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ABSTRACT 
 
The aim of this chapter is to examine other, less common genetic disorders including 
elevations of lipoprotein(a); disorders of high density lipoprotein (familial 
hypoalphalipoproteinemia, Tangier disease, and LCAT deficiency); familial 
hypocholesterolemias (familial hypobetalipoproteinemia, abetalipoproteinemia, PCSK9 
loss of function mutations, familial combined hypolipidemia, and chylomicron retention 
disease); ß-sitosterolemia; cerebrotendinous xanthomatosis, and lysosomal acid lipase 
deficiency. While the prevalence of these individual disorders is quite low, collectively 
they are important. The busy practitioner will undoubtedly encounter patients with these 
conditions. Providers need to be familiar with their diagnosis and treatment as they may 
be associated with high morbidity and mortality. Practical aspects of evaluation and 
management of these disorders are reviewed. For complete coverage of this area and 
all of Endocrinology, visit www.endotext.org. 
 
INTRODUCTION 
 
Common genetic disorders of lipid metabolism have been covered in previous chapters 
of this text. The purpose of this chapter is to review the experimental, genetic, 
epidemiologic, and therapeutic data regarding less common genetic disorders. The 
study of rare disorders has emerged as a very effective way of gaining insight into 
cellular and molecular biology, and this certainly has been the case in the field of 
lipidology. Indeed, as will be covered in this chapter, defining the molecular 
underpinnings of rare lipid disorders has effectively prioritized a number of therapeutic 
targets, including lipoprotein (a), apolipoprotein B, microsomal triglyceride transport 
protein, and PCSK9.  
 
Table 1. Mode of inheritance and prevalence of select rare genetic disorders of 
lipid metabolism 
Condition Mode of inheritance Prevalence 

Familial 
hypobetalipoproteinemia 

Codominant 1:1000 – 1:3000 

Abetalipoproteinemia Autosomal recessive <1:1,000,000 



Familial combined 
hypolipidemia 

Codominant Very rare 

Chylomicron retention 
disease 

Autosomal recessive Very rare 

Familial hypoalpha-
lipoproteinemia 

Autosomal dominant Very rare 

Tangier disease Autosomal recessive Very rare 

LCAT deficiency Autosomal recessive Very rare 

Familial hyperalpha- 
lipoproteinemia 

Autosomal dominant 4:100 – 5:100 

ß-Sitosterolemia Autosomal recessive Very rare 

Cerebrotendinous 
xanthomatosis 

Autosomal recessive Very rare 

Lysosomal acid lipase 
deficiency 

Autosomal recessive 1:40,000 – 1:300,000 

 
LIPOPROTEIN (a) 
 
Lipoprotein (a) [Lp(a)] comprises a unique lipoprotein subclass and consists of a low-
density lipoprotein (LDL) particle and apolipoprotein(a) [apo(a)]. Apo(a) is covalently 
bound to apoB on the LDL particle. Elevations in Lp(a) have been associated with 
premature atherosclerotic cardiovascular disease (ASCVD) and calcific aortic valve 
stenosis (1). The epidemiological and genetic data are consistent and suggest that Lp(a) 
is an independent risk factor for the development of ASCVD events (discussed below). 
The atherogenicity of Lp(a) is likely multifactorial and related to its LDL and apo(a) 
moieties as well as its enriched concentration of proinflammatory oxidized phospholipids. 
Additionally, Lp(a) induces the expression of intercellular adhesion molecule-1 with 
attendant recruitment of monocytes to the subendothelial space (2). Lp(a) also enhances 
the susceptibility of LDL to oxidative modification (3). Furthermore, Lp(a) inhibits the 
fibrinolytic system and thereby facilitates atherothrombosis (4). 
 
Serum Lp(a) levels are largely genetically determined and are related to variation found 
in the gene that codes for Lp(a), LPA. Genomic variation at LPA is multifactorial and 
includes a) polymorphisms at the apo(a) gene locus (isoforms) due to copy number 
variation (5), b) a pentanucleotide repeat in the LPA promoter that affects gene 
expression (6), c) variants affecting RNA splicing (5, 7), and d) numerous single-
nucleotide polymorphisms (SNPs) within key structural and functional domains (8, 9). 
These sources of genetic variation contribute to interindividual differences in plasma 
Lp(a) concentrations, which remain extremely stable within an individual over her or his 
lifespan. 
 



 
Interestingly, LPA is located on the short arm of chromosome 6 adjacent to the 
plasminogen gene. LPA codes for multiple Kringle structures that are highly homologous 
to plasminogen. Thus, Lp(a) is not only an atherogenic particle but is prothrombotic as 
well (10). Interestingly, the plasminogen gene contains five Kringles and an active 
protease domain while LPA consists of Kringles IV, V, and an inactive protease domain. 
Kringle IV is present in 10 subtypes of which Kringle IV-2 is present in three to more than 
40 copies, mediating its size variability (11). This copy number variation explains 
differences in plasma levels among the two alleles in individual patients and between 
patients as a whole. Most patients have two different sized alleles, and therefore two 
different sized circulating Lp(a) particles. There is an inverse correlation between the 
size of the apo(a) isoform and the Lp(a) plasma concentration (12). There appears to be 
a relationship between the number of kringle repeats and the processing time of the 
precursor apo(a) protein. That is, the larger isoforms have a slower rate of production 
that limits the plasma concentration (13).  Experimental data suggest that Lp(a) levels 
are primarily determined by the rate of synthesis and not affected to any significant 
extent by the rate of clearance. The mechanism for the clearance of Lp(a) is still not 
understood, but is not thought to be primarily be related to the LDL receptor (14). It is the 
absolute level of Lp(a), rather than apo(a) isoform size, that are the main determinant of 
ASCVD risk (15, 16). There are 2 SNPs in the apo(a) gene locus, rs3798220 and 
rs10455872, that significantly predict Lp(a) concentrations and ASCVD risk [13]. This 
association is eliminated when the model includes Lp(a) level and thus supports the 
direct relationship between plasma Lp(a) levels and ASCVD risk. 
 
The association of Lp(a) with coronary heart disease (CHD) risk was first suggested by 
small cross-sectional and retrospective studies (17-28). A prospective case-control study 
reported in 2008 described an adjusted odds ratio for CHD of 1.60 (95% confidence 
interval, 1.38-1.85) between the upper and lower thirds of baseline Lp(a) levels (29). A 
large meta-analysis of 36 prospective studies which included 126,634 subjects 
demonstrated a continuous risk for CHD with elevated Lp(a) levels (30). A 2.4 fold 
increase in CHD risk associated with Lp(a) levels in the upper tertile relative to the 
bottom tertile was reported in the Framingham Offspring Study (30). These results are \ 
consistent with genetic data from a Mendelian randomization study that demonstrated 
that LPA variants 1) largely determine Lp(a) plasma levels and 2) that these variants 
increase risk of myocardial infarction  (31).  These findings support a direct causal 
relationship between high levels of Lp(a) and increased risk of ASCVD, with a 22% 
increase in myocardial infarction for each doubling of Lp(a) levels. Two recent trials, 
JUPITER and AIM-HIGH, demonstrated the residual risk associated with elevated Lp(a) 
despite achievement of low LDL-C during treatment in both primary and secondary 
prevention, respectively ((32, 33). Taken together, these data support an independent 
and causative role of Lp(a) in ASCVD.  
 
Recent data indicate that measurement of Lp(a) can improve risk ascertainment when 
added to global risk assessment (20). Net reclassification improvement by incorporating 



Lp(a) in to the evaluation was 39.6% overall, and most useful in subjects at intermediate 
risk of future ASCVD events.  Other individuals to consider screening for Lp(a) are listed 
in Table 2 (34). 
 
Table 2. Individuals to consider screening for Lp(a) 
Premature ASCVD 
Family history of premature ASCVD or elevated Lp(a)  
Recurrent ASCVD events despite effective statin therapy 
Familial hypercholesterolemia 
Hypercholesterolemia refractory to therapy with LDL-C lowering therapies (Lp(a) excess 
may account for significant component of the LDL-C level in some) (35) 
Individuals at intermediate risk of future ASCVD events 
 
Lp(a) levels are highly skewed in the general population. The relationship of Lp(a) to 
ASCVD appears to be curvilinear with significantly increased risk starting at levels that 
surpass 30 mg/dl (>75nmol/l). The attributable risk of Lp(a) is independent of LDL-C, 
non-HDL-C, and the presence of other risk factors. Currently, there are no commercially 
available drugs that selectively decrease Lp(a) and as such, no evidence that lowering 
Lp(a) in particular results in ASCVD risk reduction. In fact, no endpoint study has been 
performed in patients recruited on the basis of elevated Lp(a) levels and randomized to a 
therapy. Niacin, estrogens, PCSK9 inhibitors, and mipomersen reduce Lp(a) levels but 
also modify other lipids/lipoproteins. Agents in development that reduce Lp(a) include 
cholesteryl ester transfer protein inhibitors and the antisense oligonucleotide directed to 
apo(a). In clinical trials PCSK9 inhibitors and CETP inhibitors lowered Lp(a) levels by 
20–40% (36, 37).  
 
The most promising potential therapeutic development for Lp(a) lowering is an antisense 
oligonucleotide (ASO) directed to apolipoprotein(a) [apo(a)]. In phase I and II clinical 
trials, the ASO directed at apo(a) reduced Lp(a) by approximately 80%, without 
significantly affecting other lipoproteins (38, 39). In the meantime, guidance issued by 
the European Atherosclerosis society suggests that statins are indicated to lower LDL-C 
and that niacin may be considered to lower Lp(a) (by ~30-40%) (40). In the FATS 
angiographic trial, aggressive LDL-C lowering largely mitigated the risk due to elevated 
Lp(a) and many experts recommend targeting LDL-C to <70 mg/dl in such patients (38). 
Apheresis may be considered in individuals with very high levels of Lp(a), especially if 
they continue to experience ASCVD events despite medical therapy (41, 42). Aspirin 
therapy is generally recommended for patients with elevated Lp(a) due to the associated 
prothrombotic effect of Lp(a) (43). 
 
HYPOCHOLESTEROLEMIA 
 
Genetic mutations leading to very low levels of lipids, individually or in combination, are 
rare. The principle examples include familial hypobetalipoproteinemia (FHBL), 
abetalipoproteinemia (ABL), chylomicron retention disease (CMRD), and loss of function 



mutations in PCSK9 and angiopoietin-like protein 3 (ANGPTL3). Increased 
understanding of the genetic and the molecular underpinnings of these disorders has 
allowed a focused prioritization of therapeutic targets for drug development. Table 3 
summarizes genetic, lipid, and clinical features of the major hypolipidemia syndromes. 
 
Table 3. Characteristics of the hypolipidemia syndromes 
 Effected gene Lipids Clinical features 
FHBL Truncation 

mutations in apoB  
apoB <5th percentile 
LDL-C 20- 50 mg/dL 

Hepatic steatosis 
Mild elevation of 
transaminases 

ABL MTP Triglycerides < 30 
mg/dl  
Cholesterol < 30 
mg/dl)  
LDL and apoB 
undetectable  

Hepatic steatosis  
Malabsorption, 
steatorrhea, and 
diarrhea 
Deficiency of fat-
soluble vitamins.  

PCSK9  Loss of function 
mutations in 
PCSK9 

Heterozygous – mild 
to moderate reduction 
in LDL-C 
Homozygous – LDL-C 
~15 mg/dl 

Normal health; 
significantly lower 
prevalence of 
ASCVD 

Familial combined 
hypolipidemia 

ANGPTL3 Panhypolipidemia Normal health; 
significantly lower 
prevalence of 
ASCVD 

CMRD SAR1B LDL-C and HDL-C -
decreased by 50% 
Triglycerides - normal 

hypocholesterolemia 
associated with 
failure to thrive, 
diarrhea, 
steatorrhea, and 
abdominal 
distension 

 
Familial Hypobetalipoproteinemia 
 
Familial Hypobetalipoproteinemia (FHBL) is most commonly due to truncation mutations 
in the gene coding for apoB (42). Secondary, non-familial, forms of 
hypobetalipoproteinemia include strict vegan diet, malnutrition, malignancy, and chronic 
liver disease. The truncated forms of apoB found in FHBL are generally non-functional 
(truncation decreases lipidation and secretion) and are catabolized quickly, resulting in 
markedly reduced levels in the plasma (apoB <5th percentile and LDL-C typically 
between 20- 50 mg/dL) (44). Although there is one normal allele in heterozygous FHBL, 
plasma apoB levels are approximately 24% of normal rather than the predicted 50% 
(45). These lower than expected levels result from a 74% lower secretion rate of VLDL 



apoB from the liver, decreased production of LDL apoB, increased catabolism of VLDL, 
and extremely low secretion of the truncated apoB (46-49). Given the reduced substrate 
(apoB) for lipid (predominantly triglyceride) loading, fatty liver develops in these patients 
(50). Hepatic steatosis and mild elevation of liver enzymes are common in heterozygous 
FHBL. In contrast to non-alcoholic fatty liver disease, FHBL is not associated with 
hepatic or peripheral insulin resistance (51-53). This observation, however, does not 
imply that hepatic steatosis associated with FHBL is benign. There are several reports of 
steatohepatitis, cirrhosis, and hepatocellular carcinoma in patients with FHBL (20, 53-
57). While hepatic fat accumulation is the rule, there is generally sufficient chylomicron 
production to handle dietary fat. However, oral fat intolerance and intestinal fat 
malabsorption have been reported. 
 
Given the association of FHBL and low LDL-C, apoB has been an attractive target for 
drug development. Indeed, unraveling the genetic and molecular mechanisms of FHBL 
provided the motivation to pharmacologically antagonize apoB synthesis for therapeutic 
gains (58). This culminated in the production of mipomersen, a synthetic single strand 
anti-sense oligonucleotide to apoB. Essentially, anti-sense oligonucleotides contain 
approximately ~20 deoxyribonucleic acid (DNA) base pairs complementary to a unique 
messenger ribonucleic acid (mRNA) sequence. The hybridization of the anti-sense 
oligonucleotide to the mRNA of interest leads to its catabolism via RNase H1, with 
markedly reduced mRNA levels and ultimately reduced target protein levels. In this case, 
mipomersen binds to apoB mRNA leading to reduced production of the protein, and 
mimicking (albeit to a lesser extent) FHBL. Mipomersen is the first anti-sense 
oligonucleotide approved by the United States Food and Drug Administration (FDA) and 
was commercialized in 2013 with a limited indication for adjunctive LDL-C lowering in 
patients with homozygous familial hypercholesterolemia (HoFH) (59-61). It is an 
injectable agent administered subcutaneously once a week. In the clinical trials, 
mipomersen was associated with a reduction of LDL-C by 25% in subjects with HoFH 
and 28% in subjects with heterozygous familial hypercholesterolemia (HeFH) (62, 63). 
Interestingly, it was also found to lower Lp(a) by 21% (61). While it is highly efficacious 
LDL-C lowering, it has side effects, many of which can be predicted based on the 
experience with FHBL (e.g., hepatic steatosis, elevated liver enzymes). It is also 
associated with injection site reactions in a considerable number of subjects. Its long-
term safety has not been established. 
 
Homozygous hypobetalipoproteinemia (HHBL) is extremely rare. These patients are 
homozygous or compound heterozygous for mutations in the apoB gene. The clinical 
manifestations mimic ABL (see below). 
 
Abetalipoproteinemia 
 
Abetalipoproteinemia (ABL) is a rare disorder characterized by very low plasma 
concentrations of triglyceride and cholesterol (under 30 mg/dl) and undetectable levels 
of LDL and apoB (64). It is due to mutations in the gene that codes for microsomal 



triglyceride transfer protein (MTP) (60). MTP lipidates nascent apoB in the endoplasmic 
reticulum to produce VLDL and chylomicrons in the liver and small intestine, 
respectively. Unlipidated apoB is targeted for proteasomal degradation leading to the 
absence of apoB containing lipoproteins in the plasma (and thus markedly reduced 
levels of LDL-C and triglycerides) (65). Similar to FHBL, VLDL production is inhibited. 
The reduced triglyceride export from the liver leads to hepatic steatosis. Additionally, 
lack of MTP facilitated lipidation of chylomicrons in the small intestine causes lipid 
accumulation in enterocytes with associated malabsorption, steatorrhea, and diarrhea. 
The malabsorption and diarrhea lead to failure to thrive during infancy. An additional 
issue of importance related to ABL is deficiency of fat-soluble vitamins. Early diagnosis 
of ABL and HHBL is extremely important as vitamin E deficiency culminates in atypical 
retinitis pigmentosa, spinocerebellar degeneration with ataxia, and vitamin K deficiency 
that can lead to a significant bleeding diathesis (66). High dose supplementation with fat 
soluble vitamins early in life can prevent these devastating complications. Additional 
treatment measures include a low-fat diet and supplementation with essential fatty acids.  
 
Given the very low level of atherogenic lipoproteins and lipids associated with ABL, there 
was interest in antagonizing MTP therapeutically (67, 68). Lomitapide is an oral MTP 
inhibitor that has been developed over the course of many years. In early trials, it was 
tested at a relatively high dose and the side effect profile was prohibitive (nausea, 
flatulence, and diarrhea). The more recent clinical trial program tested lower doses with 
drug titration in subjects with HoFH (69, 70). Lomitapide reduced LDL-C by 50% from 
baseline to week 26 and remained reduced by 38% at week 78. Interesting, lomitapide 
reduced Lp(a) modestly (-13%) (70) Lomitapide received the same limited indication as 
mipomersen for adjunctive treatment of patients with HoFH. Besides the gastrointestinal 
issues already alluded to, its side effect profile includes hepatic steatosis. Its long-term 
safety has not been established.  
 
Proprotein Convertase Subtilisin/ Kexin Type 9 (PCSK9) 
 
Proprotein convertase subtilisin/ kexin type 9 (PCSK9) belongs to the proprotein 
convertase class of serine proteases. After synthesis, PCSK9 undergoes autocatalytic 
cleavage. This step is required for secretion, most likely because the prodomain 
functions as a chaperone and facilitates folding (71). PCSK9 is associated with LDL 
particles (~40%) and the LDL-receptor (LDLR) (~60%) (67, 71). In 2003, Abifadel 
reported the seminal work that mapped PCSK9 as the third locus for autosomal 
dominant hypercholesterolemia (2). This finding revealed a previously unknown actor 
involved in cholesterol homeostasis and served to launch a series of investigations into 
PCSK9 biology. As it turns out, PCSK9 functions as a central regulator of plasma LDL-C 
concentration. It binds to the LDLR and targets it for destruction in the lysosome (10). 
 
Since the discovery of gain-of-function mutations in PCSK9 as a cause of FH, 
investigators have also uncovered loss of function mutations of PCSK9. Loss-of-function 
mutations in PCSK9 are associated with low LDL-C levels and markedly reduced 



ASCVD (3, 4, 72, 73). Interestingly, rare individuals homozygous for loss of function 
mutations in PCSK9 have been reported with extremely low levels of LDL-C (~15 mg/dl), 
normal health and reproductive capacity, and no evidence of neurologic or cognitive 
dysfunction (74, 75). Collectively, these observations served as further motivation to 
pursue antagonism of PCSK9 as a therapeutic target. Theoretically, antagonizing 
PCSK9 would prolong the lifespan of LDLR, leading to significant reductions in plasma 
LDL-C levels. There are numerous approaches to inhibiting PCSK9 including humanized 
monoclonal antibodies (mAbs), gene silencing, and use of small inhibitory peptides. 
Thus far, approaches utilizing mAbs are the only therapeutic agents that are FDA 
approved. The two fully human monoclonal antibodies (alirocumab and evolocumab) 
targeting PCSK9 became commercially available in 2015. Clinical trials of mAbs targeted 
to PCSK9 have demonstrated remarkable efficacy in LDL-C reduction (~50% reduction 
in LDL-C as monotherapy and ~65% reduction in LDL-C in combination with a statin) 
with an excellent short-term safety and tolerability profile (76). Moreover, one large 
randomized controlled trial (FOURIER) demonstrated incremental improvement with a 
15% reduction in the composite primary endpoint of major adverse cardiovascular 
outcome with addition of evolocumab on top of standard of care in patients with stable 
vascular disease (77). More recently, the ODYSSEY OUTCOMES trial was presented at 
the American College of Cardiology Meeting (Presented by Dr. Philippe Steg at the 
American College of Cardiology Annual Scientific Session (ACC 2018), Orlando, FL, 
March 10, 2018.) and demonstrated a similar reduction in major adverse cardiovascular 
events with alirocumab vs. placebo in patients with recent acute coronary syndromes. 
 
Familial Combined Hypolipidemia 
 
Familial combined hypolipidemia is due to loss of function mutations in the gene 
encoding ANGPTL3 (20). ANGPTL3 inhibits various lipases, such as lipoprotein lipase 
and endothelial lipase. Therefore, loss of function mutations in ANGPTL3 relinquishes 
this inhibition resulting in more efficient metabolism of VLDL and HDL particles. 
Clinically, this manifests as panhypolipidemia. Interestingly, heterozygotes for certain 
nonsense mutations in the first exon of ANGPTL3 have moderately reduced LDL-C and 
triglyceride levels while compound heterozygotes have significant reductions in HDL-C 
as well (78).  Homozygosity or compound heterozygosity for other loss-of-function 
mutations in exon 1 of ANGPTL3 have no detectable ANGPTL3 in plasma and striking 
reductions of atherogenic lipoproteins with HDL particles containing only apo A-I and 
preß-HDL (78). Individuals who are heterozygous for the loss of function mutations in 
ANGPTL3 have normal HDL-C levels and significantly reduced LDL-C (<25th percentile). 
 
Recently, a pooled analysis of all reported cases of familial combined hypolipidemia was 
published (79). One hundred fifteen individuals carrying 13 different mutations in 
the ANGPTL3 gene (14 homozygotes, 8 compound heterozygotes, and 93 
heterozygotes) and 402 controls were evaluated. Homozygotes and compound 
heterozygotes (two mutant alleles) had no measurable ANGPTL3 protein. In 
heterozygotes, ANGPTL3 was reduced by 34-88%, according to genotype. All cases 



(homozygotes and heterozygotes) demonstrated significantly lower concentrations of all 
plasma lipoproteins [except for Lp(a)] as compared to controls. Familial combined 
hypolipidemia is not associated with any comorbidity. In fact, the prevalence of fatty liver 
was the same as controls. ASCVD and diabetes were not found amongst homozygotes.  
 
Chylomicron Retention Disease 
 
Chylomicron retention disease (CMRD), known also as Anderson’s disease for the 
individual who first described the condition in 1961, is a rare inherited lipid malabsorption 
syndrome (80). It is due to mutations in the SAR1B gene which codes for the protein 
SAR1b involved in intracellular protein trafficking. This disorder usually presents in 
young infants with diarrhea, steatorrhea, abdominal distention, and failure to thrive. 
Patients with CMRD demonstrate a specific autosomal recessive hypocholesterolemia 
that differs from other familial hypocholesterolemias. CMRD is associated with a 50% 
reduction in both plasma LDL-C and HDL-C with normal triglyceride levels. Beyond the 
typical lipid profile, several other findings support the diagnosis, including: 
 a) absence of secretion of chylomicrons after a fat load 
 b) white duodenal mucosa on endoscopy 
       c) cytosolic lipid droplets and lipoprotein-sized particles in enterocytes on intestinal 
biopsy 
 d) SAR1B gene mutations  
 
LOW HDL CONDITIONS 
 
The inverse relationship between HDL-C and ASCVD risk is well established (81). 
Furthermore, the risk attributable to low HDL-C is independent of LDL-C levels (82). 
Isolated low HDL-C levels can occur; however, it is more commonly found in association 
with hypertriglyceridemia and/or elevated apoB (83). Patients with very low HDL-C (<20 
mg/dl) in the absence of severe hypertriglyceridemia are rare These individuals may 
have rare monogenic disorders associated with marked HDL deficiency, including 
familial hypoalphalipoproteinemia, Tangier disease, and lecithin acyltransferase (LCAT) 
deficiency. Table 4 summarizes genetic, lipid, and clinical features of the major low HDL 
conditions. 
 
Table 4. Characteristics of the low HDL syndromes 
 Effected gene Lipids Clinical features 
Familial 
hypoalpha-
lipoproteinemia 

apo A-I/apo C-III/ apo 
A-IV 
apo A-I/apo C-III 
apo A-I 

Apo AI undetectable, 
marked deficiency in 
HDL-C, low – normal 
triglycerides, normal 
LDL-C 

Xanthomas 
Premature ASCVD 
Corneal 
manifestations 

Tangier 
disease 

ABCA1 HDL species exclusively 
preß-1 HDL-C <5 mg/dl 
LDL-C low (half normal) 

Hepatosplenomegaly 
Enlarged tonsils 
Neuropathy 



ASCVD (6-7th 
decade) 

LCAT 
deficiency 

LCAT HDL-C <10 mg/dl 
apo A-I 20-30 mg/dl  
<36% cholesteryl esters 
Low LDL-C 
Presence of Lp-X 
particles 

FLD develop corneal 
opacities (“fish eye”), 
normochromic 
anemia and 
proteinuric end stage 
renal disease 
 
FED only develop 
corneal opacities 

 
Familial Hypoalphalipoproteinemia 
 
Familial hypoalphalipoproteinemia is a heterogeneous group of apolipoprotein A-I (apo 
A-I) deficiency states. These various conditions are characterized by the specific 
apolipoprotein genes that are affected on the apo A-I/C-III/A-IV gene cluster. The genes 
for these 3 apolipoproteins (apo A-I, apo C-III, and apo A-IV) are grouped together in a 
cluster on human chromosome 11 (84). In patients with apo A-I/C-III/A-IV deficiency, 
apoA-1 is undetectable in the plasma and is associated with marked deficiency in HDL-
C, low triglyceride levels (due to apo C-III deficiency), and normal LDL-C (85). This 
condition is associated with aggressive, premature ASCVD. Additionally, there is 
evidence of mild fat malabsorption. Patients with apo A-I/C-III deficiency have 
undetectable apo A-I and a similar lipid profile as those with apo A-I/C-III/A-IV deficiency. 
This condition is also associated with premature ASCVD. It is distinguished from the 
former by presence of planar xanthomas and absence of fat malabsorption (since apo A-
IV is present) (86) . Familial apo A-I deficiency is itself a heterogeneous group of 
disorders associated with numerous gene (Apo A-I) mutations. Common manifestations 
include undetectable plasma Apo A-I, marked HDL deficiency with normal LDL-C and 
triglyceride levels, xanthomas (planar, tendon, and/or tubero-eruptive depending on the 
specific gene mutation), and premature ASCVD. Some forms of the disease are also 
associated with corneal manifestations, including corneal arcus and corneal 
opacification. One of the interesting manifestations of familial apo A-I deficiency is that 
levels of apo A-IV and apo E containing HDL particles are normal, with preserved 
electrophoretic mobility and particle size. As such, it appears that there are 3 distinct 
HDL particles, e.g., apo A-I HDL, apo A-IV HDL, and apo E HDL. The latter 2 species 
normally make up a minor portion of the HDL population but may have functional 
significance. Given the increased ASCVD risk associated with Apo A-I deficiency, 
treatment is directed towards aggressive reduction of LDL-C and non-HDL-C. 
 
Tangier Disease 
 
Tangier disease is due to mutations in the gene that codes for ATP-Binding Cassette 
transporter A1 (ABCA1) and is inherited in an autosomal recessive manner.  Fredrickson 



first reported this condition in two patients who hailed from Tangier Island in the 
Chesapeake Bay, for which the disorder is named.  ABCA1 facilitates efflux of 
intracellular cholesterol from peripheral cells to lipid poor A1, the key first step of reverse 
cholesterol transport. As such, this disorder is characterized by plasma with exclusively 
preß-1 HDL and severe deficiency of HDL-C (HDL-C <5 mg/dl). The poorly lipidated apo 
A-I is rapidly catabolized by the kidney. These patients also demonstrate moderate 
hypertriglyceridemia. Since ABCA1 deficiency impairs free cholesterol efflux from cells, 
there is accumulation of cholesterol esters in many tissues throughout the body. 
Classically, patients present with hepatosplenomegaly and enlarged tonsils, however, a 
wide spectrum of phenotypic manifestations is now appreciated with considerable 
variability in terms of clinical severity and organ involvement. Tangier disease patients 
have an increased risk of premature ASCVD, though not as pronounced as those with 
familial hypoalphalipoproteinemia. CHD generally manifests in the 6th and 7th decades. 
Later onset of atherosclerosis in Tangier disease may be due to the fact that LDL-C is 
generally half that of the normal population.  
 
Individuals who are heterozygous for ABCA1 mutations have HDL-C levels that are 50% 
of normal with normal levels of preß-1 HDL but deficiency of large α-1 and α-2 HDL 
particles. Cholesterol efflux capacity in heterozygotes has been reported as ~50% of 
normal. A mutation in one ABCA1 allele has been associated with increased risk of 
ASCVD in some studies but no increase in risk in others. This continues to be a 
significant unanswered question. Recent data links discrete mutations in ABCA1 to 
varying HDL-C levels. These genotype/phenotype correlations suggest a direct 
association between ABCA1 function and HDL-C concentration (87). This association 
may additionally inform ASCVD risk. 
 
While Tangier patients manifest characteristically low HDL-C and apo A-I, this 
lipid/lipoprotein phenotype is not adequate to make the diagnosis. ABCA1 gene 
sequence analysis is the preferred test to make the diagnosis of Tangier disease. 
However, molecular diagnostics are not readily available and are expensive. 
Alternatively, non-denaturing two-dimensional electrophoresis followed by anti-apo A-I 
immunoblotting demonstrates only preβ1-HDL (88). Currently, there is no specific 
treatment for Tangier disease. In fact, HDL-C raising therapies such as niacin and 
fibrates have proven ineffective in patients with this condition (84). Even HDL infusion 
and plasma exchange were attempted but not found to be beneficial (89). The major 
clinical issue in Tangier patients is disabling neuropathy; however, there is no effective 
intervention to manage this complication. 
 
LCAT Deficiency 
 
LCAT is an enzyme that is bound primarily to HDL, with some also found on LDL. It 
facilitates cholesterol esterification by transferring a fatty acid from phosphatidyl choline 
to cholesterol. The hydrophobic cholesteryl esters are then sequestered into the core of 
the lipoprotein particles. LCAT is critical in the maturation of HDL particles. LCAT 



deficiency is an autosomal recessive disorder that manifests as either familial LCAT 
deficiency (FLD) or fish-eye disease (FED). The phenotype of these conditions is 
dictated by residual LCAT activity, with FLD associated with essentially no enzyme 
activity and FED associated with some activity, generally on apoB-containing 
lipoproteins (90).  
 
Individuals with FLD develop corneal opacities (“fish eye”), normochromic anemia (due 
to cholesterol enrichment of red blood cell membranes), and proteinuric end stage renal 
disease. Patients with FED generally only manifest the corneal opacities. The lipid and 
lipoprotein profile demonstrate low HDL-C (<10 mg/dl), low apo A-I (20-30 mg/dl), <36% 
cholesteryl esters, low LDL-C, and the presence of lipoprotein X (Lp-X) particles. Lp-X is 
a multilamellar vesicle with an aqueous core. It is primarily composed of free cholesterol 
and phospholipid with very little protein (albumin in the core and apolipoprotein C on the 
surface) and cholesteryl ester. Given the association of Lp-X and kidney disease only 
with FLD (and not FED), some have speculated the role of this particle in the genesis of 
the renal dysfunction. Lp-X particles accumulate in the mesangial cells in the 
glomerulus. It is thought that they induce inflammation and breakdown of the basement 
membrane leading to proteinuria. The current theory posits that Lp-X causes 
inflammation in the kidney by activating the inflammasome (part of the innate immune 
system). The cholesterol in the Lp-X partitions into the lysosomal membrane. The 
vacuolar ATPase in the lysosome is inhibited by this cholesterol deposition and 
culminates in lysosomal distention and dysfunction. 
 
It is unclear as to whether LCAT deficiency is associated with ASCVD. Sethi et al 
reported increased pre-beta HDL and decreased LCAT activity in subjects with coronary 
heart disease (90). Atherosclerosis imaging studies have yielded divergent data. Initial 
studies demonstrated no increase in carotid intima media thickness. However, a 
subsequent carotid MRI study of LCAT heterozygotes revealed a ~30-fold increase in 
plaque volume in FLD compared to controls (91). Current opinion suggests that LCAT 
deficiency is associated with increased risk of ASCVD however it is likely subtle due to 
associated low LDL-C.  
 
Current management of FLD focuses on managing the renal dysfunction. The 
associated kidney disease is traditionally managed with angiotensin-converting enzyme 
inhibitors, angiotensin receptor blockers, and rarely steroids (92). Currently, a human 
recombinant LCAT is being tested in clinical trials. This treatment is associated with 
rapid increases in HDL-C and cholesterol esterification as well as increased in vitro 
cholesterol efflux by plasma (93). Future trials will determine whether it can prevent or 
reverse renal disease in FLD.  
 
Approach to the Patient with Low HDL 
 
When encountering a patient with very low HDL-C, it is important to first exclude 
hypertriglyceridemia as the etiology.  If the extreme depression in HDL-C is not 



secondary to hypertriglyceridemia, one must exclude artifactual causes secondary to 
paraproteinemia. If not artifactual, a detailed medication history needs to be elicited. If 
the HDL-C drop (to below 20 mg/dl) is sudden, an occult malignancy needs to be 
excluded. Additionally, severe liver disease or sepsis can cause marked reductions in 
HDL levels. Finally, certain drugs can markedly decrease HDL resulting in very low HDL 
levels (for example high dose androgens and idiosyncratic reactions to fibrates and 
thiazolidinediones). If prior HDL-C levels are normal, this excludes a primary monogenic 
etiology. To evaluate potential primary causes, a detailed family history, with attention to 
HDL-C levels, is important. A focused physical examination, with particular attention to 
the skin, eyes, tonsils, and spleen may point to a specific monogenic disorder. In these 
cases, plasma apo A-I levels should be obtained. Individuals with apo A-I deficiency 
have undetectable plasma apo A-I. Patients with Tangier disease demonstrate very low 
apo A-I levels (<5 mg/dl). LCAT deficiency is associated with apo A-I levels that are low 
but substantially higher than the other monogenic etiologies. Patients with LCAT 
deficiency also have a higher ratio of free: total cholesterol in plasma and measurement 
of plasma free (unesterified) cholesterol can be helpful. Two-dimensional gel 
electrophoresis of plasma followed by immunoblotting with antibodies specific for apo A-I 
separates lipid-poor preß-HDL from lipid-rich–HDL and can be used to differentiate 
these disorders (94) .  
 
HIGH HDL CONDITIONS (HYPERALPHALIPOPROTEINEMIA) 
 
An elevated concentration of apo A-I and apo A-II is called hyperalphalipoproteinemia 
(HALP). HALP is a heterogeneous condition caused by a variety of genetic and 
environmental factors. Given the focus of this chapter, genetic causes of HALP will be 
reviewed. Familial HALP includes primary HALP, CETP deficiency, familial hepatic 
lipase deficiency, and selective up-regulation of apo A-I production. Despite the 
consistent epidemiology that demonstrates an inverse relationship between HDL-C and 
ASCVD risk, some forms of familial HALP are paradoxically associated with increased 
cardiovascular risk. The major genetic causes of HALP are summarized in Table 5.  
 
Table 5. Causes of Familial HALP 
Condition Overview 
Primary HALP Familial elevated HDL-C levels that are not due to CETP 

deficiency. Epidemiologic studies have suggested that this 
syndrome is associated with a decreased risk for ASCVD 
and with increased longevity 
 

CETP deficiency Caused by low CETP levels. CETP deficiency is the most 
important and frequent cause of HALP in Japan. It is 
associated with marked elevations of plasma HDL 
cholesterol in homozygotes (usually >100 mg/dL). In 
heterozygotes, the HDL levels are only moderately 
elevated. CETP deficiency has not yet been demonstrated 



to be associated with a decreased risk for ASCVD with 
some studies demonstrating an association with longevity in 
some populations and ASCVD in others. 

Up-regulation of apo A-I 
production 

Selective up-regulation of apo A-I. Affected individuals have 
elevated HDL cholesterol and apo A-I levels. Many patients 
have a reduced risk of ASCVD. 

Genetic deficiency of 
hepatic lipase 

HALP due to hepatic lipase deficiency. Mutations in the 
gene coding for hepatic lipase resulting in reduced lipase 
activity and increased plasma levels of HDL-C are linked to 
increased risk of ASCVD 

 
HALP is generally identified incidentally after routine assessment of a lipid profile as it is 
generally not associated with any signs or symptoms.  Rarely it is associated with 
premature corneal opacities and multiple symmetric lipomatosis (95). Generally, patients 
are asymptomatic and no medical therapy is required. However, patients with corneal 
opacity may need an evaluation by an ophthalmologist. Clearly, some forms of HALP are 
associated with ASCVD and selective screening for such is warranted in some.  
 
ß-SITOSTEROLEMIA 
 
ß-Sitosterolemia (also known as phytosterolemia) is an extremely rare (only 100 cases 
reported in the literature) disorder due to homozygous or compound heterozygous 
mutations in either one of the two adenosine triphosphate binding cassette transporters 
genes, ABCG5/ABCG8 (96). These proteins are expressed in the liver and small 
intestine and facilitate excretion of absorbed plant sterols and cholesterol into the 
intestinal lumen and bile. Thus, defects in these genes are associated with markedly 
elevated plasma levels of plant sterols (e.g., sitosterol and campesterol) and normal to 
moderately elevated plasma levels of cholesterol. While splenomegaly, 
thrombocytopenia, and hemolytic anemia can complicate the course of sitosterolemia, 
ASCVD is the most devastating feature of this condition.   
 
Clinical manifestations may include hypercholesterolemia, tendon and 
tuberous xanthomas, and premature ASCVD. Individuals with sitosterolemia seem to be 
more susceptible to xanthomatosis than those with similar plasma levels of cholesterol. 
Even low plasma levels of phytosterols (30-40 mg/dl) are sufficient to cause xanthomas 
while plasma levels of LDL-C associated with xanthomas in FH are generally greater 
than 400 mg/dl (97). Patients with sitosterolemia are at risk for ASCVD in early childhood 
and adulthood, which may be due to elevations in both plasma cholesterol and 
phytosterols (20, 70, 98). Its presentation is sometimes confused with FH, given the 
overlapping clinical features (see Table 6). Importantly though, most patients with 
sitosterolemia demonstrate either normal or only moderately elevated plasma 
cholesterol levels with very high plasma levels of plant sterols. Xanthelasma and corneal 
arcus are less common in sitosterolemia as compared to FH. Some sitosterolemic 
patients also present with pseudo-homozygous FH, which is due to a complete failure of 



cholesterol efflux into bile (21, 99, 100). One speculative mechanism to explain the 
profound hypercholesterolemia in this condition proposes that hepatic retention of 
phytosterols leads to a reduction in LDLR function mediated by the sterol regulatory 
element binding protein pathway (101).  
 
The foundation of treatment of sitosterolemia is through dietary means with strict 
reduction in foods rich in plant sterols and cholesterol (e.g., nuts, seeds, olives, 
avocados, vegetable oils, shortening, margarine, shellfish, and chocolate). Dietary 
measures alone, however, do not adequately lower plasma phytosterols levels. 
Statins may be used to lower LDL-C and reduce ASCVD risk but often do not lower plant 
sterol levels. Furthermore, sitosterolemic patients generally only have a modest LDL-C 
lowering response to statins since de novo cholesterol synthesis is already suppressed 
(99). Bile acid binding resins may be used and reduce total plasma sterols by ~50% in 
patients with sitosterolemia (102, 103). The introduction of ezetimibe, a sterol absorption 
inhibitor, has transformed the management of these patients and is considered standard 
of care.  Most patients will require dietary measures coupled with combination medical 
therapy to adequately lower plasma sterol levels.  
 
CEREBROTENDINOUS XANTOMATOSIS 
 
Cerebrotendinous xanthomatosis (CTX) is a rare (only several hundred reported cases) 
disease caused by a defective sterol 27-hydroxylase enzyme, due to a mutation in the 
CYP27A1 gene. This mitochondrial enzyme (a member of the cytochrome P450 system) 
deficiency causes the accumulation of cholesterol and cholestanol in virtually all tissues, 
leading to diffuse xanthoma formation, most notably in the central nervous system and 
tendons. 
 
The fundamental defect in bile acid synthesis is at the core of CTX. Normal cholesterol 
catabolism involves the synthesis of primary bile acids (cholic acid   
and chenodeoxycholic acid [CDCA]) by way of several sterol intermediates (104). Due to 
the disturbance in bile acid synthesis in CTX, feedback regulation on cholesterol 7α-
hydroxylase, the rate-limiting enzyme, is disturbed (105). Thus, cholestanol and other 
bile acid precursors accumulate in tissues resulting in a progressive degenerative 
systemic and neurologic disorder. 
 
Systemic and neurologic symptoms typical of CTX include intractable diarrhea, 
premature cataracts, tendon xanthomas, and progressive neurologic disease (104).  
Chronic diarrhea and bilateral cataracts typically present in early childhood (106, 107). 
Patients usually develop tendon xanthomas and neurologic symptoms after the second 
decade of life (108). Besides forming on extensor tendons (particularly the Achilles), 
xanthomas can form in the brain, bones, and lungs.  
 
ASCVD and non-atherosclerotic cardiovascular disease have been reported with CTX, 
including premature coronary heart disease, coronary aneurysms, mitral regurgitation, 



and lipomatous hypertrophy of the interatrial septum (109-111). The mechanism for the 
development of atherosclerosis is unclear, especially in light of the relatively low to 
normal plasma concentrations of LDL-C (112). It is likely related to the uptake of 
cholestanol within the arterial walls (113).  
 
The disruption of bile acid synthesis in CTX results in a number of laboratory 
abnormalities. Laboratory findings include elevated plasma levels of cholestanol and bile 
alcohols. The formation of CDCA is markedly decreased with concomitant diminished 
concentrations in the bile. Urine concentrations of bile alcohols and bile alcohol 
glucuronides are increased. Serum and tissue levels of cholestanol are elevated to 5-10 
times the normal level whereas serum cholesterol levels are normal or decreased. A 
presumptive diagnosis is established when typical symptoms (neurologic, cataracts and 
xanthomas) and lab abnormalities (elevated plasma and bile cholestanol levels, 
increased urinary excretion of bile alcohol glucuronides associated with diminished 
biliary concentrations of CDCA) are present. Genetic testing can be done to confirm the 
diagnosis. 
 
It is imperative to recognize CTX before neurologic deterioration ensues in order to 
prevent severe mental and neurologic dysfunction and death. The mainstay of treatment 
for CTX is CDCA (114). It can stabilize or potentially reverse some of the associated 
symptoms. The neurologic and psychiatric symptoms are the most difficult to treat and 
may not improve with this therapy (115). Statins have been studied as a treatment for 
CTX (111). Although data are sparse, statin monotherapy appears to have little or no 
benefit in this condition. However, statins may be useful for lowering cholestanol levels 
when combined with CDCA. There is limited evidence that statins provide incremental 
benefit over CDCA treatment alone. A theoretical concern regarding statin therapy in 
CTX is the prospect of worsening the condition by increasing LDL uptake secondary 
enhanced LDLR activity. 
 
FH, sitosterolemia, and CTX share certain similarities in their clinical manifestations. 
Table 6 compares and contrasts these three conditions. 
 
Table 6. Characteristic features of FH, Sitosterolemia, and CTX 
Condition Genetic 

Defect 
Lab 
Findings 

Clinical Features Treatment 

Familial 
Hypercholesterolemia 

Most 
commonly 
mutations in 
LDL-R (can 
also be due 
to defective 
apoB or gain 
of function 
mutations in 

Elevated 
plasma 
LDL-C 

ASCVD 
Tendon and 
tuberous 
xanthomas 

Cholesterol 
lowering diet 
Cholesterol 
lowering 
medications 
LDL apheresis 



PCSK9  
Sitosterolemia Mutations in 

ABCG5 and 
ABCG8 

Marked 
elevations 
in plasma 
phytosterol 
levels 
Normal or 
modestly 
elevated 
plasma 
cholesterol 

ASCVD 
Tendon and 
tuberous 
xanthomas 
Thrombocytopenia 
Hemolytic anemia 

Low plant sterol 
diet 
Ezetimibe 
Bile acid binding 
resins 

Cerebrotendinous 
Xanthomatosis 

Mutation in 
CYP27A1 
(defective 
sterol 27-
hydroxylase) 

Elevated 
plasma 
cholestanol 
and bile 
alcohols 
Normal or 
low plasma 
cholesterol 

Intractable 
diarrhea 
Premature 
cataracts 
Tendon 
xanthomas 
Progressive 
neurologic 
disease 

Chenodeoxycholic 
acid 

 
LYSOSOMAL ACID LIPASE DEFICIENCY 
 
Lysosomal acid lipase deficiency (LAL-D) is a rare disorder due to mutations in the LIPA 
gene, which codes for lysosomal acid lipase. The prevalence of this condition is 
unknown but current estimates range from 1:40,000 – 1:300,000 individuals (116). 
Normally, LDL particles in plasma bind to the LDLR and then via clathrin-mediated 
endocytosis gain entrance into the cell and ultimately fuse with the lysosome. Lysosomal 
acid lipase hydrolyzes the cholesterol esters and, to a lesser extent, triglycerides found 
within these lipoprotein particles. LAL-D is a lysosomal storage disorder characterized by 
absent or markedly reduced lysosomal acid lipase activity and thus cholesterol esters 
and triglycerides accumulate within the lysosomes. As such, the hallmarks of this 
condition include dyslipidemia, accelerated atherosclerosis, and progressive liver 
disease. Patients typically presents with severe hypercholesterolemia (with depressed 
HDL-C), hepatomegaly, elevated transaminases, and/or microvesicular steatosis that 
can progress to fibrosis and cirrhosis. The disease was initially described as two 
separate entities; a fulminant, rapidly progressive disease presenting in newborns called 
Wolman disease and a less severe form typically presenting in childhood or young 
adulthood called cholesterol ester storage disease.  It is now understood that these two 
conditions are on a spectrum with a common molecular basis resulting from mutations in 
the LIPA gene. Currently, it is thought that the severity and progression of disease is 
related to the degree of residual enzyme activity. Given its similar manifestations with 
other cardiovascular and liver diseases, the differential diagnosis of LAL-D can be 
challenging (Table 7).  



 
Table 7. Differential Diagnosis of Lysosomal Acid Lipase Deficiency 
Familial Hypercholesterolemia 
Familial Combined Hyperlipidemia 
Polygenic Hypercholesterolemia 
Metabolic Syndrome 
Non-alcoholic Fatty Liver Disease 
Non-alcoholic Steatohepatitis 
Glycogen Storage Disease 
Cryptogenic Cirrhosis 
 
From a lipid disorders standpoint, LAL-D can mimic HeFH, and in the appropriate 
setting, an evaluation for LAL-D should ensue (117). As a first line test, lysosomal acid 
lipase enzyme activity can be measured in dry blood spot using the fluorometric 
substrate 4-methylumbelliferyl palmitate. If there is very low or absent enzyme activity on 
dry blood spot testing, this is considered diagnostic. Genetic testing can also confirm the 
diagnosis of LAL-D. 
 
Until recently, there was no specific therapy available for LAL-D. Supportive therapies, 
including liver transplant in some, had been the mainstay of treatment. Given the 
profound hypercholesterolemia that is frequently present in this disorder, statins have 
been utilized and have been found to lower LDL-C in many cases reported in the 
literature (118). However, liver disease continues to progress and there is theoretical 
concern related to increased LDLR activity with statins. While plasma LDL-C is lowered, 
the higher receptor mediated uptake of LDLR particles may accelerate the lysosomal 
accumulation of cholesteryl esters and thus lead to further decline in liver and other 
organ function.   
 
Enzyme replacement with human recombinant lysosomal acid lipase (sebelipase alfa) 
demonstrated a reduction in multiple disease-related hepatic and lipid abnormalities in 
children and adults with LAL-D and has subsequently been approved by the FDA for 
treatment of this condition (119). The initial clinical experience suggests that sebelipase 
alfa is well tolerated, rapidly decreases serum transaminases, improves the lipid profile, 
and reduces the hepatic fat fraction (120, 121). 
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