
 
 
 

 

www.EndoText.org   1 

PHYSIOLOGY OF THE HYPOTHALAMIC-PITUITARY-THYROID AXIS 
 
Stefano Mariotti, MD, Full Professor of Endocrinology, Pisa, Italy, mariottistefano48@gmail.com 

Paolo Beck-Peccoz, MD, Professor Emeritus of the University of Milan, Milan, Italy, paolo.beckpeccoz@unimi.it 
 

Updated April 4, 2021      
 
ABSTRACT 
 
The activity of the thyroid gland is predominantly 
regulated by the concentration of the pituitary 
glycoprotein hormone, thyroid-stimulating hormone 
(TSH). In the absence of the pituitary or of thyrotroph 
function, hypothyroidism ensues. Thus, regulation of 
thyroid function in normal individuals is to a large 
extent determined by the factors which regulate the 
synthesis and secretion of TSH. Those factors are 
reviewed in this chapter and consist principally of 
thyrotropin-releasing hormone (TRH) and the 
feedback effects of circulating thyroid hormones at 
the hypothalamic and pituitary levels. The 
consequence of the dynamic interplay of these two 
dominant influences on TSH secretion, the positive 
effect of TRH on the one hand and the negative 
effects of thyroid hormones on the other, results in a 
remarkably stable morning concentration of TSH in 
the circulation and consequently little alteration in the 
level of circulating thyroid hormones from day to day 
and year to year. This regulation is so carefully 
maintained that an abnormal serum TSH in most 
patients is believed to indicate the presence of a 
disorder of thyroid gland function. The utility of TSH 
measurements has been recognized and its use has 
remarkably increased due to the development of 
immunometric methodologies for its accurate 
quantitation in serum, although the criteria to define a 
“normal range” still remain a matter of controversy. 
This chapter is organized into two general sections. 
The first portion reviews basic studies of TSH 

synthesis, post-translational modification, and 
release. The second deals with physiological studies 
in humans which serve as the background for the 
diagnostic use of TSH measurements and reviews 
the results of TSH assays in pathophysiological 
disorders. 
 
THE REGULATION OF THYROID-STIMULATING 
HORMONE SYNTHESIS AND 
SECRETION: MOLECULAR BIOLOGY AND 
BIOCHEMISTRY 
 
The TSH Molecule 
 
TSH is a heterodimer consisting of an alpha and a 
beta subunit that are tightly, but non-covalently, 
bound (1,2). While the molecular weight of the 
deduced amino-acid sequence of the mature alpha 
and beta subunits in combination is approximately 
28,000 Da, additional carbohydrate (15% by weight) 
results in a significantly higher molecular weight 
estimate based on sizing by polyacrylamide gel 
electrophoresis. The alpha subunit (glycoprotein 
hormones, alpha polypeptide) is common to TSH, 
follicle-stimulating hormone (FSH), luteinizing 
hormone (LH), and chorionic gonadotropin (CG). The 
beta subunit confers specificity to the molecule since 
it interacts with the TSH receptor (TSH-R) expressed 
on the basolateral membrane of thyroid follicular 
cells, and is rate-limiting in the formation of the 
mature heterodimeric protein. However, the free beta 
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subunit is inactive and requires noncovalent 
combination with the alpha subunit to express 
hormonal bioactivity. The linear sequence of the 
human alpha subunit consists of 92 amino acids 
including 10 cystine residues that form a total 5 
bonds through disulfide linkage. The human TSH 
beta (hTSH beta) subunit contains 118 amino-acids, 
as predicted by complementary DNA sequences, but 
hTSH beta isolated from the pituitary gland has an 
apoprotein core of 112 amino-acids, due to carboxyl-
terminal truncation during purification.  
 
The production rate (PR) of human TSH is normally 
between 50 and 200 mU/day and increases markedly 
(up to >4000 mU/day) in primary hypothyroidism; the 
metabolic clearance rate (MCR) of the hormone is 
about 25 ml/min/m2 in euthyroidism, while 
significantly higher in hyperthyroidism and lower in 
hypothyroidism (3). The PR of free alpha subunit is 
about 100 µg/day, increases increase approximately 
two-fold in primary hypothyroidism and in post-
menopausal women, and decreases (about to one 
half) in hyperthyroidism (4). The PR of free TSH beta 
subunit is too low to be calculated in all hyperthyroid 
and in most euthyroid subjects, while is 25-30 ug/day 
in primary hypothyroidism (4). The MCR of the free 
subunits is 2-3 times faster than that of TSH, being 
about 68 ml/min/m2 for alpha and 48 ml/min/m2 for 
the beta subunit (4). The half-life of circulating TSH 
ranges from 50 to 80 minutes (4). 

 
The gene coding for the alpha subunit (CGA) is 
located on chromosome 6 and the thyroid stimulating 
hormone subunit beta (TSHB)  gene on chromosome 
1 (5). The structure of CGA gene has been 
determined in several animal species (6,7). The 
genes of each species are approximately of the same 
size and similarly organized in four exons and three 
introns. The human gene is 9.4 kilobases (kb) in 
length, with three introns measuring 6.4 kb, 1.7 kb 
and 0.4 kb, respectively. The TSHB gene has been 
isolated in mouse (7), rat (8), and humans (9,10), 
among other species. In contrast to the CGA gene, 
the organization of the TSHB gene is somewhat 
variable between the different species. The rat and 
the human genes are organized in three exons, while 
the mouse gene contains two additional 5'-
untranslated exons. The first exon is untranslated, 
the leader peptide and the first 34 amino-acids are 
encoded by the second exon, while the third exon 
represents the remaining coding region and 3'-
untranslated sequences. A single transcription start 
has been identified in the hTSHB gene, while the rat 
and the mouse genes contain two starting sites 
separated by approximately 40 base pairs (bp); 
transcription begins predominantly from the 
downstream site, which corresponds to the location 
of the human transcriptional start. A schematic 
representation of the TSHB gene is shown in Figure 
1.  

 

 
Figure 1. Thyrotropin β (TSHB) gene structure. Some mutations of the gene found in patients with 
congenital central hypothyroidism are also depicted (modified from McDermott et al. (11) and 
Baquedano et al. (12)). 
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The pre-translational regulation of TSH synthesis and 
secretion is a complex process, detailed in the next 
paragraphs. The formation of mature TSH involves 
several post-translational steps including the excision 
of signal peptides from both subunits and co-
translational glycosylation with high mannose 
oligosaccharides (13,14). As the glycoproteins are 
successively transferred from the rough endoplasmic 
reticulum to the Golgi apparatus, the trimming of 
mannose and further addition of fucose, galactose 
and sialic acid occurs (15). The alpha subunit has 
two and the beta subunit has one asparagine (N)-
linked oligosaccharide(s) showing a typical 
biantennary structure fully sulfated in bovine and half-
sulfated in human TSH (2). The primary intracellular 
role of these glycosylation events may be to allow 
proper folding of the alpha and beta subunits 
permitting their heterodimerization and also 
preventing intracellular degradation (16,15). On the 
basis of crystallographic studies on hCG and other 

glycoprotein hormones, a homology model of the 
tridimensional structure of TSH has been proposed 
(17). This model (Fig. 2) predicts for both the alpha 
and the beta subunit the presence of two beta-hairpin 
loops (L1 and L3) on one side of a central "cystine 
knot" (pair of cysteine molecules) formed by three 
disulfide bonds, and a long loop (L2) on the other 
side. Both alpha and beta chains have functionally 
important domains involved in TSH-R binding and 
activation (Fig. 2) (18). Of particular relevance is the 
so-called “seat belt” region of the beta chain 
comprised between the 10th (C86) and the 12th 
(C105) cysteine residue (Fig. 2 and Fig. 3). The 
name “seat belt” derives from the conformational 
structure of the beta chain determined by the 
disulfide bridge (C39/C125) toward the C-terminal tail 
of the beta subunit that wraps the alpha subunit like a 
“seat belt” (Fig. 3), and stabilizes the 
heterodimerization of TSH (2,18).  

 

 

http://www.endotext.org/


 
 
 

 

www.EndoText.org   4 

Figure 2. Schematic drawing of human TSH, based on a molecular homology model built on the 
template of a hCG model (17). The α-subunit is shown as checkered, and the β-subunit as a solid line. 
The two hairpin loops in each subunit are marked L1, L3; each subunit has also a long loop (L2), which 
extends from the opposite site of the central cystine knot. The functionally important α-subunit 
domains are boxed. Important domains of the β-subunit are marked directly within the line drawing 
(crossed line, beaded line and dashed line). Reproduced from Grossmann et al. (2) with permission, 
where further details can be found. 
 

 
Figure 3. Structural model of TSH based on the FSH x-ray structure, which is the best available 
structural template for TSH. The boxed residue numbers represent cysteines residues, which form 
stabilizing disulfide bridges (yellow): 5 in α-subunit (red orange), and 6 in the β-subunit (magenta). The 
disulfide bridge (C39/C125) toward the C-terminal tail of the α-subunit of TSH that wraps around the β-
subunit like a “seat belt” stabilizes the heterodimerization of TSH as well as that of FSH, LH, and HCG. 
(Reproduced from Kleinau et al. (18) with permission) 
 
Proper TSH glycosylation is also necessary to attain 
normal bioactivity (19), a process which requires the 
interaction of the neuropeptide thyrotropin-releasing 
hormone (TRH) (Fig. 4), with its receptor on 
thyrotroph cells (20-22). The requirement for TRH in 
this process is illustrated by the fact that in patients 
with central hypothyroidism due to hypothalamic-
pituitary dysfunction, normal or even slightly elevated 
levels of TSH are detected by radioimmunoassay, 
but biologically subpotent forms are found in the 
circulation together with reduced levels of free T4 
(23-25). Chronic TRH administration to such patients 
normalizes the glycosylation process enhancing both 
its TSH-R binding affinity as well as its capacity to 

activate adenyl cyclase. This, in turn, can normalize 
thyroid function in such patients (26). On the other 
hand, enhanced TSH bioactivity is invariably found in 
sera from patients with thyroid hormone resistance 
(27). Moreover, variations of TSH bioactivity (mostly 
related to different TSH glycosylation) have been 
observed in normal subjects during the nocturnal 
TSH surge, in normal fetuses during the last trimester 
of pregnancy, in primary hypothyroidism, in patients 
with TSH-secreting pituitary adenomas, and in non-
thyroidal illnesses (27,28). Glycosylation of the 
molecule can also influence the rapidity of clearance 
of TSH from the circulation. Taken together, these 
findings have led to a new concept of a qualitative 
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regulation of TSH secretion, mainly achieved through 
both the transcriptional and post-transcriptional 
mechanisms involving not only TSH glycosylation 

(29), but also thyrocyte physiology and thyroid 
disorders (30).  

 

 
Figure 4. Structure of TRH 
 
Specific amino-acid sequences in the common alpha 
and beta subunits are critical for the 
heterodimerization, secretion and bioactivity of 
mature TSH. These sequences include highly 
conserved segments which are essential for TSH-R 
binding and biological activity (see Refs (2,18) for an 
extensive review). The peptide sequence 
27CAGYC31 (cysteine-alanine-glycine-tyrosine-
cysteine) is highly conserved in the beta subunit of 
TSH, LH, hCG, as well as FSH, and is thought to be 
important in heterodimerization with the alpha subunit 
(31,32). Several inherited TSHB gene mutations are 

responsible for isolated familial central 
hypothyroidism and are listed in Table 1 and depicted 
in Fig. 1. The most frequent mutation is a 
homozygous single-base deletion in codon 105 that 
results in a substitution of cysteine 105 by valine and 
an additional 8 amino acid nonhomologous peptide 
extension on the mutant protein (C105V, 114X). The 
mutation destroys a disulfide bond essential for 
normal protein conformation and bioactivity and leads 
to an unstable heterodimer (33-
38,11,39,40,12,41,42).  

 
Table 1. Mutations in the Beta Subunit Gene Responsible for Congenital Isolated 
Central Hypothyroidism 
Mutation of TSHB Consequence of mutation on TSH heterodimer formation 

G29R (31) Prevents dimer formation modifying the CAGYC region 

E12X (33) Truncated TSH beta subunit unable to associate with alpha chain 
C105V, 114X (41) Destruction of a disulfide bond, non-homologous carboxyterminus. 

Change of amino acid sequence in the “seat belt” region leads to 
unstable heterodimer 

Q49X (37) Truncated TSH beta subunit forming a bio-inactive heterodimer 
with the alpha chain 

IVS2+5àA (39) Base substitution at intron 2 (position +5) with shift of the 
translational start point to an out of frame position of exon 3 

http://www.endotext.org/


 
 
 

 

www.EndoText.org   6 

resulting in a truncated transcript 
C85R (43) T to C transition at codon 85 of exon 3 resulting in a change of 

cysteine to arginine, preventing the formation of a functional 
heterodimer with the alpha subunit 

C162GàA (12) G to A change at the 5’ donor splice site of exon/intron 2 transition 
causing a (CGAàCGG) polymorphism, which although per se 
silent, disrupts the 5’ consensus sequence critical for splicing and 
causes complete skipping of exon 2 

C88Y (12) 323G>A transition resulting in a C88Y change. This cysteine 
residue is conserved among all pituitary and placental glycoprotein 
hormone-beta subunits and the loss alters the conformation and 
intracellular degradation 

 
The understanding of the relationship between 
molecular structure and biological activity of TSH 
recently allowed the synthesis of TSH variants 
designed by site-directed mutagenesis with either 
antagonist (43) or superagonist (44) activity that 
potentially offer novel therapeutic alternatives. More 
recently, newly chemically modified compounds with 
low molecular-weight and able to antagonize the TSH 
receptor have been reported (45,46). These drugs 
may possess agonist or antagonist properties. 
Indeed, a non peptidic antagonist, therefore devoid of 
intrinsic immunogenicity, might be very useful in the 
treatment of Graves’ disease and other forms of 
hyperthyroidism, such as TSH-secreting pituitary 
adenomas, Graves’ orbitopathy, and activating 
mutations of the TSH receptor (47,48). 
 
Other Thyrotropic Hormones 
    
A second thyrotropic hormone formed by a 
heterodimer of two distinct glycoprotein subunits 
(glycoprotein hormone alpha 2-subunit - GPA2 and 
glycoprotein hormone beta 5-subunit - GPB5) has 
been identified in the human pituitary and called 
thyrostimulin (49-53). Thyrostimulin has a sequence 
similarity of 29% with the alpha and 43% with the 
beta subunit and is able to activate the TSH-R 
(54,18). Although it has been hypothesized that it 
could account for the residual stimulation of thyroid 

gland observed in patients with central 
hypothyroidism (55), its physiological role is still 
unknown. The GPA2/GPB5 heterodimer is localized 
in extrapituitary tissues such as the eye, testis, bone, 
and ovary (54,56,57), while the anterior pituitary 
expresses almost exclusively GPA2 (54). In the rat 
ovary, thyrostimulin activates the TSH-R expressed 
in granulosa cells suggesting a potential paracrine 
activity (56). 
 
Regulation of TSH Synthesis and Secretion  
 
The major regulators of TSH production are 
represented by the inhibitory effects of thyroid 
hormone (58) and by the stimulatory action of TRH. 
As shown in Fig. 5, T3 acts via binding to the nuclear 
thyroid hormone receptor β2 isoform present in 
thyrotrophs, and T4 mainly acts via its intra-pituitary 
or intra-hypothalamic conversion to T3, although a 
direct negative effect of T4 independent from local T3 
generation on TSHB gene expression has been 
documented (59). Both thyroid hormones directly 
regulate the synthesis and release of TSH at the 
pituitary level and indirectly affect TSH synthesis via 
their effects on TRH and other neuropeptides. TRH is 
the major positive regulator of hTSHB gene 
expression and mainly acts by activating the 
phosphatidylinositol-protein kinase C pathway. Other 
hormones/factors are also implicated in the complex 
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regulation of TSHB gene expression, as detailed below. 
 

 
Figure 5. Basic elements in the regulation of thyroid function. TRH is a necessary tonic stimulus to 
TSH synthesis and release. TRH synthesis is regulated directly by thyroid hormones. T4 is the 
predominant secretory product of the thyroid gland, with peripheral deiodination of T4 to T3 in the liver 
and kidney supplying roughly 80% of the circulating T3. Both circulating T3 and T4 directly inhibit TSH 
synthesis and release independently, T4 after conversion to T3.  SRIH, somatostatin 
 
EFFECTS OF THYROID HORMONE ON TSH 
SYNTHESIS 
 
In animal models, thyroid hormone administration is 
followed by a marked decrease of both alpha and 
TSHB subunit mRNA expression (60,61), but TSHB 
is suppressed more rapidly and more completely 
than the alpha subunit. In humans with primary 
hypothyroidism a paradoxical increase of serum TSH 
concentration has been observed shortly after 
beginning thyroid hormone replacement therapy, 
followed later by TSH suppression (62). The precise 
mechanism for this phenomenon has not been fully 
elucidated: it could be due to a generalized defect in 
protein synthesis as a consequence of 
hypothyroidism, or to the presence of a still 
unrecognized stimulatory thyroid hormone cis-acting 
element (see below). Thyroid hormone regulation of 
TSHB subunit transcription is complex and, at least in 
the rat and mouse, involves control of gene 
transcription at both start sites of the gene (Fig. 6) 

(62-69). Studies of the human, rat and mouse TSHB 
genes have demonstrated that they contain DNA 
hexamer half sites with strong similarity to the T3 
response elements (TREs) found in genes which are 
positively regulated by thyroid hormone (70-72). The 
sequences in the TSHB gene are shown in Fig. 6 and 
their similarity to the typical hexamer binding sites in 
positively regulated genes and in the rat CGA gene is 
demonstrated by comparison to the TRE sequences 
from positively regulated genes (73). In keeping with 
this concept, T3 exerts similar negative activity on rat 
GH3 cells transfected with plasmids constructs 
containing the putative negative TRE of the rat TSHB 
gene or containing a half-site motif of the consensus 
positive TRE (74,75,73,69,76). The conserved TRE-
like sequences are the best candidate sites in the 
TSHB gene to which the T3 receptor (TR) binds. The 
subsequent binding of T3 to TR-DNA complexes 
suppresses transcription of both the CGA and TSHB 
genes (77,66,73,69). The inhibitory effect of thyroid 
hormone is observed with all alpha and beta isoforms 
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of TR, but TR-beta2 (a TR isoform with pituitary and 
central nervous system-restricted expression) is 
affected most substantially (78). This in vitro 
observation is in keeping with a series of in vivo data 
obtained in transgenic and knockout mice with 
generalized or pituitary-selective expression of 
mutated TR isoform genes. Knockout mice for TR-
alpha 1 develop only minor abnormalities in 
circulating T4 and TSH concentration (79), while 
mice lacking both beta1 and beta2 isoforms (beta-
null) develop increased serum T4 and TSH level, but 
retain partial TSH suppression by T3 administration 
(80,81). Mice selectively lacking the TR-beta2 
isoform develop hormonal abnormalities similar to 
TR-beta-null animals, indicating a key role of TR-
beta2 as a mediator of T3-dependent negative 
regulation (82). On the other hand, the residual T3-
dependent TSH suppression observed in mice 

lacking TR-beta isoforms suggests that TR-alpha 1 
may partially substitute for TR-beta in mediating T3 
suppression: accordingly, mice lacking all (alpha and 
beta) TR isoforms develop dramatic increases in 
circulating T4 and TSH concentration, indicating that 
a complete expression of all TR isoforms is required 
for normal regulation of the hypothalamic-pituitary 
thyroid axis (83-85). Further studies have been 
carried out with models of mice expressing 
selectively at the pituitary (83,86) and hypothalamic 
(87) level different combinations of double 
homozygous or combined heterozygous deletions of 
both TR-alpha and TR-beta genes. These studies 
confirmed the key role of TR-beta integrity both at the 
pituitary and hypothalamic level for the inhibition of 
TSHB and TRH gene expression. TR-alpha however, 
may partially substitute for TR-beta in mediating a 
partial thyroid hormone dependent TSH suppression. 

 

 
Figure 6. DNA sequences of the putative TREs in the rat, mouse, and human TSHB gene promoters. A 
comparison of the proximal promoter regions of the rat, mouse, and human TSHB genes is shown. The 
straight arrows denote TRE consensus half-sites identified by functional and TR binding assays. The 
first exons (relative to the downstream promoter for the rat and mouse genes) are shaded, and the bent 
arrows denote the sites of transcription initiation.  Note a nine-nucleotide deletion in the human gene 
relative to the rodent genes indicated by the triangle just 5' of the transcriptional start site. 
(Reproduced from Chin et al. (69) with permission.) 
 
The negative transcription conferred by TSH beta 
TRE sequences is retained even if they are 
transferred to a different gene or placed in a different 
position within a heterologous gene (88,89,73,90). 
This suggests that the negative transcriptional 
response to thyroid hormone is intrinsic to this TRE 
structure. In contrast with positive TREs, little is 
known about the mechanism of T3-dependent 
negative regulation of genes like TSHB. The data 

discussed above clearly show the crucial role of the 
TR-beta in the negative regulation of TSH synthesis. 
Like for positive TREs, it has been recently 
established that TR binding to DNA is required for 
negative gene regulation (91). Early experiments 
suggested that unliganded TR homodimers stimulate 
the expression of TSH beta (an effect that is a mirror 
image of the silencing effect on positive TREs), but 
the methodology employed was not adequate to 
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study the low level of basal TSHB transcriptional 
activity. The use of CV1 cell lines containing the TSH 
beta CAT (chloramphenicol acetyltransferase) 
reporter allowed a more accurate study of the 
molecular mechanisms involved in the liganded TR 
suppression (92). In this experimental system, TSHB 
gene suppression was dependent on the amounts of 
T3 and TR, but unliganded TR did not stimulate TSH 
beta activity, suggesting that TR itself is not an 
activator. Moreover, recruiting of co-activators and 
co-repressors were shown to be not necessarily 
essential, but are required for full suppression of the 
TSHBa gene (92). 
 
In contrast to the potentiating activity exerted on 
stimulatory TREs, retinoid X receptors (RXR) either 
unliganded or in combination with retinoic acid (RA) 
block thyroid hormone-mediated inhibition of the 
TSHB gene, possibly through competition with the 
TR-T3 complex binding to DNA (93,76,94,92). 
However, RA is also able to suppress TSHB gene 
expression when bound to RAR and RXR interacting 
with response elements separate from negative 
TREs (95,96). Taken together, these findings imply 
that distinct mechanisms are involved in thyroid 
hormone dependent inhibition and stimulation of TSH 
synthesis (97,98). Indirect support for this concept 
derives from the identification of patients with 
selective pituitary thyroid hormone resistance 
carrying TR mutations associated with normal or 
enhanced function on stimulatory TREs in peripheral 
tissues, but defective function on inhibitory TREs of 
the TSHB and TRH genes (99).   
 
Another peculiar feature of the negative TSH beta 
TRE is that its 5' portion (Fig. 6) displays high 
homology with the consensus sequence of binding 
sites for c-Jun and c-Fos, which heterodimerize to 
form the transcription factor called AP-1. This makes 
the negative TSH beta TRE a "composite element" 
able to bind both thyroid hormone receptors and AP-
1 (100,101,90,99). Since AP-1 antagonizes the 
inhibition exerted by thyroid hormone in vitro, it may 

act as a modulator of TRH-dependent regulation of 
the TSHB gene in vivo (90). The role of other 
important TSHB gene activity modulators (such as 
Pit-1 and its splice variants) will be discussed later. 
Other abnormalities of the mechanisms involved in 
the negative feed-back on TSH by thyroid hormones 
could be involved in rare pathological conditions of 
difficult identification and diagnosis.  
 
Since unliganded TR does not behave as an 
activator of the TSHB gene, other mechanisms are 
involved in the increase in TSH production observed 
in hypothyroidism. In the hypothyroid rat TSH 
production is increased 15 to 20-fold over that in the 
euthyroid state. This can be attributed to the 
stimulatory effects of TRH (see below) unopposed by 
the negative effects of T3; moreover, besides the 
transcription rate per cell, there is a 3 to 4 fold 
increase in the absolute number of thyrotrophs in the 
hypothyroid pituitary (102). Electron microscopic 
studies have shown near total depletion of secretory 
granules in the thyrotrophs of hypothyroid animals, a 
change that is reversed soon after administration of 
thyroid hormone (103). 
 
THYROID HORMONE EFFECTS ON RELEASE OF 
TSH 
 
The acute administration of T3 to the hypothyroid rat 
causes a rapid and marked decrease in the level of 
serum TSH (58,104) (Fig. 7). This decrease occurs 
prior to the decrease in pituitary alpha and beta-TSH 
mRNAs (104,61,105). During the period that 
circulating TSH is falling, pituitary TSH content 
remains unchanged or increases slightly (106). The 
suppression of TSH release is rapid, beginning within 
15 minutes of intravenous T3 injection, but is 
preceded by the appearance of T3 in pituitary nuclei 
(106). In the experimental setting in the rat, as the 
bolus of injected T3 is cleared and the plasma T3 
level falls, nuclear T3 decreases followed shortly by a 
rapid increase in plasma TSH. Both the chronological 
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and quantitative relationships between receptor 
bound T3 and TSH release are preserved over this 

time (106). 

 

 
Figure 7. Time course of specific pituitary nuclear T3 binding and changes in plasma TSH in 
hypothyroid rats after a single intravenous injection of 70 ng T3 per 100 g of body weight.  Since the 
maximal capacity of thyroid hormone binding in pituitary nuclear proteins is about 1 ng T3/mg DNA, 
the peak nuclear T3 content of 0.44 ng T3/mg corresponds to 44% saturation.  The plasma level falls to 
about 55% of its initial basal level by 90 minutes after T3 injection demonstrating that there is both a 
chronological and a quantitative correlation between nuclear T3 receptor saturation and suppression 
of TSH release. (From Silva and Larsen (107) with permission). 
 
The mechanism for this effect of T3 is unknown. As 
discussed before, suppression of basal TSH release 
is difficult to study in vitro. Accordingly, the T3 
induced blockade of TRH-induced TSH release has 
been used as a model for this event. This T3 effect is 
inhibited by blockers of either protein or mRNA 
synthesis (108,109). The effect is not specific for 

TRH since T3 will also block the TSH release 
induced by calcium ionophores, phorbol ester, or 
potassium (110,111). Furthermore, T3 will also block 
the TRH-induced increase in intracellular calcium 
which precedes TSH release (112). Thus, T3 inhibits 
TSH secretion regardless of what agent is used to 
initiate that process. 
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T4 can cause an equally rapid suppression of TSH 
via its intrapituitary conversion to T3 (104) (Fig. 5). 
This T4 to T3 conversion process is catalyzed by the 
deiodinase type 2.  An effect of T4 per se can be 
demonstrated if its conversion to T3 is blocked by a 
general deiodinase inhibitor such as iopanoic acid 
(113,104). In this case, the T4 in the cell rises to 
concentrations sufficient to occupy a significant 
number of receptor sites even though its intrinsic 
binding affinity for the receptor is only 1/10 compared 
to T3. A similar effect can be achieved by rapid 
displacement of T4 from its binding proteins by 
flavonoids (114). It seems likely, however, that under 
physiological circumstances the feedback effects of 
T4 on TSH secretion and synthesis can be 
accounted for by its intracellular conversion to T3.  
 
The effect of suppressive doses of T3, T4 and 
triiodothyroacetic acid on serum TSH has been 
evaluated in humans by ultrasensitive TSH assays 
(115). TSH suppression was shown to be a complex, 

biphasic, nonlinear process, with three temporally 
distinct phases: phase 1, a rapid TSH suppression, 
starting after 1 h and lasting for 10-20 h; phase 2, 
slower suppression, starting between 10 and 20 h 
and lasting for 6-8 weeks; and phase 3, with stable 
low TSH level (<0.01 mU/L). This pattern of thyroid 
hormone suppression of TSH is reproducible and 
independent of the basal thyroid status or the thyroid 
hormone analog used. 
 
Based on the analyses of the sources of nuclear T3 
in the rat pituitary, one would predict that 
approximately half of the feedback suppression of 
TSH release in the euthyroid state can be attributed 
to the T3 derived directly from plasma; the remainder 
accounted for by the nuclear receptor bound T3 
derived from intrapituitary T4 to T3 conversion (104). 
Various physiological studies in both rats and 
humans confirm this concept in that a decrease in 
either T4 or T3 leads to an increase in TSH. The 
effect of T4 is best illustrated in the iodine deficient 
rat model (Fig. 8).   
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Figure 8. Serum T3, T4, and TSH concentrations (mean ± SD) in rats receiving a low iodine diet (LID), 
with or without potassium iodide (KI) supplementation in the drinking water. (From Riesco et al. (116) 
with permission) 
 
In this paradigm, rats are placed on a low iodine diet 
and serum T3, T4, and TSH quantitated at frequent 
times thereafter (116). Even though serum T3 
concentrations remain constant, there is a marked 
increase in TSH as the serum T4 falls. In humans, 
severe iodine deficiency produces similar effects 
(117). The most familiar example of the independent 

role of circulating T4 in suppression of TSH is found 
in patients in the early phases of primary 
hypothyroidism in whom serum T4 is slightly 
reduced, serum T3 is normal or even increased into 
the high normal range, but serum TSH is elevated 
(118,119) (Table 2). 
 

Table 2. Serum concentration of total thyroid hormones and TSH in patients 
with primary hypothyroidism of increasing severity 
   TSH (mU/L) 
Group* T4 ug/dl T3 ng/dl Basal After 200 ug TRH 
Control 7.1±0.9 115±31 1.3±0.5 11±4.6 
1 6-9 119±40 5.3±2.3 39±15 
2 4-6 103±20 13±10 92±50 
3 2-4 101±35 63±56 196±120 
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4 <2 43±28 149±144 343±326 
Results are mean ± SD.  *Patients were categorized according to the severity of thyroid disease based on 
serum total T4 concentrations. (Adapted from Bigos et al. (118) with permission) 
 
THE ROLE OF THYROTROPIN RELEASING 
HORMONE (TRH) IN TSH SECRETION 
 
TRH is critical for the synthesis and secretion of TSH 
either in the presence or absence of thyroid 
hormones. Destruction of the parvo-cellular region of 
the rat hypothalamus, which synthesizes the TRH 
relevant for TSH regulation, causes hypothyroidism 
(120,121). Hypothalamic TRH synthesis is in turn 
regulated by thyroid hormones and thus TRH 
synthesis and release are an integral part of the 
feedback loop regulating thyroid status (see Fig. 5). 
TRH also interacts with thyroid hormone at the 
thyrotroph raising the set-point for thyroid hormone 
inhibition of TSH release (120). The data supporting 
these general concepts are reviewed in subsequent 
sections. 
 
Control of Thyrotroph-Specific TRH Synthesis   
 
TRH is synthesized as a large pre-pro-TRH protein in 
the hypothalamus and in several tissues, such as the 

brain, the beta cells of the pancreas, the C cells of 
the thyroid gland, the myocardium, reproductive 
organs including the prostate and testis, in the spinal 
cord, and in the anterior pituitary (122,123,120,124-
127). Recent investigations employing sophisticated 
techniques such as fast atom bombardment mass 
spectrometry and gas phase sequence analysis 
showed that most TRH immunoreactivity found in 
extrahypothalamic tissues is actually accounted by 
TRH-immunoreactive peptides displaying different 
substitutions of the amino-acid histidine of authentic 
TRH, which could be active in autocrine/paracrine 
networks involving also extrapituitary TSH secretion 
(127). On the other hand, pituitary TSH production is 
dependent only on TRH synthesized in specific areas 
of the paraventricular nucleus (PVN) (Fig. 9), located 
at the dorsal limits of the third ventricle (128). In 
particular, TRH neurons are almost exclusively found 
in the parvicellular part of the PVN and, while TRH-
synthesizing neurons are found in all parvicellular 
subdivisions of the PVN, hypophysiotropic TRH 
neurons are located exclusively in the periventricular 
and medial subdivisions (Fig. 9).  
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Figure 9. Distribution of TRH-synthesizing neurons in the PVN. Low power micrographs (A–C) illustrate 
the TRH neurons at three rostrocaudal levels of the PVN. Schematic drawings (D–F) illustrate the 
subdivisions of the PVN where hypophysiotropic TRH neurons are localized (gray). AP, anterior 
parvocellular subdivision; DP, dorsal parvocellular subdivision; LP, lateral parvocellular subdivision; 
MN, magnocellular part of PVN; MP, medial parvocellular subdivision, PV, periventricular parvocellular 
subdivision; III, third ventricle. (From Fekete & Lechan (128) with permission) 
 
Hypophysiotropic TRH neurons project their axons to 
the median eminence, where TRH is released and 
drained to the anterior pituitary through the long 
portal veins (128). Although paracrine and autocrine 
activity has been recently described for TRH 
secreted in the anterior pituitary (129), the 
physiological relevance of pituitary TRH is unknown. 
The human pre-pro-TRH molecule is a protein of 29 
kDa containing 6 progenitor sequences for TRH 
(130-132). These six peptides consist of a Gln-His-
Pro-Gly peptide preceded and followed by Lys-Arg or 
Arg-Arg di-peptides. The basic di-peptides are the 
cleavage sites for release of the tetra-peptide 
progenitor sequence. The glycine residue is the 
source of the terminal amide for the proline residue of 

TRH (Fig. 4). In addition to the pro-TRH peptides 
which are released from the pre-pro TRH molecule, 
intervening non-TRH peptides which have potential 
physiological function are co-released (133). In 
particular, the prepro-TRH fragment 160-169, also 
known as hST10, TRH-enhancing peptide, and Ps4 
(134,135) is able to stimulate TSHB gene expression 
and to enhance the TRH-induced release of TSH and 
prolactin (PRL) from the pituitary 
(136,137,134,138Ps4). Ps4 high affinity receptors 
have been shown within several extrapituitary neural 
tissues and other endocrine systems (mainly in the 
pancreas and the male reproductive system), and 
targeted pre-pro TRH gene disruption results in 
hyperglycemia besides the expected hypothyroidism 
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(134). Another pre-proTRH peptide (fragment 178-
199) (139,140). appears to be a modulator of ACTH 
secretion, although the physiological relevance of this 
phenomenon is unknown. The prepro-TRH 
processing is mostly mediated by the prohormone 
convertases PC1 and PC2, and takes place during 
axonal transport after removal of the signal peptide 
(138). Subsequent cleavages occur as the peptides 
move down the axon toward the nerve terminal, from 
which TRH is released into the hypothalamic-pituitary 
portal plexus (120,121).  
 
Thyroid hormones exert strong negative regulation 
on TRH synthesis at the hypothalamic level (141-
145). Increases in TRH mRNA levels occur during 
primary or central hypothyroidism and implantation of 
a small crystal of T3 adjacent to the PVN results in a 
decrease in TRH mRNA (143). This regulation is 
observed in vivo exclusively in the parvo-cellular 
division of the PVN (142,143) (whose neurons 
contain the functional TR isoforms alpha1, beta2 and 
beta1 (146)), while in tissues outside the central 
nervous system expressing the TRH gene, negative 
regulation by thyroid hormone is absent (147). TR 
beta2 is the key isoform responsible for T3-mediated 
feedback regulation by hypophysiotropic TRH 
neurons (148). Targeted disruption of TR beta2 
expression results in increased TRH mRNA 
expression in the PVN, similar to that found in 
hypothyroidism. In contrast to the anterior pituitary, 
where ablation of TR beta2 or the entire TR beta 
allele produces only partial TH resistance (80,81), the 
lack of TR beta is associated with a complete 
resistance of the modulation of TRH synthesis 
exerted by severe hypo- or hyperthyroidism (148).  
 
The physiological source of the T3 causing 
downregulation of TRH mRNA in the hypothalamus is 
the subject of ongoing investigations. Somewhat 
surprisingly, the PVN does not contain the type 2 5' 
iodothyronine deiodinase (D2) which is thought to be 
the source of at least 80% of the intracellular T3 in 

the central nervous system (104,149). However, 
studies with T3 containing mini-pumps implanted into 
thyroidectomized rats indicate that, for normalization 
of circulating TSH and hypothalamic pre-pro-TRH 
mRNA, T3 concentrations about twice normal have to 
be maintained in rat plasma (144). Thus, for both 
systems (TRH and TSH), feedback regulation 
requires a source of T3 in addition to that provided by 
the ambient levels of this hormone. While this T3 
seems likely to be produced locally from T4, the main 
anatomical location of such a process has been 
identified only more recently in the specialized 
ependymal cells called tanycytes lining the floor and 
the infralateral wall of the third ventricle between the 
rostral and caudal poles of the median eminence and 
the infundibular recess (150,128). Tanycytes are one 
of the major sources of D2, with D2 mRNA 
expressed in the cell bodies, in the processes, and in 
their end feet (128). Originally believed to only serve 
as part of the blood-brain barrier, tanycytes have 
complex functions including an active role in 
endocrine regulation. In particular, T3 locally 
produced by tanycytes from circulating T4 represents 
the primary source of T3 involved in the feed-back 
regulation of hypophysiotropic neurons, unable to 
express D2 (128). The anatomical location of 
tanycytes places them in a strategic position to 
extract T4 from the bloodstream or from 
cerebrospinal fluid after T4 has traversed the choroid 
plexus (Fig. 10). Despite their lipophilic nature, the 
transport of thyroid hormone into the cells require an 
active processes involving a long list of transporters 
(151). Two transporter families have been shown to 
be important in the transport of thyroid hormones in 
the brain: the monocarboxylate transporter 
(MCT8)(152) and the organic anion transporting 
polypeptide (OATP1C1)(153). Several lines of 
evidence support an important role of MCT8, a 
member of the MTC family in central nervous system 
thyroid hormone transport expressed primarily in 
neurons and in tanycytes. Data from both MCT8 KO 
mice and from humans with MCT8 mutations indicate 
that lack of functional MCT8 result in hypothyroid 
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TRH neurons, in spite of high circulating T3 
concentration, suggesting that MCT8 is necessary for 

physiological feed-back regulation (128).  

 

 
Figure 10. Schematic illustration of the feedback system regulating the hypothalamic-pituitary-thyroid 
axis. Thyroid hormones exert negative feedback effect at the level of hypothalamic TRH neurons and of 
pituitary gland. The central feedback effect of thyroid hormones depends on the circulating T4 levels. 
In the hypothalamus, T4 is converted to T3 by D2 in tanycytes. By volume transmission, T3 secreted 
from tanycytes reaches the hypophysiotropic TRH neurons, where T3 inhibits the proTRH gene 
expression via TR-β2 receptors. The set point of the feedback regulation can be altered by two 
mechanisms: (i) regulation of D2 activity in tanycytes may alter the hypothalamic T3 availability 
independently from the peripheral T4 concentration. (ii) Neuronal afferents can alter the PCREB 
concentration in the hypophysiotropic TRH neurons that can change the set point of feedback 
regulation through competition of PCREB and thyroid hormone receptors for the multifunctional 
binding site (Site 4) of the TRH promoter. ARC, hypothalamic arcuate nucleus; C1-3, C1-3 adrenergic 
area of the brainstem; CSF, cerebrospinal fluid; DMN, hypothalamic dorsomedial nucleus; ME, median 
eminence; NTS, nucleus tractus solitarius; PVN, hypothalamic paraventricular nucleus; py, pyramidal 
tract; sp5, spinal trigeminal tract. (From Fekete & Lechan (128) with permission) 
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The synthesis of TRH is under complex 
transcriptional control sharing several mechanisms, 
besides the negative regulation by thyroid hormone, 
with the TSHB gene. The human TRH gene (Fig. 11) 
is located on chromosome 3 (3q13.3àq21) (154); the 
5' flanking sequence of the TRH gene has potential 
glucocorticoid and cyclic AMP response elements 
(GRE and CRE) (130). There are also potential 
negative TREs located in this portion of the gene 
which offer regulatory sites for thyroid hormone 
control of TRH gene transcription. The thyroid 
hormone negative regulatory elements of the TRH 
gene are localized in its 5' flanking element (-242 to 
+54 bp). Four sequences within this region exhibit a 
high degree of homology with the consensus 
sequences for TRE half-sites (AGGTCA) and two of 
them also show homology with elements implicated 
in negative regulation by thyroid hormone of the 
TSHB gene (147). In the absence of thyroid 
hormone, proTRH gene expression as well as 
prohormone convertase enzymes (PC1/3 and PC2) 
are increased in the PVN, while the content of TRH in 
the median eminence is decreased due to increased 
secretion of the mature hormone in the portal 
circulation (128). In contrast, hyperthyroidism is 
associated with decreased proTRH-mRNA in the 
PVN (128). The negative feed-back of thyroid 
hormones is exerted directly on hypophysiotropic 
TRH neurons of the PVN which express all thyroid 
hormone receptor isoforms. The recent availability of 
transgenic mice lacking either TRH, TR-beta 
isoforms, or both provided evidence for a pivotal role 
of TRH in the physiological TH feed-back on the 
hypothalamic pituitary-thyroid (HPT) axis (155). 
Double TSH and TR-beta knockout mice had 
reduced TH and TSH levels associated with low TSH 

content in pituitary thyrotrophs and both serum TSH 
and pituitary TSH content was increased by chronic 
exogenous TRH administration (156). Thus, the TRH 
neuron appears to be required for both TSH and TH 
synthesis and is the predominant locus of control of 
the HPT axis (155).  However, studies carried out 
with different animal models of congenital 
hypothyroidism show that the thyrotrophs exhibit 
hyperplasia and hypertrophy along with increased 
TSH mRNA expression not only in the athyreotic 
Pax8-/- mice, but also in TRHR1-/- Pax8-/- double-
knockout mice, which miss a functional thyroid gland 
and the TRH receptor at the pituitary level, 
suggesting that the stimulation of thyrotroph 
proliferation and TSH synthesis is rather a direct 
consequence of the continue here athyroidism of the 
animals (157). Further studies are therefore required 
to determine the relative contributions of TRH and TH 
for bioactive pituitary TSH release.  

 
As shown in Fig. 11, the TRH gene promoter 
contains potential binding sites for cAMP response 
element (CRE) binding protein (CREB), and both 
human and rat TRH genes are positively regulated by 
cAMP (147). One of the potential CREs of TRH 
promoter is a sequence that has overlapping 
TRE/CRE bases –53 to –60 bp (TGACCTCA) (147). 
There is evidence for competitive interactions of TR 
beta1 and CREB at the overlapping TRE/CRE in the 
TRH promoter (147). Constructs of the TRH promoter 
with mutations in this overlapping site prevent both 
the inhibition by the TR-T3 complex and the basal 
activation in the presence of unliganded TR, 
underlining the relative importance of the TRE/CRE 
site in relation to the other TREs in the TRH promoter 
(147). 
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Figure 11. Genomic and promoter structure of the TRH gene. The murine, rat and human TRH genes 
are composed of three exons and two introns (A). The coding sequence for the precursor protein is 
present on exons 2 and 3. As depicted, the TRH promoter region precedes the transcription start site in 
exon 1. The proximal 250-bp sequences of the human, mouse and rat promoters are similar and share 
the indicated transcription factor binding sites. The location of the CREB binding site (Site 4) and 
sequences in human (H), mouse (M) and rat (R) are shown. (B, C) Hypothesized schematic 
representation of the interaction between PCREB and the thyroid hormone receptor at Site 4. (B) 
Illustrates that in the presence of abundant PCREB, there may be less availability for binding of the 
thyroid hormone receptor/T3 complex, hence, an increase in TRH gene transcription. When PCREB 
concentrations fall as shown in (C), increased binding of the thyroid hormone receptor/T3 complex 
reduces TRH gene transcription (From Fekete & Lechan (128) with permission) 
 
A glucocorticoid-responsive element (GRE) is also 
present in the TRH gene promoter (130). and the 
glucocorticoid receptor has been identified on TRH 
neurons of the PVN (158). The role of corticosteroids 
in TRH gene expression is unclear, since both 
inhibitory and stimulatory effects have been reported 
(159,160). The direct effect of glucocorticoids on 
TRH gene expression is generally stimulatory in vitro, 
but in vivo this activity may be overridden by the 
complex neuroendocrine reactions following 
glucocorticoid excess or deficiency (159).  
 
TRH INTERACTION WITH PITUITARY 
THYROTROPHS AND WITH THYROID HORMONE  

 
Although TRH (either maternal or embryonic) is not 
required for the normal development of fetal pituitary 
thyrotrophs, and TRH-deficient mice are not 
hypothyroid at birth, TRH is required later for the 
postnatal maintenance of the normal thyrotroph 
function (161). TRH exerts its activity binding to a 
specific receptor in the plasma membrane of the 
thyrotroph to induce the release of TSH and to 
stimulate TSH synthesis. The TRH receptor of 
several animal species (including humans) has been 
cloned and has been identified as a G-protein-
coupled receptor with seven highly conserved 
transmembrane domains (162-165). Biallelic 
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inactivating mutations in the 5’-part of the TRH 
receptor gene are one of the molecular causes for 
central congenital hypothyroidism (166-169). TRH-
receptor number and mRNA are increased by 
glucocorticoids and decreased by thyroid hormone, 
as well as by TRH itself (170,171). The second 
messenger for induction of the thyrotroph response 
to TRH is intracellular Ca2+ ([Ca2+]i) (172-174). TRH 
was previously believed to act also through 
stimulation of the adenyl cyclase-cAMP pathway 
(120), but this mechanism has not been confirmed by 
studies carried out with recombinant TRH-receptor 
transfected in different cell systems (175). TRH 
activates a complex [Ca2+]i response pattern 
dependent upon both agonist concentration and cell 
context. The first phase of the TRH response is an 
acute increase of [Ca2+]i within the thyrotrophs via 
release from internal stores. This is the consequence 
of increased inositol triphosphate concentrations from 
hydrolysis of phosphatidyl inositol (PI) in the cell 
membrane (176,173,177,178). The hydrolysis of PI is 
mediated by G protein activation of phospholipase C 
and also generates diacylglycerol, which in turn 
activates intracellular protein kinase C (PKC). 

Stimulation of extracellular calcium influx through 
verapamil-sensitive channels is also observed after 
TRH stimulation (172,179). Both TRH and increased 
[Ca2+]i stimulate intracellular calcium efflux, which 
helps in terminating the agonist activity 
(177,179,180). In transfection systems in which the 
TSHB gene promoter has been linked to a reporter 
gene, both the calcium ionophore ionomycin and 
phorbol esters (a protein kinase C activator) stimulate 
TSH gene transcription, confirming the key role of 
these second messengers in mediating TRH activity 
(66). Both increased [Ca2+]i and PKC appear to be 
independently operative in normal thyrotrophs (181).  
 
The molecular mechanism(s) underlying the 
stimulation of TSHB gene expression by TRH have 
been partially elucidated. In GH3 cells transfected 
with hTSHB promoter constructs, two distinct regions 
of the human TSHB gene responding positively to 
stimulation by TRH were identified between -130 and 
+37 bp of the gene (182-184) (Fig. 12) The 3'-region 
corresponds to eight bp of the first exon; the 5'-region 
ranged between -128 to -60 bp of the 5'-flanking 
region (182,183). 

 
Figure 12. The 5’ flanking sequence of the human preproTRH gene between –192 and +58 bp. Four 
potential thyroid response element (TRE, boxed) and two potential CREB binding elements (CRE, 
underlined) are shown. One sequence (from –60 to –53 bp) consists of overlapping TRE/CRE sites 
(bold). (Modified from Wilber & Xu (147)) 
 

INACTIVATION OF TRH 
 
TRH is rapidly inactivated within the central nervous 
system by a cell-surface peptidase called TRH-
degrading ectoenzyme (TRH-DE) (185). TRH-DE is 
very specific, since there is no other ectopeptidase 

known capable of degrading TRH and TRH is the 
only known substrate of this unique enzyme (185). 
TRH-DE has been purified to homogeneity and cDNA 
encoding rat TRH-DE has been cloned. In rodents, 
pituitary TRH-DE mRNA and enzymatic activity are 
stringently positively regulated by thyroid hormones, 
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and reduced by estrogens (185). This suggests that 
TRH-DE may act as a regulatory element modulating 
pituitary TSH secretion. The expression of TRH-DE 
in the brain is high and displays a distinct distribution 
pattern, but it is not influenced by peripheral 
hormones, supporting the concept that brain TRH-DE 
may act as a terminator of TRH signals (185). 

 
OTHER FACTORS INVOLVED IN THE 
REGULATION OF TSH/TRH SYNTHESIS AND 
SECRETION  
 
A number of other substances, including ubiquitous 
and pituitary or thyrotroph-specific transcription 
factors, hormones, neuropeptides and cytokines 
influence TSH synthesis and secretion of TRH (Table 
3, Fig. 11&13).  

 
Table 3. Predominant Effects of Various Agents on TSH Secretion 
STIMULATORY INHIBITORY 
Thyrotropin-releasing hormone (TRH) Thyroid hormones and analogues 
Prostaglandins (?) Dopamine 
Alpha-adrenergic agonists (? Via TRH) Somatostatin  
Opioids (humans) Gastrin 
Arginine-vasopressin (AVP) Opioids (rat) 
Glucagon-like peptide 1 (GLP-1) Glucocorticoids (in vivo) 
Galanin Serotonin 
Leptin Cholecystokinin (CCK) 
Glucocorticoids (in vitro) Gastrin-releasing peptide (GRP) 
 Vasopressin (AVP) 
 Neuropeptide Y (NPY) 
 Interleukin 1 beta and 6 
 Tumor necrosis factor alpha 

 
Role of Pit-1 and its Splicing Variants in the Regulation of TSHB Gene Expression 
 
Sequence analysis of the hTSHB promoter reveals 
three areas with high (75-80%) homology to the 
consensus sequence for the pituitary-specific 
transcription factor Pit-1 (182,183,186,184). These 
areas are localized between -128 and -58 bp of the 
5'-flanking region. Selective mutation analysis 
revealed that the integrity of these areas was needed 
for the stimulatory effect of either TRH or forskolin 
(187). Expression of an inactive mutant of Pit-1 
decreases TRH stimulation of hTSHB (183) and 
transfection of Pit-1 in cell lines lacking this factor 
restores cAMP induction of the hTSHB gene (186). 

Taken together, these results strongly support an 
important role of Pit-1 in the regulation of hTSHB 
gene expression. Phosphorylation markedly 
increases the stimulatory activity of Pit-1 in TSHB 
gene expression (187), and TRH stimulates transient 
phosphorylation of Pit-1 in GH3 pituitary cells (188). 
 
Further support for a role of Pit-1 in the regulation of 
TSHB gene expression derives from animal models 
(dwarf mice) and from clinical syndromes of 
combined pituitary hormone deficiency (CPHD) 
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(189,167). Snell and Jackson dwarf mice lack a 
functioning Pit-1 protein due to a point mutation and 
a gross structural rearrangement in the Pit-1 gene, 
respectively (190). Both species show low serum 
concentration of GH, prolactin and TSH associated 
with the loss of somato-, lacto- and thyrotropic 
pituitary cells. Several Pit-1 point mutations and a 
deletion of the entire coding sequence have been 
described in patients with CPHD: the effects on TSH 
secretion differ with the localization of the mutation, 
but generally result in central hypothyroidism (191-
194,94,189,195,196). Finally, the important role of 
Pit-1 in the control of TSH synthesis and secretion 
has been documented by the finding that circulating 
Pit-1 antibodies are associated with combined GH, 
prolactin, and TSH deficiency, the so called “anti-PIT-
1 antibody syndrome” (197-200).  
 
Although important, the role of Pit-1 for cell-specific 
expression of TSHB is not as clear as with the GH 
and PRL genes (201,184). Attention has been 
focused on thyrotropin-specific transcription factors, 
including Pit-1 splicing variants. Of those, a variant 
called Pit-1T (containing a 14 amino-acid insertion in 
the transactivation domain) is found only in 
thyrotropic cells expressing TSHB and it increases 
TSHB promoter activity when transfected in non-
thyrotropic cells expressing wild type Pit-1 (202,203). 
These results suggest that the combination of both 
Pit-1 and Pit-1T may have a synergistic stimulatory 
effect on TSHB promoter activity (204).  

 
Other Transcription Factors Involved in TSHB Gene 
Expression 
 
As stated above, the transcription factor AP-1 may be 
involved in modulating regulation of TSHB gene 
expression mediated by thyroid hormone (Fig. 13). 
Accordingly, a potential AP-1 binding site is present 
between -1 to +6 bp of the TSHB gene (184), and the 
integrity of this site is required for maximal 
stimulation of  the hTSHB gene (205). Haugen et al. 
(206) described a new 50 kd thyrotroph-specific 
protein whose binding together with Pit-1 is needed 
for optimal basal expression of the mouse TSHB 
gene; this factor was subsequently identified as the 
transcription factor GATA-2 (207). GATA-2 stimulates 
the mouse TSHB promoter synergistically with Pit-1 
and is needed for optimal TSHB gene basal activity. 
Another pituitary-specific protein (P-Lim), which binds 
and activates the common glycoprotein hormone 
alpha subunit promoter, also synergizes with Pit-1 in 
the transcriptional activation of the TSHB gene in 
mice (208). Moreover, characterization of the 
dwarfed Ames (df) mouse led to the cloning of the 
paired-like homeodomain factor Prop-1 (Prophet of 
Pit-1) (209). PROP-1 is necessary for Pit1 
expression. Biallelic mutations in the human PROP-1 
gene have been identified as a further cause of 
CPHD phenotype affecting somatotropes, 
lactotropes, and thyrotropes (210,189,167,211). 
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Figure 13. The regulatory region of human TSHB gene (see text for details) 

 
cAMP  
 
An increase in intracellular cAMP stimulates 
expression of both the common CGA and TSHB 
subunit genes (182). In contrast to the TRH gene, 
this action of cAMP is probably not mediated through 
direct binding of CREB to a CRE sequence, but by 
promoting Pit-1 phosphorylation with subsequent 
activation of the TSHB promoter  (183,186).  

 
Steroid Hormones 
 
Steroid hormones including corticosteroids, estrogen 
and testosterone modulate TSHB gene expression. 
Dexamethasone in pharmacological doses 
decreases serum TSH concentrations in normal 
subjects (212), in patients (213), and rats (214) with 
TSH-secreting pituitary adenomas, but does not 
significantly change TSH subunit mRNA levels (214). 
This suggests that glucocorticoids may act on TSH 
biosynthesis at a translational or post-translational 
level. Furthermore, as discussed before for the TRH 
gene, several other neuroendocrine mechanisms 
may participate in vivo in the modulation of TSH 

synthesis and secretion by glucocorticoids. In 
keeping with this concept, it has been shown in 
humans that enhanced hypothalamic 
somatostatinergic and dopaminergic inhibitory 
activities are involved in the glucocorticoid-dependent 
blunting of the TSH response to TRH (215). 
 
Estrogens and testosterone have limited direct 
effects on TSH synthesis and secretion in humans. 
Estrogens mildy reduce mRNA levels coding for the 
alpha and beta TSH subunits in hypothyroid rats 
(216), perhaps interacting with the same response 
elements involved in thyroid hormone regulation. 
Testosterone has similar effects, at least in part 
explained by its peripheral conversion to estrogen 
(217).  
 
Other Hormones, Neuropeptides and Cytokines 
  
Somatostatin, the major physiological inhibitor of GH 
secretion, is also an inhibitor of TSH secretion in rats 
and humans (218-220). The physiological relevance 
of this inhibition is suggested by studies carried out 
with antibodies to somatostatin whose administration 
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in rats increases serum TSH in basal conditions and 
after TRH or cold-exposure (212). Indirect evidence 
for a physiological role of somatostatin in the 
regulation of TSH secretion has been obtained in 
humans by the demonstration that stimulation of the 
endogenous somatostatin tone by oral glucose 
inhibits TSH response to TRH (221). The TSH-
inhibiting activity of somatostatin is an acute 
phenomenon, while long-term treatment with 
somatostatin analogues does not cause 
hypothyroidism in man (222,223), presumably 
because the effects of the initial decrease in serum 
thyroid hormone concentration overrides the 
inhibitory effects of somatostatin. Somatostatin binds 
to five distinct types of receptors expressed in the 
anterior pituitary and brain and differing in binding 
specificities, molecular weight, and linkage to 
adenylyl cyclase (224). Binding of somatostatin to its 
receptor causes activation of Gi proteins which in 
turn inhibit adenylyl cyclase. Somatostatin also 
induces cellular hyperpolarization via modulation of 
voltage-dependent potassium channels (225). This 
mechanism is cAMP-independent and leads to a fall 
of [Ca2+]i by reducing extracellular calcium influx 
(226). 
 
In animal models, TSH secretion is affected by other 
hypothalamic hormones: in particular, corticotropin-
releasing hormone (CRH) stimulates TSH secretion 
in chickens (227) through an interaction with CRH-
receptor-2 (228), and melanin-concentrating 
hormone (MCH) suppresses in vivo and in vitro TSH 
release in rats (229). 
 
Neurotransmitters are important direct and indirect 
modulators in TSH synthesis and secretion. A 
complex network of neurotransmitter neurons 
terminates on cells bodies of hypophysiotropic 
neurons and several neurotransmitters (such as 
dopamine) are directly released into hypophysial 
portal blood exerting direct effects on anterior 
pituitary cells. Furthermore, many dopaminergic, 

serotoninergic, histaminergic, catecolaminergic, 
opioidergic, and GABAergic systems project from 
other hypothalamic/brain regions to the 
hypophysiotropic neurons involved in TSH regulation. 
These projections are important for a normal TSH 
circadian rhythm, response to stress, and cold 
exposure, while basal TSH secretion is mainly 
regulated by intrinsic hypothalamic activity (230-232). 
Despite the difficulty to precisely identify the relative 
contributions of different neurotransmitter systems in 
the regulation of TSH secretion, the role of some of 
them (particularly dopamine and catecholamines) 
has been rather well defined.  
 
Dopamine, acting via the DA2 class of dopamine 
receptors, inhibits TSH synthesis and release; 
similarly, to somatostatin, this activity is exerted 
through a decrease in adenylate cyclase (233-235). 
Dopamine also inhibits mRNA coding for alpha and 
TSHB subunits and gene transcription in cultured rat 
anterior pituitary cells (77). In contrast, with its 
inhibitory activity at the thyrotroph level, dopamine at 
the hypothalamic levels stimulates both TRH and 
somatostatin release (236,237), with an opposite 
effect on TSH secretion.  
 
In contrast to dopamine, adrenergic activation 
positively regulates TSH secretion. Central 
stimulation of alpha-adrenergic pathways increases 
TSH release in rats, presumably through stimulation 
of TRH secretion. Furthermore, alpha1 adrenergic 
agonists also enhance TSH release from pituitary 
cells in vitro by mechanisms which are independent 
of those activated by TRH (238,239,236,237). It is 
thought that alpha-adrenergic activity on thyrotrophs 
is linked to adenylate cyclase activation since agents 
increasing intracellular cyclic AMP in these cells can 
increase TSH release (240-242).  
 
Opioids inhibit TSH secretion in rats and this action is 
blocked by the antagonist naloxone (243), while in 
humans they appear to exert a stimulatory effect, 
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especially on the nocturnal TSH surge (244,232).  
Several other neuropeptides may affect TSH 
secretion in vivo or in vitro. Cholecystokinin (CCK) 
(245), gastrin-releasing peptide (GRP) (246), and 
neuropeptide Y (NPY) (247) exert inhibitory effects, 
while arginine-vasopressin (AVP) (248), glucagon-
like peptide-1 (GLP-1) (249), galanin (250), and leptin 
(251,252) stimulate TSH secretion. Although the 
precise physiological role of these peptides remains 
to be clarified, it has been recently suggested that 
they may be important in connecting nutrition status 
and thyroid function (253), as discussed in more 
detail later. 
 
Cytokines have recently been demonstrated to have 
important effects on TRH or TSH release. Both 
interleukin 1 beta (IL-1 beta) and tumor necrosis 
factor alpha (cachectin) inhibit TSH basal release 
(254-257), while no inhibition is observed on TSH 
response to TRH (258), and this effect is 
independent of thyroid hormone uptake or receptor 
occupancy. At the same time, IL-1 beta stimulates 
the release of corticotropin-releasing hormone and 
activates the hypothalamic-pituitary-adrenal axis 
(259). Interleukin-1 beta is produced in rat 
thyrotrophs, and this production is markedly 
increased by bacterial lipopolysaccharide (260,261). 
It could thus reduce TSH secretion by either 
autocrine or paracrine mechanisms. The IL-1 beta-
dependent cytokine interleukin 6 (IL-6) exerts similar 
inhibitory effects on TSH secretion. Both IL-1 beta 
and IL-6 acutely inhibit TSH release from the 

thyrotrophs, while IL-1 beta (but not IL-6) also 
decreases hypothalamic TRH mRNA and gene 
expression (262,146,263). Both IL-1 beta and IL-6 
stimulate 5’-deiodinase activity in cultured pituitary 
cells (264), suggesting that increased intrapituitary 
T4àT3 conversion may be involved in the inhibitory 
activity on TSH production. IL-6 is produced by the 
folliculo-stellate cells of the anterior pituitary 
(265,266), and, like IL-1 beta may regulate TSH 
release in a paracrine fashion (263,259). As 
discussed later, increased concentrations of 
circulating pro-inflammatory cytokines are involved in 
the alterations of hypothalamic-pituitary-thyroid axis 
observed in non-thyroidal illnesses. 
 
SIRT1, a NAD-dependent deacetylase, has been 
proven to be important for TSH secretion by 
thyrotrophic cells by the SITR1-phosphatidylinositol-
4-phosphate 5-kinase-gamma pathway (267).  
 
In summary, an intricate set of relationships within 
and outside the central nervous system controls the 
TRH-producing neurons in the medial basal 
hypothalamus. Alterations in any of these 
mechanisms can influence TRH and consequently 
TSH release (Fig 13 and 14). The relative importance 
in human physiology of these neural pathways, which 
have been directly studied only in animal models, is 
unknown. 
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Figure 14. Schematic representation of the main factors interacting in the regulation of TSH synthesis 
and secretion (DA: dopamine; SS: somatostatin; α-AD: α adrenergic pathways). Red arrows: 
stimulation; blue blunted arrows: inhibition 
 
SHORT AND ULTRA SHORT-LOOP FEEDBACK 
CONTROL OF TSH SECRETION 
 
In additional to the classic negative feed-back of 
thyroid hormone on TSH and TRH secretion detailed 
in the above paragraphs, evidence is accumulating 
that pituitary TSH is able to inhibit TRH secretion at 
the hypothalamic level (short feedback) and TSH 
secretion at the pituitary level (ultra-short feedback) 
(268). Early observations of inhibition of TSH 
secretion by injection of pituitary extracts have been 
recently corroborated by the demonstration of TSH 
receptor expression (together with other pituitary 
hormone receptors) in the hypothalamus (269,270) 
and in the folliculo-stellate cells of the 
adenohypophysis (271). The precise physiological 
role of short and ultra-short feedback in controlling 
TRH/TSH secretion remains to be elucidated. It may 
be speculated that they concur in the fine tuning of 
the homeostatic control and in the generation of the 
pulsatility of TSH secretion. The possibility that 
thyroid-stimulating autoantibodies present in Graves’ 

disease recognize hypothalamic and pituitary TSH 
receptors has also been suggested to explain 
suppressed serum TSH levels in some euthyroid 
Graves’ patients (268).  
 
Summary of the Main Steps Involved in the 
Hypothalamic-Pituitary-Thyroid (HPT) Axis 
 
An attempt to summarize the main steps involved in 
the feedback regulation of the HPT axis is illustrated 
in Fig 14 (128). Thyroid hormones inhibit the effects 
of TRH on TSH release without interfering with TRH 
binding to its receptors, but exerting complex 
negative transcriptional and post-transcriptional 
activities on TSH synthesis and secretion discussed 
above. Several factors other than thyroid hormones 
are involved in the fine regulation of HPT axis as 
depicted in Fig. 13 and described in more detail in 
the following paragraphs. 
 

http://www.endotext.org/


 
 
 

 

www.EndoText.org  
 26 

PHYSIOLOGICAL REGULATION OF TSH 
SECRETION IN HUMANS 
 
A number of experimental paradigms have been 
used to mimic clinical situations that affect the 
hypothalamic-pituitary thyroid axis in man. However, 
with the exception of the studies of thyroid status and 
iodine deficiency, such perturbations have limited 
application to humans due to differences in the more 
subtle aspects of TSH regulation between species. 
For example, starvation is a severe stress and 
markedly reduces TSH secretion in rats, but only 
marginally in humans. Cold stress increases TSH 

release in adult rats by alpha-adrenergic stimulation, 
while this phenomenon is usually not observed in the 
adult human. Thus, it is more relevant to evaluate the 
consequences of various pathophysiological 
influences on TSH concentrations in humans rather 
than to extrapolate from results in experimental 
animals. This approach has the disadvantage that, in 
many cases, the precise mechanism responsible for 
the alteration in TSH secretion cannot be identified. 
This deficit is offset by the enhanced relevance of the 
human studies for understanding clinical 
pathophysiology. 

 
Table 4.  Common Polymorphisms Related to Serum Thyroid Hormones and TSH 
Variation (270) 
Gene Polymorphism Effect on serum 
  TSH T4 T4/T3 T3 rT3 T3/rT3 
TSHR rs10149689 

A/G* 
 = = = = = 

 rs12050077 
AG 

 = = = = = 

DIO1 D1a-C/T =   ¯  ¯ 
 D1b-A/G =    ¯  
 rs2235544 C/A =    ¯  
DIO2 D2-ORFa-Asp3 = 1 = = = = 
 Thr92Ala = = = = = =2 
 rs225014 C/T = = = = = =3 
THRB TRHB-in9 A/G () = = = = = 
PDE8B rs4704397 A/G  = = = = = 

* Alleles associated with the specified trait are reported in bold; 1 Only in young subjects; 
2 Influence L-T4 dose needed to normalize serum TSH in hypothyroid patients; 3 Influence psychological well-
being of hypothyroid patients on L-T4 therapy 
 
Normal Physiology 
 
The concentration of TSH can now be measured with 
exquisite sensitivity using immunometric techniques 

(see below). In euthyroid humans, this concentration 
ranges from 0.4-0.5 to 4.0-5.0 mU/L. This normal 
range is to some extent method-dependent in that 
the various assays use reference preparations of 
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slightly varying biological potency. The glycosylation 
of circulating TSH is different from that of standard 
TSH, thus preventing the calculation of a precise 
molar equivalent for TSH concentrations (272,273). 
Recently, a narrower range (0.5-2.5 mU/L) has been 
proposed in order to exclude subjects with minimal 
thyroid dysfunction, particularly subclinical 
hypothyroidism (274), but the issue is still 
controversial (275). Moreover, data form large 
epidemiological studies mostly carried out in iodine 
sufficient countries like the USA, suggest that age 
together with racial/ethnic factors may significantly 
affect the respective “normal” TSH range, with higher 
levels for older Caucasian subjects (276,277). These 
data differ from the findings previously reported in 
selected small series of healthy elderly subjects (278) 
suggesting an age-associated trend to lower serum 
TSH concentrations (see below). The reason(s) for 
such discrepancies are still not understood. 
Independently from the “true” normal range of serum 
TSH, there is substantial evidence that this is 
genetically controlled, the heritability being estimated 
between 40-65% (279).  As reported in Table 4, 
polymorphisms of several genes encoding potentially 
involved in the control of HPT axis show a significant 
association with serum TSH concentrations (280) 
and PDE8B, a gene encoding a high-affinity 
phosphodiesterase catalyzing the hydrolysis and 
inactivation of cAMP, has been shown by genome-
wide association study to be one of the most 
important (281). 
 
The free alpha subunit is also detectable in serum 
with a normal range of 1 to 5 µg/L, but free TSHB is 
not detectable (4,282). Both the intact TSH molecule 
and the alpha subunit increase in response to TRH. 
The alpha subunit is also increased in post-
menopausal women; thus, the level of gonadal 
steroid production needs to be taken into account in 
evaluating alpha subunit concentrations in women. In 
most patients with hyperthyroidism due to TSH-
producing thyrotroph tumors, there is an elevation in 

the ratio of the alpha subunit to total TSH 
(4,16,283,182,184). In the presence of normal 
gonadotropins, this ratio is calculated by assuming a 
molecular weight for TSH of 28,000 and of 13,600 Da 
for the alpha subunit. The approximate specific 
activity of TSH is 0.2 mU/mg. To calculate the molar 
ratio of alpha subunit to TSH, the concentration of the 
alpha subunit (in ug/L) is divided by the TSH 
concentration (in mU/L) and this result multiplied by 
10. The normal ratio is <1.0 and it is usually elevated 
in patients with TSH-producing pituitary tumors but it 
is normal in patients with thyroid hormone resistance 
unless they are post-menopausal (284). 
 
The volume of distribution of TSH in humans is 
slightly larger than the plasma volume, the half-life is 
about 1 hour, and the daily TSH turnover between 40 
and 150 mU/day (283). Patients with primary 
hypothyroidism have serum TSH concentrations 
greater than 5 and up to several hundred mU/L (118). 
In patients with hyperthyroidism due to Graves' 
disease or autonomous thyroid nodules, TSH is 
suppressed with levels which are inversely 
proportional to the severity and duration of the 
hyperthyroidism, down to levels as low as <0.004 
mU/L (285-287). 
 
TSH secretion in humans is pulsatile (288-290). The 
pulse frequency is slightly less than 2 hours and the 
amplitude approximately 0.6 mU/L. The TSH pulse is 
significantly synchronized with PRL pulsatility: this 
phenomenon is independent of TRH and suggests 
the existence of unidentified underlying pulse 
generator(s) for both hormones (291). The frequency 
and amplitude of pulsations increases during the 
evening reaching a peak at sleep onset, thus 
accounting for the circadian variation in basal serum 
TSH levels (292,293). The maximal serum TSH is 
reached between 21:00 and 02:00 hours and the 
difference between the afternoon nadir and peak 
TSH concentrations is 1 to 3 mU/L. Sleep prevents 
the further rise in TSH as reflected in the presence of 
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increases in TSH to 5-10 mU/ml during sleep 
deprivation (294,295). The circadian variation of TSH 
secretion is probably the consequence of a varying 
dopaminergic tone modulating the pulsatile TSH 
stimulation by TRH (296). Interestingly, TSH 
molecules secreted during the night are less 
bioactive and differently glycosylated than those 
circulating in the same individual during the day, thus 
explaining why thyroid hormone levels do not rise 
after the nocturnal TSH surge (296). There is 
convincing evidence seasonal change in basal TSH 
(297), but there are no gender-related differences in 
either the amplitude or frequency of the TSH pulses 
(290). The diurnal rhythmicity of serum TSH 
concentration is maintained in mild hyper- and 
hypothyroidism, but it is abolished in severe short-
term primary hypothyroidism, suggesting that the 
complete lack of negative feedback to the 
hypothalamus or pituitary or both may override the 
central influences on TSH secretion (298). 
 
Age may have a major effect on circulating serum 
TSH levels (278). There is a marked increase in 
serum TSH in neonates which peaks within the first 
few hours of delivery returning towards normal over 
the next few days. It is thought to be a consequence 
of the marked reduction in environmental 
temperature at birth. Serum TSH concentrations in 
apparently euthyroid patients over the age of 70 may 
be somewhat reduced (299,300). However, some 
studies show an increase of TSH in older adults 
(301). 
 
TSH in Pathophysiological States 
 
NUTRITION  
 
In the rat, starvation causes a marked decrease in 
serum TSH and thyroid hormones.  While there is an 
impairment of T4 to T3 conversion in the rat liver due 
to a decrease in both thiol co-factor and later in the 

Type 1 deiodinase (302-304), the decrease in serum 
T3 in the fasted rat is primarily due to the decrease in 
T4 secretion consequent to TSH deficiency 
(304,305). In humans, starvation and moderate to 
severe illness are also associated with a decrease in 
basal serum TSH, pulse amplitude and nocturnal 
peak (306-310). In the acutely-fasted man, serum 
TSH falls only slightly and TRH responsiveness is 
maintained, although blunted (311,312). This 
suggests that the thyrotroph remains responsive 
during short-term fasting and that the decrease in 
TSH is likely due to changes secondary to decreased 
TRH release. There is evidence to support this in 
animal studies, showing reduced TRH gene 
expression in fasted rats (313,314). Administration of 
anti-somatostatin antibodies prevents the starvation 
induced serum TSH falls in rats, suggesting a role for 
hypothalamic somatostatinergic pathways (315). 
However, fasting-induced changes in dopaminergic 
tone do not seem to be sufficient to explain the TSH 
changes (315,309).  
 
Recent studies provide compelling evidence that the 
starvation-induced fall in leptin levels (Fig. 15) plays 
a major role in the decreased TSH and TSH 
secretion of fasted animals and, possibly, humans 
(251,316,317). This concept stems from the 
observation that administration of leptin prevents the 
starvation-induced fall of hypothalamic TRH (318). 
The mechanisms involved in this phenomenon 
include decreased direct stimulation by leptin of TRH 
production by neurons of the PVN (251,319), as well 
as indirect effects on distinct leptin-responsive 
neuroendocrine circuits communicating with TRH 
neurons (318,320). The direct stimulatory effects of 
leptin on TRH production are mediated by binding to 
leptin receptors, followed by STAT3 activation and 
subsequent binding to the TRH promoter (321,322). 
One of the latter circuits has been identified in the 
melanocortin pathway, a major target of leptin action. 
This pathway involves 2 ligands expressed in distinct 
populations of arcuate nucleus neurons in the 
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hypothalamus [the alpha-MSH and the Agouti 
receptor protein (AgRP)] and the melanocortin 4 
receptor (MC4R) on which these ligands converge, 
but exert antagonistic effects (stimulation by alpha-
MSH; inhibition by AgRP). Leptin activates MC4R by 
increasing the agonist alpha-MSH and by decreasing 
the antagonist AgRP and this activation is crucial for 
the anorexic effect of leptin. The specific involvement 
of the melanocortin pathway in TRH secretion is 
suggested by the presence of alpha-MSH in nerve 
terminals innervating hypothalamic TRH neurons in 
rat (128) and human (323) brains and by the ability of 
alpha-MSH to stimulate and of AgRP to inhibit 
hypothalamus-pituitary thyroid axis both in vitro and 
in vivo (319). The activities of alpha-MSH and AgRP 
on the thyroid axis are fully mediated by MCR4, as 
shown by experiments carried out in MCR4 knock out 
mice (324). Fasting may inhibit the hypothalamic-
pituitary-thyroid axis also via the orexigenic peptide 
NPY, which inhibits TRH synthesis by activation of 
Y1 and Y5 receptors in hypophysiotropic neurons of 
the hypothalamic paraventricular nucleus (325). At 
least two distinct populations of NPY neurons 
innervate hypophysiotropic TRH neurons (326), 
suggesting that NPY is indeed an important regulator 
of the hypothalamic-pituitary-thyroid axis. 
 
A further contributing cause to the decreased TSH 
release in fasting may be an abrupt increase in the 
free fraction of T4 due to the inhibition of hormone 
binding by free fatty acids (327). This would cause an 
increase in pituitary T4 and, hence, in pituitary 
nuclear T3. Fasting causes a decrease in the 
amplitude of TSH pulses, not in their frequency (328).  
 
Ingestion of food results in an acute decline of the 
serum TSH concentration: this is the consequence of 
meal composition, rather than stomach distension 
(329). Long-term overfeeding is associated to a 
transient increase of serum T3 concentration and a 
sustained increased response of TSH to TRH (330). 
 

Taken together, the above data provide compelling 
evidence that the hypothalamic-pituitary-thyroid axis 
is tightly related to the mechanisms involved in 
weight control. In keeping with this concept, several 
epidemiological studies suggest that small 
differences in thyroid function may be important for 
the body mass index and the occurrence of obesity in 
the general population (331-334). 
 
ILLNESS  
 
The changes in circulating TSH which occur during 
fasting are more exaggerated during illness. In 
moderately ill patients, serum TSH may be slightly 
reduced but the serum free T4 does not fall and is 
often mildly increased (327,335-337). However, if the 
illness is severe and/or prolonged, serum TSH will 
decrease and both serum T4 (and of course T3) 
decrease during the course of the illness. This may 
be due to a decreased pulse amplitude and nocturnal 
TSH secretion (338-341). Since such changes are 
short-lived, they do not usually cause symptomatic 
hypothyroidism. They are often associated with an 
impaired TSH release after TRH (306). However, the 
illness-induced reductions in serum T4 and T3 will 
often be followed by a rebound increase in serum 
TSH as the patient improves. This may lead to a 
transient serum TSH elevation in association with the 
still subnormal levels of circulating thyroid hormones 
and thus be mistaken for primary hypothyroidism 
(342). On occasion, a transient TSH elevation occurs 
while the patient is still ill. The pathophysiology of this 
apparent resistance of the thyroid gland to TSH is not 
clear (343), although this phenomenon could be the 
consequence of reduced TSH bioactivity, possibly a 
consequence of abnormal sialylation (344). The 
transient nature of these changes is reflected in 
normalization of the pituitary-thyroid axis after 
complete recovery. It is currently not clearly 
established whether the above abnormalities in 
hypothalamic-pituitary-thyroid axis during critical 
illness reflect an adaptation of the organism to illness 
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or instead a potentially harmful condition leading to 
hypothyroidism at the tissue level (345,346). 
 
NEUROPSYCHIATRIC DISORDERS  
 
Certain neuropsychiatric disorders may also be 
associated with alterations in TSH secretion.  In 
patients with anorexia nervosa or depressive illness, 
serum TSH may be reduced and/or TRH-induced 
TSH release blunted (347). Such patients often have 
decreases in the nocturnal rise in TSH secretion 
(293). The etiology of these changes is not known 
although it has been speculated that they are a 
consequence of abnormal TRH secretion (348,349). 
The latter is supported by observations that TRH 
concentrations in cerebrospinal fluid of some 
depressed patients are elevated (350,351). There 
may be a parallel in such patients between increases 
in TRH and ACTH secretion (352). The increased 
serum T4 and TSH levels sometimes found at the 
time of admission to psychiatric units is in agreement 
with this concept (353,349). 
 
MECHANISMS INVOLVED IN THE 
HYPOTHALAMIC-PITUITARY-THYROID AXIS 
SUPPRESSION IN NON-THYROIDAL ILLNESSES      
 
The precise mechanism(s) underlying the 
suppression of the hypothalamic-pituitary-thyroid axis 
in severe illnesses are only partially known. Evidence 
for a direct involvement of TRH-producing neurons in 
humans has been recently provided by the 
demonstration of low levels of TRH mRNA in the 
PVN of patients who died of non-thyroidal disease 
(354). Alterations in neuroendocrine pathways 
including opioidergic, dopaminergic and 
somatostatinergic activity have been suggested, but 
in acutely ill patients the major role appears to be 
played by glucocorticoids (355) (See below for a 
more detailed discussion). Activation of pro-
inflammatory cytokine pathways is another 

mechanism potentially involved in the suppression of 
TSH secretion in nonthyroidal illness. As discussed 
earlier, IL-1 beta, TNF-alpha and IL-6 exert in vivo 
and in vitro a marked inhibitory activity on TRH-TSH 
synthesis/secretion. High levels of pro-inflammatory 
cytokines (particularly IL-6 and TNF-alpha) have 
been described in sera of patients with non-thyroidal 
illnesses (356,357,262,358,359). Serum cytokine 
concentration is directly correlated with the severity 
of the underlying disease and to the extent of TSH 
and thyroid hormone abnormalities observed in these 
patients. Furthermore, cytokines also affect thyroid 
hormone secretion, transport and metabolism 
providing all the characteristics to be considered 
important mediators of thyroid hormone abnormalities 
observed in non-thyroidal illness (360-362). 
 
EFFECTS OF HORMONES AND NEUROPEPTIDES  
 
Dopamine and Dopamine Agonists   
 
Dopamine and dopamine agonists inhibit TSH 
release by mechanisms discussed earlier.  Dopamine 
infusion can overcome the effects of thyroid hormone 
deficiency in the severely ill patient, suppressing the 
normally elevated TSH of the patient with primary 
hypothyroidism nearly into the normal range 
(235,363). Dopamine causes a reduction of the 
amplitude of TSH pulsatile release, but not in its 
frequency (328). However, chronic administration of 
dopamine agonists, for example in the treatment of 
prolactinomas, does not lead to central 
hypothyroidism despite the fact that there is marked 
decrease in the size of the pituitary tumor and 
inhibition of prolactin secretion. 
 
Glucocorticoids   
 
The acute administration of pharmacological 
quantities of glucocorticoids will transiently suppress 
TSH (364-366). The mechanisms responsible for this 
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effect may act both at the hypothalamic and pituitary 
level, as discussed above. Direct evidence of 
suppressed TRH synthesis was provided by an 
autopsy study showing reduced hypothalamic TRH 
mRNA expression in subjects treated with 
corticosteroids before death (367). TSH secretion 
recovers and T4 production rates are generally not 
impaired. In Cushing's syndrome, TSH may be 
normal or suppressed and, in general, there is a 
decrease in serum T3 concentrations relative to 
those of T4 (366). High levels of glucocorticoids 
inhibit basal TSH secretion slightly and may influence 
the circadian variation in serum TSH (222). Perhaps 
as a reflection of this, a modest serum TSH elevation 
may be present in patients with Addison's disease 
(368,369). TSH normalizes with glucocorticoid 
therapy alone if primary hypothyroidism is not also 
present. Similar to patients treated with long-acting 
somatostatin analogs, patients receiving long-term 
glucocorticoid therapy do not have a sustained 
reduction of serum TSH nor does hypothyroidism 
develop, because of the predominant effect of 
reduced thyroid hormone secretion in stimulating 
TSH secretion (370). 
 
Gonadal Steroids  
 
Aside from the well described effects of estrogen on 
the concentration of thyroxine-binding globulin (TBG), 
estrogen and testosterone have only minor 
influences on thyroid economy. In contrast with the 
mild inhibitory activity on alpha and beta TSH  
subunits expression described in rats(216), in 
humans TSH release after TRH is enhanced by 
estradiol treatment perhaps because estrogens 
increase TRH receptor number (371,372). Treatment 
with the testosterone analog, fluoxymesterone, 
causes a significant decrease in the TSH response to 
TRH in hypogonadal men (373), possibly due to an 
increase in T4 to T3 conversion by androgen (374). 
This and the small estrogen effect may account for 
the lower TSH response to TRH in men than in 

women although there is no difference in basal TSH 
levels between the sexes. This is one of the few 
instances where there is not a close correlation 
between basal TSH levels and the response to TRH 
(see below). 
 
Growth Hormone (GH)   
 
The possibility that central hypothyroidism could be 
induced by GH replacement in GH-deficient children 
was raised in early studies (375,376). However, 
these patients received human pituitary GH which in 
some cases was contaminated with TSH, perhaps 
inducing TSH antibodies. Nonetheless, in a cohort of 
children treated with recombinant hGH (rhGH) and 
affected with either idiopathic isolated GHD or 
MPHD, it was demonstrated that in the former the 
decrease in serum FT4 levels was not of clinical 
relevance, while in the latter a clear state of central 
hypothyroidism was seen in more than a half of the 
children (377). Concerning adults with GHD treated 
with rhGH, contradictory results have been reported. 
One study showed no significant changes in TSH 
concentrations during rhGH therapy of adults with 
GH deficiency (378). Later on, in two studies, thyroid 
function was evaluated in a large cohort of patients 
with adult or childhood onset of severe GHD. In 47% 
and 36% of euthyroid subjects, independently from 
rhGH dose, serum FT4 clearly fell into the 
hypothyroid range and some of these patients 
reported symptoms of hypothyroidism (375,376). 
Such results underline that, in adults as well as in 
children with organic GHD, rhGH therapy unmasks a 
state of central hypothyroidism, hidden by the 
condition of GHD itself.  
 
In conclusion, GH does cause an increase in serum 
free T3, a decrease in free T4, and an increase in the 
T3 to T4 ratio in both T4-treated and T4 untreated 
patients. This suggests that the GH-induced increase 
in IGF-I stimulates T4 to T3 conversion. In keeping 
with this concept, IGF-I administration in healthy 
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subjects is followed by a fall in serum TSH 
concentration (379). 
 
Catecholamines   
 
Different from the rat, there is scanty evidence of an 
adrenergic control of TSH secretion in humans. 
Acute infusions of alpha or beta adrenergic blocking 
agents or agonists for short periods of time do not 
affect basal TSH (380,381), although a small 
stimulatory activity for endogenous adrenergic 
pathways is suggested by other studies (382,383). 
Furthermore, there is no effect of chronic propranolol 
administration on TSH secretion even though there 
may be modest inhibition of peripheral T4 to T3 
conversion if amounts in excess of 160 mg/day are 
given (384). Evidence of a tonic inhibition of TSH 
secretion mediated by endogenous catecholamines 
has been obtained in women during the early 
follicular phase of the menstrual cycle (385).  
 
The Response of TSH to TRH in Humans and the 
Role of Immunometric TSH Assays 
 
More than 4 decades ago, application of 
ultrasensitive TSH measurements to the evaluation 
of patients with thyroid disease has undergone a 
revolutionary change.  This is due to the widespread 
application of the immunometric TSH assay. This 
assay uses monoclonal antibodies which bind one 
epitope of TSH and do not interfere with the binding 
of a second monoclonal or polyclonal antibody to a 
second epitope. The principle of the test is that TSH 
serves as the link between an immobilized antibody 
binding TSH at one epitope and a labelled 
(radioactive, chemiluminescent or other tag) 
monoclonal directed against a second portion of the 
molecule. This approach has improved both 
sensitivity and specificity by several orders of 
magnitude. Technical modifications have led to 
successive "generations" of TSH assays with 

progressively greater sensitivities (218,316). The first 
generation TSH assay was the standard 
radioimmunoassay which generally has lower 
detection limits of 1-2 mU/L. The "second" generation 
(first generation immunometric) assay improved the 
sensitivity to 0.1-0.2 mU/L and “third" generation 
assays further improved the sensitivity to 
approximately 0.005 mU/L.  From a technical point-
of-view, the American Thyroid Association 
recommendations are that third generation assays 
should be able to quantitate TSH in the 0.010 to 
0.020 mU/L range on an interassay basis with a 
coefficient of variation of 20% or less (386). As assay 
sensitivity has improved, the reference range has not 
changed, remaining between approximately 0.5 and 
5.0 mU/L in most laboratories.  However, the TSH 
concentrations in the sera of patients with severe 
thyrotoxicosis secondary to Graves' disease have 
been lower with each successive improvement in the 
TSH assays: using a fourth-generation assay, the 
serum TSH is <0.004 mU/L in patients with severe 
hyperthyroidism (287,387).  
 
The primary consequence of the availability of 
(ultra)sensitive TSH assays is to allow the 
substitution of a basal TSH measurement for the 
TRH test in patients suspected of thyrotoxicosis 
(388,285,389,286,287). Nonetheless, it is appropriate 
to review the results of TRH tests from the point-of-
view of understanding thyroid pathophysiology, 
particularly in patients with hyperthyroidism or 
autonomous thyroid function. In healthy individuals, 
bolus i.v. injection of TRH is promptly followed by a 
rise of serum TSH concentration peaking after 20 to 
30 minutes. The magnitude of the TSH peak is 
proportional to the logarithm of TRH doses between 
6.25 up to ³400 ug, is significantly higher in women 
than in men, and declines with age (390,391). The 
individual TSH response to TRH is very variable and 
declines after repeated TRH administrations at short 
time intervals (391). In the presence of normal TSH 
bioactivity and adequate thyroid functional reserve, 
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serum T3 and T4 also increase 120-180 minutes 
after TRH injection (391). There is a tight correlation 
between the basal TSH and the magnitude of the 
TRH-induced peak TSH (Fig. 12) Using a normal 
basal TSH range of 0.5 to 5 mU/L, the TRH response 
15 to 20 minutes after 500 ug TRH (intravenously) 
ranges between 2 and 30 mU/L. The lower 
responses are found in patients with lower (but still 
normal) basal TSH levels (287). These results are 
quite consistent with older studies using 
radioimmunoassays (392). When the TSH response 
to TRH of all patients (hypo-, hyper- and euthyroid) is 
analyzed in terms of a "fold" response, the highest 

response (approximately 20-fold) occurs at a basal 
TSH of 0.5 mU/L and falls to less than 5 at either 
markedly subnormal or markedly elevated basal 
serum TSH concentrations (Fig. 16) (287). Thus, a 
low response can have two explanations.  The low 
response in patients with hyperthyroidism and a 
reduced basal TSH is due to refractoriness to TRH or 
depletion of pituitary TSH as a consequence of 
chronic thyroid hormone excess. In patients with 
primary hypothyroidism, the low fold-response 
reflects only the lack of sufficient pituitary TSH to 
achieve the necessary increment over the elevated 
basal TSH. 

 

 
Figure 16. Relationship between basal and absolute (TRH stimulated-basal TSH) TRH-stimulated TSH 
response in 1061 ambulatory patients with an intact hypothalamic-pituitary (H-P) axis compared with 
that in untreated and T4-treated patients with central hypothyroidism. (From Spencer et al. (287) with 
permission) 
 
Although, as stated before, the clinical relevance of 
the TRH test is presently limited, there are still some 
conditions in which the test may still be useful. These 
include subclinical primary hypothyroidism, central 
hypothyroidism (25), the syndromes of inappropriate 
TSH secretion (393) and non-thyroidal illnesses. 

 
In patients with normal serum thyroid hormone 
concentrations and borderline TSH, an exaggerated 
TSH response to TRH not followed by an adequate 
increase in serum thyroid hormone levels may 
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confirm the presence of subtle primary 
hypothyroidism (391). 
  
An abnormal relationship between the basal TSH and 
the TRH-response is found in patients with central 
hypothyroidism. Here the fold TSH response to TRH 
is lower than normal (371,23,287). Again, however, 
TRH testing does not add substantially to the 
evaluation of such patients in that the diagnosis of 
central hypothyroidism is established by finding a 
normal or slightly elevated basal TSH in the presence 
of a significantly reduced free T4 concentration. 
While statistically (287) lower and sometimes 
delayed increments in TSH release after TRH 
infusion are found in patients with pituitary as 
opposed to hypothalamic hypothyroidism, the overlap 
in the TSH increments found in patients with these 
two conditions is sufficiently large (371,23,24,394), 
so that other diagnostic technologies, such as MRI, 
must be used to provide definitive localization of the 
lesion in patients with central hypothyroidism. It 
should be recalled that the TRH test may be useful in 
the diagnosis and follow-up of several pituitary 
disorders, but the discussion of this point is beyond 
the purpose of this chapter. 
 
The TRH test still provides fundamental information 
in the differential diagnosis of hyperthyroidism due to 
TSH-secreting adenomas from syndromes with non-
neoplastic TSH hypersecretion due to pituitary 
selective or generalized thyroid hormone resistance. 
In all the above conditions, increased or 
“inappropriately normal” serum TSH concentrations 

are observed in the presence of elevated circulating 
thyroid hormone levels. However, in most (>90%) of 
TSH-secreting adenomas serum TSH does not 
increase after TRH, while TRH responsiveness is 
observed in >95% of patients with nontumoral 
inappropriate TSH secretion (283,213,391). 
 
Perhaps of most interest pathophysiologically is the 
response to TRH in patients with non-thyroidal illness 
and either normal or low free T4 indices (Fig. 12). 
Results from these patients fit within the normal 
distribution in terms of the relationship between basal 
TSH (whether suppressed or elevated) and the fold-
response to TRH.  Thus the information provided by 
a TRH infusion test adds little to that obtained from 
an accurate basal TSH measurement (395). With 
respect to the evaluation of sick patients, while basal 
TSH values are on average higher than in patients 
with thyrotoxicosis, there is still some overlap 
between these groups (396,337,287,397). This 
indicates that even with second or third generation 
TSH assays, it may not be possible to establish that 
thyrotoxicosis is present based on a serum TSH 
measurement in a population which includes severely 
ill patients. 
 
CLINICAL APPLICATION OF TSH 
MEASUREMENTS AND SUMMARY 
 
Table 5 lists conditions in which basal TSH values 
may be altered as practical examples of the 
pathophysiology of the hypothalamic-pituitary thyroid 
axis.  

 
Table 5. Conditions which May be Associated with Abnormal Serum TSH 
Concentrations 
 Expected 

TSH (mU/L) 
Thyroid 
Status 

FT4 

TSH reduced    
1. Hyperthyroidism <0.1  , T3 
2. “Euthyroid” Graves’ disease 0.2-0.5 N () N(T3) 
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3. Autonomous nodules 0.2-0.5 N () N(T3) 
4. Excess thyroid hormone treatment 0.1-0.5 N, N, 

5.  Other forms of subclinical hyperthyroidism 
(including thyroiditis variants) 

0.1-0.5 N, N, 

6. Illness with or without dopamine 0.1-5.0 N , N,¯ 
7. First trimester pregnancy 0.2-0.5 N () N () 
8. Hyperemesis gravidarum 0.2-0.5 N () (N) 
9. Hydatidiform mole 0.1-0.4   
10. Acute psychosis or depression (rare) 0.4-10 N N () 
11. Elderly (small fraction) 0.2-0.5 N N 

12. Cushing’s syndrome and glucocorticoids 
excess (inconsistent) 

0.1-0.5 N N 

13. Retinoid X receptor-selective ligands 0.01-0.2 ¯ ¯ 
14. Various forms of central hypothyroidism <0.1-0.4 ¯ ¯ 

15. 15. Congenital TSH deficiency  
    a) Pit-1 mutations 
    b) PROP1 mutations 
    c) Mutations of TSHB gene in CAGYC 
region 
    d) Skipping of TSHB gene exon 2 
    e) Inactivating mutation of TRH receptor 
gene 

 
0 
0 
0 
 
0 
1-2   ¯  ¯ 
           
 

 
¯ 
¯ 
¯ 
 
¯ 

 
¯ 
¯ 
¯ 
 
¯ 
 

TSH Elevated    
1. Primary hypothyroidism 6-500 ¯ ¯ 
2. Resistance to TSH 
 

6->100  
N,¯ 

 
N,¯ 

3. Recovery from severe illness 5-30 N N,¯ 
4. Iodine deficiency 6-150 N,¯ ¯ 
5. Thyroid hormone resistance 1-15 N (¯,)  
6. Thyrotroph tumor 3-30   
7. Central (“tertiary”) hypothyroidism 1-19 ¯ ¯ 
8. Psychiatric illness (especially bipolar 
disorders) 

0.4-10 N N 

9. Test artifacts (endogenous anti-mouse 
gamma-globulin antibodies as well as 
“macroTSH”) 

10-500 N N 

10. 10. Addison’s disease 
 

5-30 
 

N 
 

N 
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Clinical Situations Associated with Subnormal 
TSH Values 
 
The most common cause of a reduced TSH in a non-
hospitalized patient is thyroid hormone excess. This 
may be due to endogenous hyperthyroidism or 
excess exogenous thyroid hormone. The degree of 
suppression of basal TSH is in proportion to the 
degree and duration of the thyroid hormone excess. 
The reduced TSH is the pathophysiological 
manifestation of the activation of the negative 
feedback loop. 
 
While a low TSH in the presence of elevated thyroid 
hormones is logical, it results from multiple causes. 
Prolonged excessive thyroid hormone levels cause 
physiological "atrophy" of the thyroid stimulatory limb 
of the hypothalamic-pituitary thyroid axis. Thus, TRH 
synthesis is reduced, TRH mRNA in the PVN is 
absent, TRH receptors in the thyrotroph may be 
reduced, and the concentration of TSH beta and 
alpha subunits and both mRNAs in the thyrotroph are 
virtually undetectable. Therefore, it is not surprising 
that several months are usually required for the re-
establishment of TSH secretion after the relief of 
thyrotoxicosis. This is especially observed in patients 
with Graves' disease after surgery or radioactive 
iodine, in whom TSH remains suppressed despite a 
rapid return to a euthyroid or even hypothyroid 
functional status (398,399).  Since TRH infusion will 
not increase TSH release in this situation, it is clear 
that the thyrotroph is transiently dysfunctional (400). 
A similar phenomenon occurs after excess thyroid 
hormone treatment is terminated, and after the 
transient hyperthyroidism associated with subacute 
or some variants of autoimmune thyroiditis, though 
the period of suppression is shorter under the latter 
circumstances (401). This cause of reduced 

circulating thyroid hormones and reduced or normal 
TSH should be distinguishable from central 
hypothyroidism by the history.  
 
Severe illness is a common cause of TSH 
suppression although it is not often confused with 
thyrotoxicosis. Quantitation of thyroid hormones will 
generally resolve the issue (327). Patients receiving 
high-dose glucocorticoids acutely may also have 
suppressed TSH values although chronic 
glucocorticoid therapy does not cause sufficient TSH 
suppression to produce hypothalamic-pituitary 
hypothyroidism (see above). 
 
Exogenous dopamine suppresses TSH release. 
Infusion of 5-7.5 mg/kg/min to normal volunteers 
causes an approximately 50% reduction in the 
concentrations of TSH and consequent small 
decreases in serum T4 and T3 concentrations (363). 
In critically ill patients, this effect of dopamine can be 
superimposed on the suppressive effects of acute 
illness on thyroid function, reducing T4 production to 
even lower levels (357). Dopamine is sufficiently 
potent to suppress TSH to normal levels in sick 
patients with primary hypothyroidism (363). This 
needs to be kept in mind when evaluating severely ill 
patients for this condition. Dopamine antagonists 
such as metoclopramide or domperidone cause a 
small increase in TSH in humans. However, 
somewhat surprisingly, patients receiving the 
dopamine agonist bromergocryptine do not become 
hypothyroid. Although L-dopa causes a statistically 
significant reduction in the TSH response to TRH, 
patients receiving this drug also remain euthyroid 
(370). 
 
Studies in animals have suggested that 
pharmacological amounts of retinoids may decrease 
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serum TSH concentration (see also paragraph “Effect 
of Thyroid Hormone on TSH Secretion”) (402,96). 
Severe central hypothyroidism associated with very 
low serum TSH concentration has been reported in 
patients with cutaneous T-cell lymphoma treated with 
high-dose bexarotene, a retinoid X receptor-selective 
ligand able to suppress TSH secretion (403). 
 
hCG may function as a thyroid stimulator. During 
pregnancy, hCG stimulates the thyroid gland of the 
mother resulting in the typical transient decrease of 
the TSH levels during the first trimester (0.2 - 0.4 
mU/L). Pathologic hCG secretion can result in frank, 
often mild, hyperthyroidism in patients with 
choriocarcinomas or molar pregnancies (404). 
 
Patients with acute psychosis or depression and 
those with agitated psychoses may have high thyroid 
hormone levels and suppressed or elevated TSH 
values.  The etiology of the alterations in TSH are not 
known. Those receiving lithium for bipolar illness may 
also have elevated TSH values due to impairment of 
thyroid hormone release. Patients with underlying 
autoimmune thyroid disease or multi-nodular goiter 
are especially susceptible (405). A small fraction of 
elderly patients, particularly males, have subnormal 
TSH levels with normal serum thyroid hormone 
concentrations. It is likely that this reflects mild 
thyrotoxicosis if it is found to be reduced on repeated 
determinations. 
 
Congenital central hypothyroidism with low serum 
TSH may result from mutations affecting TSHB gene 
or the Pit-1 gene (see paragraphs “The Thyroid-
Stimulating Hormone Molecule”,  “Role of Pit-1 and 
its splicing variants in the regulation of TSHB gene 
expression” and “Other Transcription Factors 
Involved in TSHB Gene Expression”. 
 
 

Causes of an Elevated TSH  
 
Primary hypothyroidism is the most common cause 
of an elevated serum TSH. The serum free T4 is low 
normal or reduced in such patients but the serum 
free T3 values remain normal until the level of thyroid 
function has markedly deteriorated (118). Another 
common cause of an elevated TSH in an iodine-
sufficient environment is the transient elevation which 
occurs during the recovery phase after severe illness 
(342,343). In such patients a "reawakening" of the 
hypothalamic-pituitary-thyroid axis occurs pari passu 
with the improvement in their clinical state. In 
general, such patients do not have underlying thyroid 
dysfunction. Iodine deficiency is not a cause of 
elevated TSH in Central and North America but may 
be in certain areas of Western Europe, South 
America, Africa and Asia. 
 
The remainder of the conditions associated with an 
elevated TSH are extremely rare. Inherited 
(autosomal recessive) forms of partial (euthyroid 
hyperthyrotropinemia) or complete (congenital 
hypothyroidism) TSH resistance have been 
described associated with inactivating biallelic point 
mutations of the TSH receptor gene (406,407). 
Interestingly, inherited dominant forms of partial TSH 
resistance have also been described in the absence 
of TSH receptor gene mutations (408,409). The 
underlying molecular defect(s) remain(s) to be 
elucidated in such cases. More frequently, in a 
patient who has an elevated serum FT4, the 
presence of TSH at normal or increased levels 
should lead to a search for either resistance to 
thyroid hormone or a thyrotroph tumor. 
Hypothalamic-pituitary dysfunction may be 
associated with normal or even modest increases in 
TSH and are explained by the lack of normal TSH 
glycosylation in the TRH-deficient patient. The 
diagnosis is generally made by finding a serum free 
T4 index which is reduced to a greater extent than 
expected from the coincident serum TSH. Psychiatric 
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illness may be associated with either elevated or 
suppressed TSH levels, but the abnormal values are 
not usually in the range normally associated with 
symptomatic thyroid dysfunction. The effect of 
glucocorticoids to suppress TSH secretion has 
already been mentioned. This is of relevance in 
patients with Addison's disease in whom TSH may be 
slightly elevated in the absence of primary thyroid 
disease. 
 
Lastly, while most of the artifacts have been 
eliminated from the immunometric TSH assays, there 
remains the theoretical possibility of an elevated 
value due to the presence of endogenous anti-mouse 
gamma globulin antibodies (410,411). These 
heterophilic antibodies, like TSH, can complex the 
two TSH antibodies resulting in artificially elevated 

serum TSH assay results in euthyroid patients. Such 
artifacts can usually be identified by finding non-
linear results upon assay of serial dilutions of the 
suspect serum with that from patients with a 
suppressed TSH. Moreover, the possible presence of 
“macro TSH” should be investigated in patients with 
high levels of TSH, normal circulating free thyroid 
hormones and absence of clinical signs and 
symptoms of hypothyroidism (410,411). Macro TSH 
is a large molecular-sized TSH that is mostly a 
complex of TSH and IgG. Precipitation of the serum 
with PEG and measurement of TSH in the 
supernatant is mandatory to confirm the presence of 
macro TSH, a procedure that is similar to that 
documenting the presence of macro PRL (412-415).  
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