspeptin fibers and kisspeptin cell bodies than 
men (173). Only a few kisspeptin cell bodies are 
present in the male infundibular nucleus and none in 
the rostral periventricular nucleus, which is on contrary 
to the female hypothalami with abundant kisspeptin 
network in both of these hypothalamic nuclei (108). 
These sex differences in kisspeptin neurons appear to 
be established early during perinatal development 
through the action of sex steroids (126,205).  
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These marked functional and anatomical differences 
may reflect sexually dimorphic roles of kisspeptin 
between both sexes, influencing their reproductive 
functions, namely the sex steroid feedback in GnRH 
and gonadotropin secretion (67). 
 
Kisspeptin, GnRH and Puberty 
 
Kisspeptin is crucial for normal pubertal development, 
the discovery of which formed the basis for the 
obligate role of kisspeptin signaling in the control of 
reproductive function (206). More than a decade ago 
two independent groups identified ‘inactivating’ 
mutations in KISS1R in patients with 
hypogonadotropic hypogonadism presenting with 
pubertal delay (85,86). Recently, a male patient with a 
biallelic loss-of-function KISS1R mutation was 
described who had undergone a normal and timely 
puberty, although as a child he had presented with 
microphallus and bilateral cryptorchidism. This 
suggests different levels of dependence of the 
hypothalamic-pituitary-gonadal axis on kisspeptin 
signaling during the reproductive life span, with the 
mini-puberty of infancy appearing more dependent on 
the kisspeptin system than is adolescent puberty 
(207). On the other hand, activating mutations in 
KISS1R and KISS1 were then described in children 
with central precocious puberty (89,90).  
 
Hypothalamic expression of Kiss1 and Kiss1R mRNA 
is upregulated at puberty (117,165,208), and the 
percentage of GnRH neurons depolarizing in 
response to kisspeptin increases from juvenile (25%) 
to pubertal (50%) and to adult mice (>90%) (117), 
suggesting that GnRH neurons may acquire sensitivity 
to kisspeptin across puberty. In monkeys, kisspeptin-
54 secretion and pulsatility increased at the onset of 
puberty (209). Moreover, the exogenous 
administration of kisspeptin resulted in earlier puberty 
in rats and monkeys (208,210), whereas kisspeptin 
antagonists delayed puberty in rats (186) and inhibited 
GnRH release in pubertal monkeys (211). In other 
study, daily injections of a synthetic kisspeptin 
analogue have been shown to significantly advance 

puberty in prepubertal female mice (212). GnRH 
neuron-specific Kiss1r knockout mouse showed a 
delay in pubertal onset, abnormal estrous cyclicity in 
female and abnormal external genitalia in male 
(microphallus, decreased anogenital distance 
associated with failure of preputial gland separation) 
(213). 
 
Exogenous kisspeptin stimulated GnRH-induced LH 
secretion in patients with hypogonadotropism resulted 
in a spontaneous and permanent activation of their 
hypothalamic-pituitary-gonadal axis, whereas patients 
with idiopathic hypogonadotropic hypogonadism and 
no spontaneous LH pulsatility did not respond to 
kisspeptin, suggesting that the reversal of 
hypogonadism, sexual maturation and puberty may 
well be associated with the acquisition of kisspeptin 
responsiveness which in turn signals the emergence 
of reproductive endocrine activity (214). A recent 
study, 15 children with delayed puberty were 
administered intravenous kisspeptin and displayed 
divergent responses, with seven subjects having no 
response to kisspeptin, whereas others having either 
robust response (comparable to those of adults) or 
intermediate responses as perceived in one case 
(215).  
 
GnRH release during puberty appears to require a 
cooperative mechanism between the kisspeptin/NKB 
networks in close interaction with different 
neuropeptides, as substance P, NKA, RFRP-3 and 
alpha-MSH, working as partners to regulate puberty 
timing influenced, naturally, by a combination of 
genetic, environmental, and gene-environment 
interactions (216). 
 
Agonists and antagonists of kisspeptin and NKB were 
administered into the stalk-median eminence (region 
with high concentration of GnRH, kisspeptin and NKB 
neuroterminal fibers), and it was found that both 
kisspeptin-10 and the NK3R agonist senktide 
stimulated GnRH release in a dose-responsive 
manner in prepubertal and pubertal monkeys. 
However, senktide-induced GnRH release was 
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blocked in the presence of a KISS1R antagonist and 
the kisspeptin-induced GnRH release was blocked in 
the presence of NK3R antagonist in pubertal 
monkeys, leading to the notion that a reciprocal 
signaling mechanism between kisspeptin and NKB 
exists and is possibly necessary for a normal puberty 
(217). These data together emphasizes that disrupted 
kisspeptin-GPR54-NKB signaling leads to 
hypogonadotropic hypogonadism, reinforcing the 
critical role of kisspeptin in puberty. 

REGULATION OF GnRH AND GONADOTROPIN 
SECRETION 
 
Development and maintenance of normal reproductive 
function requires a coordinated interplay between 
neuroendocrine, metabolic, and environmental 
factors. The GnRH-gonadotropin system plays a 
central role in the regulation of reproduction by 
integrating different signals and factors (Figure 3) 
(126,204).  

 
 

 
Figure 3. Neuroendocrine regulation of GnRH/gonadotropin secretion. The GnRH-gonadotropin system 
plays a central role in the regulation of reproduction by integrating different neuroendocrine, metabolic 
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and environmental signals/factors. The KNDy signaling has a key role in this process by integrating 
some of these signals and by regulating GnRH neurons. 
 
Overview of Sex Steroid Feedback 
 
A crucial role for sex steroids in the regulation of GnRH 
neurons and/or gonadotropes in humans was initially 
proposed as serial blood sampling and gonadotropin 
assays in women through phases of menstrual cycle 
showed an uneven distribution, with a clear mid-cycle 
surge in LH and FSH. Two mechanisms were 
proposed to mediate this effect: first, GnRH secretion 
is altered in response to the steroid milieu; second, 
sensitivity of the gonadotropes to a GnRH input is sex-
steroid dependent, although the exact mechanism 
remains controversial due to inter-species variation 
(218).  
 
Hypothalamic secretion of GnRH increases during 
proesterus in rats (219), sheep (220), and non-human 
primates (221). Pulsatile once hourly administration of 
exogenous GnRH restored ovulation in Rhesus 
monkeys with hypothalamic lesions which abolished 
GnRH secretion, suggesting that it was the ‘ebb and 
flow’ of ovarian estrogen feedback acting directly on 
the pituitary which triggered an LH surge (222). In 
humans, endogenous GnRH secretion is potentially 
diminished during the pre-ovulatory LH surge and the 
suppression of gonadotropin secretion is greater with 
lower doses of a GnRH receptor antagonist during the 
mid-cycle surge in comparison to the other phases of 
the menstrual cycle (223). This suggests that pituitary 
gonadotrope sensitivity to GnRH is enhanced during 
the mid-cycle surge. Administration of exogenous 
estradiol or testosterone in men with 
hypogonadotropic hypogonadism receiving pulsatile 
GnRH therapy, decreased gonadotropin 
concentrations, demonstrating inhibitory effects of 
sex-steroids at the level of pituitary (224). A direct 
effect of estrogen on gonadotropes is further 
demonstrated by the inhibition of LH secretion from rat 
pituitary gonadotropes in vitro (225). Literature to date 
suggests that there is dual-site sex-steroid feedback 
in the regulation of gonadotropin secretion, occurring 

at the level of both pituitary and hypothalamus (226-
231).  
 
Estrogen Feedback  
 
Patterns of GnRH and LH secretion across the 
menstrual cycle are modulated by estradiol feedback. 
A biphasic effect of estradiol on gonadotropin 
secretion has long been established and it is essential 
for normal menstrual cycle, with an initial negative 
feedback (greater suppression of FSH) and a 
subsequent positive feedback (more prominent for LH) 
(32). However, the basis for estrogen feedback has 
been unclear for a long time. GnRH neurons do not 
express estrogen receptor alpha (ER-alpha) 
(232,233), and therefore a mediator between gonads 
and hypothalamus was missed. Recent evidence 
suggests that kisspeptin and neurokinin B (132) 
appears to be providing this “missing link” as a key 
regulator of both negative and positive estrogen 
feedback (67,126). 
 
KNDy neurons in the infundibular nucleus in humans 
and the arcuate nucleus in other mammals mediate 
negative estrogen feedback. Estrogen suppresses 
kisspeptin and neurokinin B release from KNDy 
neurons, which reduce their stimulatory input to GnRH 
neurons. Simultaneously, there is a relative deficiency 
in dynorphin signaling as part of this negative 
feedback, releasing the inhibitory action on kisspeptin 
signaling (Figure 2) (67). Immunohistochemical 
staining of the postmenopausal women hypothalami 
showed up-regulated expression of KISS1 mRNA and 
hypertrophy of kisspeptin neurons in the infundibular 
nucleus when compared to the premenopausal 
women (111). These hypertrophied kisspeptin 
neurons co-localized with ER-alpha, had increased 
expression of neurokinin B and decreased levels of 
prodynorphin mRNA (234-236). The above evidence 
for the involvement of the infundibular KNDy system in 
mediating negative estrogen feedback in humans is 
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consistent with animal studies. Kisspeptin neurons in 
the arcuate nucleus show frequent co-localization with 
ER-alpha (160,237). In ovariectomized animals, the 
expression of Kiss1 and neurokinin B mRNA was up-
regulated but prodynorphin mRNA reduced in the 
arcuate nucleus (equivalent to the infundibular 
nucleus in humans), and this was reversed by 
estrogen replacement (102,115,120,238-242). 
Postmenopausal women are resistant to the 
stimulatory effect of kisspeptin on LH secretion 
(142,243), but postmenopausal women receiving 
estradiol replacement therapy are only resistant to 
kisspeptin initially and then they do demonstrate a 
remarkable increase in LH pulse amplitude with direct 
correlation to the circulating levels of estradiol and 
duration of kisspeptin administration (243). However, 
neurokinin B regulates gonadotropin secretion in 
postmenopausal women, and antagonizing the 
neurokinin 3 receptor modestly decreases LH 
secretion in this context (142).  
 
Interestingly, the use of neurokinin 3 receptor 
antagonists has been shown to effectively reduce the 
frequency and severity of menopause-related 
vasomotor symptoms owing to their inhibitory effect in 
the hypothalamic thermoregulatory center, and thus 
presenting a potential non-hormonal treatment option 
for menopausal women (144,148,149). 
 
Negative estrogen feedback switches to positive 
feedback in the late follicular phase of menstrual cycle, 
in order to induce the pre-ovulatory LH surge. Ovarian 
estradiol seems to be the predominant signal to trigger 
this switch, via ER-alpha, stimulating RP3V kisspeptin 
neurons while it inhibits arcuate kisspeptin neurons. 
Recent evidence supports the role of kisspeptin in 
generating the LH surge: during an assisted 
conception cycle, kisspeptin-54, used instead of a 
routinely administered human chorionic gonadotropin, 
induced an LH surge, and oocyte maturation, with a 
subsequent live term birth (241). Repeated twice-daily 
administration of kisspeptin-54 shortened the 
menstrual cycle, suggesting that the onset of LH surge 
was advanced (173). This is further supported by 

antagonistic studies in animal models, where the 
administration of kisspeptin antiserum or antagonists 
blunt/prevent LH peak, whilst kisspeptin advances LH 
surge (211,244,245). 
 
However, kisspeptin-mediated positive estrogen 
feedback has marked anatomical variations between 
humans and other species. In rodents, positive 
estrogen feedback is mediated via the AVPV nucleus, 
which is absent in humans, other primates and sheep 
(Figure 2). AVPV neurons are sexually dimorphic, with 
higher density of ER-alpha described in females and 
AVPV kisspeptin neurons, as a subset of AVPV 
neurons, share this pattern (246). There seems to be 
functional specialization, since only a subset of AVPV 
kisspeptin neurons (~1/3) are synaptically connected 
to GnRH cell bodies, but of these, nearly all express 
estrogen sensitivity and most co-express tyrosine 
hydroxylase to facilitate positive feedback (247). The 
expression of Kiss1 mRNA in the AVPV nucleus is low 
following an ovariectomy but is dramatically increased 
with estrogen treatment and at the time of LH surge 
(160,161). In sheep, positive estrogen feedback is 
mediated though the arcuate nucleus, where the 
expression of Kiss1 mRNA is the greatest at the pre-
ovulatory LH surge (195).  
There are no studies looking at the anatomical region 
of estrogen mediating positive feedback in humans. 
Although there does not appear to be two distinct 
anatomical populations of kisspeptin neurons to relay 
negative and positive sex-steroid feedback in humans, 
it is possible that separate signaling pathways exists 
to mediate gonadal steroid feedback.  
 
Whilst it is clear that kisspeptin is involved in estrogen-
induced mid-cycle gonadotropin surge, the role of 
KNDy neurons in positive estrogen feedback is less 
obvious. In sheep, the expression of neurokinin B 
mRNA was increased during the LH surge, and 
neurokinin B receptor agonist senktide induced LH 
secretion mimicking its mid-cycle surge (248,249). 
However, this has not been reproduced in other 
species, including humans (180). In summary, KNDy 
neurons mediate negative estrogen feedback in the 
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infundibular nucleus in humans and the arcuate 
nucleus in other species. Positive estrogen feedback 
is mediated via kisspeptin neurons, which show 
marked inter-species anatomical variation. 
 
In addition to the gonads, the brain is one of the major 
organs producing estradiol, and recently a number of 
studies demonstrated that estradiol is synthesized and 
released in the hypothalamus (i.e. neuroestradiol) 
contributing to the regulation of GnRH release, 
particularly regarding its positive feedback effect 
during the preovulatory GnRH/LH surge (250). 
 
Progesterone Feedback  
 
Progesterone reduces LH pulse frequency in healthy 
women. LH secretory pattern in women exposed to 
exogenous progesterone was comparable to LH 
profile observed in the mid-luteal phase, 
demonstrating that progesterone plays a central role 
in the luteal phase of menstrual cycle (251). These 
inhibitory effects of progesterone on gonadotropin 
secretion are mediated by the progesterone receptor 
(PR) (252). The suppressive effect of progesterone on 
LH secretion was diminished in the context of estrogen 
deficiency, while co-administration of estradiol 
restored it (252), suggesting an interplay between 
these sex steroids. However, the presence of PR on 
only a small subset of GnRH neurons (253-255) led to 
the notion that intermediaries are involved in 
mediating inhibitory progesterone signal to GnRH 
neurons.  
 
There is evidence that KNDy neurons play a role in 
mediating progesterone feedback on GnRH through 
dynorphin signaling (Figure 2) (102,120). PR have 
been demonstrated to be co-localized with dynorphin 
in the KNDy neurons (159) and progesterone 
increased dynorphin concentrations (256). Moreover, 
the number of preprodynorphin mRNA expressing 
cells decreased in postmenopausal women (236) and 
in ovariectomized ewes, but normalized with 
exogenous progesterone to luteal levels (256).  
 

Testosterone Feedback  
 
Testosterone exerts negative feedback on 
gonadotropin secretion. Early studies verified that LH 
and FSH pulse frequency are enhanced in 
hypogonadal men and exogenous testosterone 
decreases gonadotropin secretion, suggesting that 
testosterone have an inhibitory effect on GnRH 
secretion (230,257).  
 
Few GnRH neurons express androgen receptors (AR) 
(258). GnRH neurons were thus considered to be 
reliant on an intermediary neuronal population to 
mediate testosterone feedback. A key role for KNDy 
neurons in this mediation has been suggested, as 
these neurons express AR which directly mediate the 
androgen feedback. The androgen feedback may also 
rely on the aromatization of testosterone, as 
testosterone-induced suppression of Kiss1 mRNA in 
the rodent arcuate nucleus is identical to that observed 
with estradiol, but more than that observed with 
dihydrotestosterone administration (259). The cross-
talk between AR and ER was suggested from animal 
studies: AR expression was downregulated in the 
prostate following neonatal estrogen exposure (260), 
and AR transcription was modulated following a co-
transfection of AR and ER (261).  
 
Navarro has described a role for KNDy neurons in 
mediating the negative testosterone feedback on 
GnRH secretion, and provided evidence that 
neurokinin B released from KNDy neurons is part of 
an auto-feedback loop that generates the pulsatile 
secretion of Kiss1 and GnRH in male mice: Kiss1 and 
dynorphin mRNA are regulated by testosterone 
through estrogen and androgen receptor-dependent 
pathways; KNDy neurons express neurokinin B 
receptor whereas GnRH neurons do not, and senktide 
(an agonist for the neurokinin B receptor) activates 
KNDy neurons leading to gonadotropin secretion but 
has no discernible effect on GnRH neurons (262). 
Other studies demonstrated that the suppression of 
gonadotropin secretion using testosterone is 
associated with a reduction of Kiss1 mRNA in the 
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hypothalamus (118,208,263). Moreover, post-
orchidectomy rise in LH in rodents can be blocked by 
kisspeptin antagonists, further suggesting that 
kisspeptin system mediates the hypothalamic 
androgen feedback (186). 

 
Stress and Glucocorticoids 
 
Physical and psychological stress is associated with 
hypothalamic amenorrhea, possibly though the 
activation of hypothalamic-pituitary-adrenal (HPA) 
axis (264,265). Experimental evidence points towards 
a cortisol-mediated suppression of gonadotropin 
secretion as the main key pathway to explain stress-
induced gonadotropin suppression (55,266-273). The 
negative effect of cortisol on HPG axis is recognized 
to occur at both pituitary and hypothalamic levels. 
There are also data suggesting that upstream factors 
in the HPA axis, such as Corticotropin Releasing 
Hormone (CRH) and vasopressin may play a 
mediatory role (274,275).  
 
Cortisol secretion in women with hypothalamic 
amenorrhea is elevated (267), and evening 
adrenocorticotropic hormone (ACTH) and cortisol 
concentrations are higher in excessive exercise 
(266,270). Administration of exogenous 
glucocorticoids to eugonadal women was associated 
with a decrease in LH pulse frequency, suggesting 
that glucocorticoids have a negative action on GnRH 
secretion (273). In ovine portal blood, cortisol 
administration led to a decrease in GnRH pulse 
frequency (272). Inferences of cortisol effects on 
gonadotropin secretion were also derived from 
observations in women and men with Cushing’s 
syndrome (condition associated with excessive 
cortisol secretion), where exogenous GnRH 
preferentially stimulates FSH whilst LH remains 
unchanged (268,271). The resolution of male 
hypogonadotropic hypogonadism was also observed 
in men with remission of Cushing’s disease (271). This 
negative input of cortisol on the HPG axis may be 
modulated by sex-steroid hormones, and kisspeptin 
signaling has also been implicated in the process.  

Cortisol alone had no impact on GnRH pulsatility in 
ovariectomized ewes, but the co-administration of 
estradiol and progesterone led to a 70% decrease in 
GnRH secretion (272). Decreased hypothalamic Kiss1 
mRNA expression has been observed during 
exposure to stress or exogenous glucocorticoids. The 
role of kisspeptin in mediating stress inputs is further 
supported by the expression of glucocorticoid receptor 
on murine kisspeptin neurons (276). Colocalization by 
immunohistochemistry of CRH receptor (CRH-R) in 
most hypothalamic kisspeptin neurons in the 
AVPV/PeN and ARC nuclei as well as glucocorticoid 
receptor (GR) in AVPV/PeN kisspeptin neurons 
support a relevant direct role of kisspeptin neurons in 
the inhibitory effects of CRH/ glucocorticoids (277). 
 
Hypothalamic CRH neurons, important regulators of 
the stress response, also directly modulate GnRH 
excitability in a dose-dependent and receptor-specific 
manner, and the GnRH response to CRH is influenced 
by estrogens (278). Intracerebroventricular 
administration of CRH in female rats suppressed LH 
pulsatility and the LH surge, and this suppression was 
enhanced by estrogens (279). 
 
Animal models have also linked increased exposure to 
RFamide-related peptide-3 (RFRP-3) during acute 
and chronic stress and hypothalamic expression of 
GnIH mRNA. Along these lines, the surface of GnIH 
neurons has glucocorticoid receptors and 
hydrocortisone administration was associated to an 
increased GnIH mRNA expression, ultimately leading 
to lower GnRH activity and dysregulation of the HPG 
axis (280). Together, these findings emphasize that 
kisspeptin as GnIH provide relevant inputs that 
contribute to an inhibitory effect of corticosteroids on 
gonadal axis during stress. 

 
Prolactin 
 
Prolactin is a well-known inhibitor of GnRH release 
and a suppressor of the HPG axis. The association 
between hyperprolactinemia and reproductive 
dysfunction has long been established, accounting for 
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14% of secondary amenorrhea and hypogonadism 
cases (281) and for a third of women presenting with 
infertility (282,283). Hyperprolactinemia is evident in 
16% of men with erectile dysfunction and in 11% of 
men with oligospermia (284). The decreased 
pulsatility of LH in hyperprolactinemia responds to 
bromocriptine (285). GnRH therapy has restored 
ovulation and normal luteal function in bromocriptine 
resistant hyperprolactinemia women (286,287), 
suggesting that prolactin exerts inhibition through 
direct reduction of GnRH secretion. 
 
The neuroendocrine pathway by which prolactin 
inhibits GnRH pulse frequency remains to be fully 
elucidated. A direct action of prolactin on the GnRH 
neuronal network is possible (288,289). Prolactin has 
also been demonstrated to influence other systems, 
including GABA (290), β endorphins (291), 
neuropeptide Y (292) and dopaminergic systems (via 
tuberoinfundibular dopamine (TIDA) neurons) (293). 
 
Nevertheless, data suggest that prolactin receptors 
are expressed in most kisspeptin neurons but only in 
a small proportion of GnRH neurons, indicating that 
kisspeptin signaling may have a role in this context 
(288,294). In rodent models, kisspeptin neurons in the 
arcuate nucleus modulate dopamine release from 
dopaminergic neurons, thereby regulating prolactin 
secretion (295). Kiss1 expression is decreased in 
lactation, a physiological state associated with 
hyperprolactinemia (296). Prolactin-sensitive GABA 
and kisspeptin neurons were identified in regions of 
the rat hypothalamus (294). Moreover, in a mouse 
model of anovulatory hyperprolactinemia (induced by 
a continuous infusion of prolactin), Kiss1 mRNA levels 
were diminished and peripheral administration of 
kisspeptin restored gonadotropin secretion and 
ovarian cyclicity (297). There are also other animal 
studies reporting an inhibitory effect of prolactin on 
Kiss1 expression (298,299). This data suggests that 
kisspeptin is a possible link between 
hyperprolactinemia and GnRH deficiency. The 
administration of kisspeptin-10 reactivated the 
gonadotropin secretion in women with 

hyperprolactinemia-induced hypogonadotropic 
amenorrhea, suggesting that GnRH deficiency in the 
context of hyperprolactinemia is, at least in part, 
mediated by an impaired hypothalamic kisspeptin 
secretion (300).  
 
On the other hand, kisspeptins appears to have a 
stimulatory effect on prolactin release, as 
demonstrated in a recent study in ovariectomized rats 
which had intracerebroventricular injections of 
kisspeptin-10 with subsequent increase in prolactin 
release, and this required the estrogen receptor-alpha 
and was potentiated by progesterone via 
progesterone receptor activation (301).  
 
Nutrition and Metabolism 
 
A link between energy balance and reproductive 
function enables organisms to survive to reproductive 
maturity and to withstand the energy needs of 
parturition, lactation, and other parental behaviors. 
This link optimizes reproductive success under 
fluctuating metabolic conditions (302). Kisspeptin 
signaling may link nutrition/metabolic status and 
reproduction by sensing energy stores and translate 
this information into GnRH secretion (303). These 
relations elucidate further associations between 
reproductive dysfunction and metabolic disturbances, 
such as diabetes, obesity or anorexia nervosa 
(67,304,305).  
 
Food deprivation impairs GnRH and gonadotropin 
secretion, and leptin (a satiety hormone secreted by 
adipose tissue, the levels of which drop in response to 
fasting) plays a role in this inter-regulation by 
stimulating LH release (67,306-308). Periods of 
fasting and calorie restriction decrease LH pulse 
frequency and increase pulse amplitude (302,309-
311). Administration of recombinant leptin increased 
LH pulse frequency in women with hypothalamic 
amenorrhea (312) and prevented fasting-induced drop 
in testosterone and LH pulsatility in healthy men (313). 
Moreover, humans with mutations in leptin or in leptin 
receptor show hypogonadism (314). Thus, the 
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crosstalk between kisspeptin and leptin is relevant for 
reproduction and fertility (71), including in the setting 
of assisted reproduction techniques (315). 
 
Kisspeptin neurons may have a role in mediating the 
metabolic signals of leptin on the control of HPG axis, 
as 40% of the arcuate kisspeptin neurons express 
leptin receptors in contrast to the GnRH neurons, 
where leptin receptors are absent (316-319). Food 
deprivation is associated with a decrease in 
kisspeptin, and subsequent reduction in gonadotropin 
secretion (320-323). Levels of low Kiss1 mRNA 
expression in the leptin-deficient ob/ob mice are 
partially upregulated by exogenous leptin (161). 
Moreover, exogenous kisspeptin restored vaginal 
opening (marker of sexual maturation) in 
malnourished rodents (320). Animal models of type 1 
diabetes, characterized by insulin deficiency and 
impaired cellular nutrition, had hypogonadotropic 
hypogonadism and decreased Kiss1 mRNA 
expression. Repeated administration of kisspeptin to 
these rodents increased prostate and testis weight 
(324). It is plausible that a relative deficiency of 
kisspeptin secretion is a mechanism for 
hypogonadotropic hypogonadism in patients with 
obesity and diabetes (179). In hypogonadal men with 
type 2 diabetes, kisspeptin-10 increased LH secretion 
and pulse frequency (179). Although early studies 
appeared to suggest a direct link between kisspeptin 
and leptin, it seems that the neuronal pathway 
whereby leptin modulates GnRH is far more complex 
(325,326). Only partial restoration in Kiss1 mRNA in 
leptin-deficiency and normal pubertal development 
and fertility observed in selective leptin receptor 
deletion from kisspeptin neurons suggest that 
kisspeptin may link reproduction and metabolism 
through other ways than leptin (161,327). 
Proopiomelanocortin (POMC), agouti-related peptide, 
neuropeptide Y, ghrelin, and cocaine- and 
amphetamine-regulated transcript (CART) expressing 
neurons have been linked to this process (303,319). 
Kisspeptin neurons communicate with POMC and 
neuropeptide Y neurons and are able to modulate the 
expression of relevant genes in these cells (316). This 

link between kisspeptin and other peptides classically 
associated to food intake (as POMC and neuropeptide 
Y) was explored due to the anorexigenic effect of 
intracerebroventricular administration of KP-10 in 
male rats mediated via anorectic neuropeptides, 
nesfatin-1 and oxytocin, expressed in various 
hypothalamic nuclei. Diminished food intake and 
anorexia was significantly abolished by pretreatment 
with oxytocin receptor antagonist (328,329). 
 
Several studies have also suggested that ghrelin can 
interact directly with hypothalamic neurons leading to 
suppression of gonadotropins release, and thus 
impairing fertility, an effect that is dependent of the 
estradiol milieu (303,330-332). 
 
GABA (Gamma-Amino Butyric Acid) 
 
GABA has also been implicated as a regulator of 
GnRH secretion. Although GABA is classically an 
inhibitory neurotransmitter in the central nervous 
system, most mature GnRH neurons are stimulated by 
GABA, which has attributed to GABA an excitatory 
action in HPG axis. The precise physiology of this 
mechanism is still unclear (333-337), but it may be 
related to the bidirectional interactions between GABA 
and kisspeptin pathways, as well as between these 
and GnRH neurons, in a variety of ways throughout 
development (338). In early development, GABA 
seems to increase KISS1 expression in embryonic 
phase and early postnatally, while in the absence of 
GABAergic input the expression of KISS1 declines 
(338,339). In the prepubertal period, the central 
restraint on GnRH secretion seems to be mediated by 
GABA possibly acting directly via kisspeptin neurons 
(338). In the peri-pubertal phase, the antagonism of 
GABA and the intrinsic disinhibition of kisspeptin 
neurons seem to be critical in puberty initiation and 
development (340,341). In adulthood, the interactions 
between GnRH-GABA-kisspeptin become more 
complex with HPG axis function critically dependent 
on such interactions. For instance, the preovulatory 
surge does not occur in the absence of GABA 
signaling, thus neurons co-expressing GABA and 
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kisspeptin seem crucial in providing double excitatory 
input to GnRH neurons at the time of ovulation 
(338,342). 
 
Additionally, in healthy men, total endogenous GABA 
levels in the anterior cingulate cortex, a key limbic 
structure, significantly decreased after intravenous 
infusion of kisspeptin (1 nmol/kg/h) demonstrating a 
potent inhibitory effect of kisspeptin on GABA levels 
which could be a fundamental concept in 
understanding the central limbic effect of kisspeptin in 
the human brain (343). 
 
Other Neuropeptides 
 
In addition to KNDy system and GABA, other peptides 
and neurotransmitters have been shown to influence 
GnRH-gonadotrope system: vasoactive intestinal 
polypeptide (VIP), vasopressin, catecholamines, nitric 
oxide, neurotensin, gonadotropin-inhibitory hormone 
(GnIH) /RFamide related peptide-3 (RFRP-3) (337), 
nucleobindin-2/nesfatin-1 (344). Excitatory inputs to 
the HPG axis may be mediated by VIP, 
catecholamines, glutamate and possibly vasopressin, 
whereas GnIH in birds, or its mammalian homolog 
RFRP-3, provide inhibitory inputs (345-349). RFRP 
neuronal populations have been detected mainly in 
the hypothalamic dorsomedial nucleus or adjacent 
regions, and they have projections to several 
hypothalamic areas including the arcuate nucleus, 
paraventricular nucleus, ventromedial nucleus and the 
lateral hypothalamus, all areas with major roles in the 
regulation of reproduction and energy balance 
(350,351). RFRP-3, encoded by the gene Rfrp, inhibits 
the electric firing of GnRH and kisspeptin neurons 
(346,352), which results in a suppression of GnRH-
induced gonadotropin release with consequent 

inhibition of the reproductive axis (353). This RFRP-3 
inhibitory input on the gonadotropin release is 
influenced by estrogens and may well be involved in 
their negative feedback. Estrogens reduce RFRP-3 
expression and RFRP-3 neuronal activation 
(354,355).  
 
Particular attention has been paid to the role of 
glutamate as a stimulatory modulator of the activity of 
ARC kisspeptin neurons, reaffirming the role of 
kisspeptin as a major neural integrator of inputs to 
GnRH neurons. Data from Kiss1 KO rats showed 
failure to increase GnRH/LH secretion following 
monosodium glutamate/NMDA administration (356). 
 
SUMMARY 
 
Complex neuroendocrine networks coordinate the 
regulation of reproduction, integrating a wide range of 
internal and external environmental inputs and 
signals. GnRH, the principal regulator of reproduction 
integrates cues from sex steroids, stress, 
glucocorticoids, nutritional and metabolic status, 
prolactin and other peptides, to controls gonadotropin 
secretion and subsequently gonadal function. 
Recently, the KNDy neuronal network has emerged as 
essential gatekeeper of GnRH release and thus 
reproduction, fertility and puberty. Translational 
clinical studies, exploring kisspeptin and neurokinin B 
activity in various physiological and pathological states 
are pivotal to explore potential clinical applications for 
these novel neuropeptides and their agonists as well 
as antagonists, may underpin future management of 
some disorders with dysfunctional GnRH pulsatility, 
such polycystic ovary syndrome, hypothalamic 
amenorrhea, infertility, obesity, pubertal disorders and 
menopause-related symptoms.
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