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Take-Home Points 

 Regulation of food intake occurs homeostatically via activation of peripheral signals in the 
GI tract and adipose tissue, which directly monitor incoming nutrient and nutrient stores, 
and central systems (e.g., the hypothalamus), which receive these signals and alter 
behavioral and metabolic output to balance energy intake with need 

 These signals engage in significant interaction with one another, often by making other 
signals more or less effective (e.g., increased levels of the adipose hormone leptin due to 
greater fat stores makes the satiety signal CCK more effective decreasing meal size). 

 In addition to the hypothalamus, the hippocampus is involved in regulating food intake by 
cognitive mechanisms including explicit recall of prior meals and associative learning 
about the relationship of feelings of hunger/satiety to the consequences of eating. 

 These signals act via numerous behavioral mechanisms, including altering meal initiation, 
termination and size, increasing or decreasing the motivation to seek and consume food, 
causing subjective feelings of hunger or satiety, or changing the perceived reward value 
of food. 

 Obesity, or chronic consumption of a high-fat, energy-dense diet, can lead to changes in 
the sensitivity to these signals resulting in decreased ability to regulate and may 
contribute to the persistence of obesity.  Cognitive function and sensitivity to the 
rewarding aspects of food are also affected by chronic obesity. 

 
 
 
 

Introduction  
Energy balance requires that an organism match caloric intake relatively precisely with caloric 
expenditure. In humans, an error of only +11 kcal/day results in a one pound weight gain over the course 
of a year. Over the past 40 years, the average body weight of American adults has increased at rate of 
less than that one pound per year, but the steady increase has yielded an increase of an average of 3 
BMI points, bringing the average adult from a healthy weight into the overweight category (1). This 
increase brings with it a significantly increased risk of a number of health problems, including type 2 
diabetes, high blood pressure, and cardiovascular disease and has a total financial cost estimated at 
$139 billion per year (2). In attempting to identify potential biological causes and treatments for this 
widely-occurring disorder, it is critical to understand the mechanisms which regulate energy homeostasis. 
In this chapter, we will review both peripheral and central signaling mechanisms relating to the food 
intake side of the equation, including how these signals function with respect to specific aspects of food 
intake-related behavior, and a brief overview of how this system may become dysregulated during states 
of chronic overconsumption and obesity. 
 

Environmental Signals  
There are a variety of external factors that play a significant role in food intake, including social 
situations, time cues, food-related stimuli (e.g., sight, smell) and other learned information. While it is 
evident that these types of signals can have a definite impact on when to consume a meal, what foods to 
choose and how much to eat, the focus of this chapter will be on the molecular mechanisms involved in 
controlling these ingestive behaviors.   
 



Peripheral Signals  

Gastric Mechanoreceptors 
After food is ingested, it moves into the gastrointestinal tract where the volume and the nutritive content 
of the meal is detected via mechanical and chemosensory mechanisms. The results of sham feeding 
experiments indicate clearly that detection of food in the gastrointestinal (GI) tract plays a large role in 
determining the amount consumed. In these studies, animals with open gastric fistulas which allow food 
to drain out of the stomach consume much larger volumes than animals consuming food normally, an 
effect which can be overcome by concurrently infusing nutritive solutions directly into the duodenum (3, 
4). Gastric mechanoreceptors are located on vagal afferent and splanchnic nerve fibers and detect food 
volume by responding to stretch or pressure in the walls of the stomach (5, 6). Experiments in rats using 
pyloric occlusion to prevent contents from emptying into the intestines have demonstrated that satiety, as 
indicated by reduction in subsequent food intake, can occur based on gastric signals, that this is due 
predominantly to food volume, rather than caloric content, and that this effect is dependent on an intact 
vagus (7-9). However, it appears that the volumes required to reduce food intake are substantially 
greater than the volumes generally consumed in a single meal. Further, under the majority of self-
controlled feeding conditions in rodents, intake was not significantly altered by pyloric occlusion (10, 11), 
indicating that, while gastric distension can act as a satiety signal, it may not be an important regulator 
during normal feeding situations. Although the idea that gastric distension may contribute to meal 
termination is consistent with data supporting a volumetric control of food intake, the data on gastric 
mechanoreceptors and satiety suggest that other mechanisms are likely at work in this phenomenon.    
 

Gastrointestinal Satiety Signals 
Although the stomach is thought to be primarily responsive to food volume, nutrient entry into the 
stomach also induces the release of gastrin releasing peptide (GRP), a member of the bombesin-like 
peptide family. GRPs (including GRP-10, -27 and -29) in humans and animals act as satiety signals by 
reducing meal size, prolonging time to begin the next meal and enhancing the satiating effects of a meal 
(12,13). 
 
The intestinal tract is highly sensitive to the caloric content of ingested foods. Beginning in the 
duodenum, the detection of nutrients activates the release of a number of peptides, often termed “satiety 
signals”, which act primarily to terminate consumption of a meal. The most well known of these is 
cholescystokinin (CCK), an octapeptide that is released from the duodenum and, to a lesser extent, the 
ileum in response to nutrients (14). CCK activates receptors on the vagus nerve which terminates in the 
hindbrain at the nucleus of the solitary tract (NTS). As nutrients enter into and move through the GI tract, 
peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) are secreted from the ileum and colon, while 
apolipoprotein A-IV (Apo A-IV) is synthesized in response to intestinal fat absorption (15-17). CCK and 
other GI peptides are differentially responsive to the macronutrient composition of a meal. CCK and 
gastrin are released more readily by protein ingestion, which is confirmed by the finding that protein 
hydrolysates directly stimulate CCK receptors in enteroendocrine cells (18,19). Consumption of 
carbohydrates and fats yields greater GLP-1 release, whereas Apo A-IV synthesis is induced exclusively 
by fat absorption and PYY is most responsive to protein and fats (20-22). In obese individuals, PYY is 
more responsive to fats than carbohydrates (23) and, in humans, exogenous administration of PYY3-36 
increases both ratings of satiety and plasma free fatty acids (24). Since most meals consist of multiple 
nutrient components, this allows for the integration of nutrient and caloric information by GI signals, and 
these varying profiles of satiety signal activation may contribute to differences in the relative satiety value 
of the macronutrients (25,26), as well as possibly affecting macronutrient selection and intake at later 
meals.  
 
All of these GI “satiety signals” reduce food intake when administered to animals either systemically or 
centrally, and when administered peripherally in humans (24,27-34), although it should be noted that 
there is some controversy surrounding the efficacy of the active form of PYY3-36 to reduce food intake 



and body weight in humans and non-human animal models (35,36). These peptides effect reductions in 
food intake primarily by acting to terminate the current meal, although longer-term effects have been 
suggested for GLP-1 and PYY (37). The observation that antagonists of CCK and GLP-1 receptors 
results in increased food intake (38-40) more strongly indicates that these hormones function 
endogenously to control feelings of satiety and meal termination. The idea that these hormones are the 
natural mechanism for ending a meal is also supported by the observation that meal ingestion, infusion 
of calories into the GI tract and exogenous administration of several of these peptides, including CCK 
and bombesin/GRP, all result in animals displaying a similar set of behaviors, termed the “behavioral 
satiety sequence” (41-43). However, genetic deletion of these peptides or their receptors yields mixed 
results. For example, PYY knockout mice and OLETF rats, which lack the CCK-1 receptor (CCK-1R) due 
to a spontaneous mutation, display marked hyperphagia and obesity (44,45). However, rats genetically 
manipulated to possess the specific CCK-1R-null gene that characterizes the spontaneous OLETF 
phenotype do not display the same hyperphagia and obesity, suggesting that the genetic mutation 
affecting CCK-1R is not the sole contributor to these characteristics in OLETF rats (46). Additionally, 
GLP-1R-null mice display normal feeding behaviors and body weight (47). Of course, the majority of 
these genetic studies employ techniques that typically result in absence of the peptide or receptor 
throughout development allowing the function to be taken over by other systems. Overall, we can 
conclude that GI peptides play an important role in meal size and meal termination, with the endogenous 
function of some of these peptides being critical regulation of energy intake under normal ingestive 
conditions, while the role of others may be redundant with or compensated for by other systems. 
 

Pancreatic Satiety Hormones 
Outside of the GI tract, the pancreas also secretes peripheral meal-related hormones that act to reduce 
food intake. Insulin and amylin are co-secreted from pancreatic ß-cells in proportion to the amount of 
food consumed (48,49). While the function of insulin seems to relate more to the long-term regulation of 
body adiposity (see below), amylin serves as a short-term signal that acts to reduce food intake by 
decreasing meal size (50). Exogenous, peripherally administered amylin reduces food intake, while 
systemic antagonists have the opposite effect, again indicating an endogenous role for this hormone in 
satiety (51-53). Glucagon is secreted from pancreatic A-cells very rapidly following meal onset, 
particularly meals high in protein, and acts via the liver to limit meal size in rodents and humans, an 
effect which can be reversed by administration of a glucagon-specific antibody (54-59).   
 

Ghrelin 
To date there is only one identified orexigenic, or appetite stimulating, gut peptide. Ghrelin is an 
endogenous ligand for the growth hormone secretogogue receptor (GHSR) that is synthesized in and 
secreted from gastric epithelium (60). Ghrelin produced by neurons in the hypothalamus also exerts 
orexigenic effects on appetite (61). Administration of exogenous ghrelin increases food intake in both 
humans and non-human animals (62-65), while GHSR antagonism increases food intake and body 
weight in rodents (66). Further supporting the notion that this hormone plays an endogenous role in food 
intake, peripheral ghrelin levels rise when fasting and prior to either scheduled or spontaneous meal 
ingestion and are reduced following nutrient consumption (62,67-74), with a greater suppression in 
response to carbohydrate or protein ingestion compared to fat (75-79). Genetic ghrelin deletion initially 
suggested that this peptide may have more critical effects on metabolic functions than on food intake and 
body adiposity, as the latter measures are normal in ghrelin knockout mice (80,81). However, mice 
lacking the GHSR display resistance to high-fat diet-induced obesity via mechanisms that include 
reduced food intake and reduced body adiposity, in addition to metabolic changes (82).   
 
In 2005, another peptide was identified from the gene encoding ghrelin, dubbed obestatin or ghrelin-
associated peptide (83). While ghrelin stimulates food intake and gastroduodenal motility, obestatin 
reduces food intake and inhibits gastrointestinal motility in fed, but not fasted, animals (83,84). 
Subsequent research on obestatin produced conflicting results of its effect on hypophagia, interaction 



with ghrelin, gastrointestinal motility and its ability to activate GPR39, the putative obestatin receptor (85-
89). Though there is some potential with respect to the role of obestatin (or obestatin/ghrelin balance) in 
pathological eating (e.g., anorexia nervosa), based on the current, conflicting state of the findings on this 
peptide, categorizing obestatin as an important peripheral signal for food intake and body weight 
regulation seems unjustified.   
 

Adiposity Signals  
Signals from the GI tract are acutely sensitive to nutrients entering the system and function primarily to 
regulate short-term intake on a meal-to-meal basis. However, the body also stores fuel for times of food 
shortage, mainly in the form of fat. One early hypothesis for the long-term regulation of body weight was 
that food intake and metabolic rate was adjusted based on the detection and regulation of the amount of 
adipose tissue present in the body (i.e., the “lipostatic hypothesis”; 90,91). To date, two major hormones 
have been identified and found to meet the criteria qualifying them as adiposity signals: insulin, which is 
produced in pancreatic ß-cells, and leptin, which is secreted directly from adipocytes. These two peptides 
are secreted in proportion to the amount of body fat and have access to the brain where they act via 
central effector systems in the hypothalamus, as well as the hindbrain, to reduce food intake (92,93). 
Receptors for both insulin and leptin are found in the arcuate nucleus of the hypothalamus, a critical 
region for the control of energy homeostasis and central administration of both hormones potently 
reduces food intake (94-102). Hypothalamic administration of insulin antibodies has the opposite effect, 
increasing food intake and body weight (102,103) and rodents which are genetically incapable of leptin 
production (ob/ob mice) or have a dysfunctional leptin receptor (Zucker fatty or fa/fa rats and db/db mice) 
display an obese, hyperphagic phenotype (104-106), as do mice with a brain-specific deletion of the 
insulin receptor or disruption of pancreatic beta-cell and hypothalamic insulin receptor substrate 2 
(107,108). Similarly, congenitally leptin-deficient humans are morbidly obese and markedly hyperphagic, 
as are those with leptin receptor mutations, although the symptoms are less severe (109,110).   
 
In the hypothalamus, leptin receptors are located on both orexigenic neurons (i.e., neuropeptide Y 
(NPY)/agouti-related peptide (AgRP); 97) and some anorexigenic neurons (i.e., proopiomelanocortin 
(POMC)/cocaine- and amphetamine-related transcript (CART); 111). Insulin receptor expression is high 
in the arcuate nucleus with insulin receptor substrate-2, a key element mediating insulin effects on food 
intake, co-localizing there with NPY and α-melanocyte stimulating hormone (α-MSH) (112,113), as well 
as POMC, though insulin activates a different population of these cells than leptin, allowing for “cross-
talk” between these signals (114). Broadly speaking, increases in the amount of stored fat increase 
circulating levels of insulin and leptin which, in turn, act via central regulatory mechanisms to reduce 
orexigenic signaling and increase anorexigenic signaling, allowing these peripheral adiposity signals to 
influence food intake. 
 

Central Regulation  

Hypothalamus   
The primary forebrain regulation of food intake behavior is thought to occur in the hypothalamus. Early 
evidence indicated that lesions in this area had profound effects on ingestive behavior. Lesions of the 
ventromedial hypothalamus (VMH) result in drastically increased food intake and obesity, while lateral 
hypothalamic area (LHA) lesions yield hypophagia and reduced growth. These findings led to the 
hypothesis that these two areas controlled food intake by acting as the “satiety” and “feeding” centers, 
respectively, in the brain (115). Although this is now acknowledged to be a vast oversimplification of the 
regulation of food intake and body weight, the hypothalamus is still considered the key region for central 
control of energy homeostasis. A good deal more is now known regarding the molecular mechanisms at 
work in this area that act to control energy intake. The arcuate nucleus contains two populations of 
neurons that seem to be the first-order relay neurons in responding to adiposity signals from the 
periphery. The first arcuate neuronal population co-expresses the peptides NPY and the melanocortin 



receptor antagonist AgRP, while the second population of neurons contains POMC, the pre-cursor to the 
melanocortin receptor agonist α-MSH, and CART. Central infusion of NPY or AgRP potently stimulates 
food intake (116-118), while icv administration of α-MSH or CART inhibits food intake (119,120), 
suggesting that these two neuronal populations represent a primary orexigenic and its opposing 
anorexigenic pathway, respectively, in the central regulation of energy homeostasis.  
 
In support of the endogenous function of these peptides, food deprivation increases expression of AgRP 
and NPY mRNA, while decreasing POMC and CART gene expression (121-124). Overexpression of 
agouti or AgRP yields hyperphagia and obesity, as does disruption of the genes encoding the 
melanocortin-4 receptor, POMC or CART (125-129). Recently developed optogenetic techniques 
demonstrated that specific stimulation of AGRP neurons invoked cell number-dependent, light-frequency 
and duration dependent feeding response in well-fed mice, indicating that independent activation of 
AGRP cells could cause short-term feeding (130). Finally, while there is compensation for developmental 
deletion of the NPY or AgRP genes or neonatal destruction of NPY/AgRP neurons, ablation of these 
neurons in adult mice yields dramatic reductions in food intake and bodyweight, while the reverse occurs 
with ablation of POMC neurons (131-135). In humans, through relatively rare, genetic POMC deficiency 
also leads to an obese phenotype, as do a number of mutations of the MC-4 receptor. In addition, it has 
been suggested that variations in the POMC gene may be a contributing factor in obesity in the larger 
population (135). 
 
As discussed above, leptin and insulin receptors are located on both orexgenic and anorexigenic cell 
types, suggesting that these neurons are responsive to circulating levels of adiposity signals and act as 
effectors for altering food intake in response to shifts in energy balance (at least those reflected in body 
adiposity). Leptin and insulin both cross the blood-brain barrier via independent, saturable transport 
mechanisms (136,137), indicating that peripheral production of these hormones can have central action. 
Indeed, as predicted, central insulin and leptin increase hypothalamic POMC expression, leptin increases 
activity in POMC neurons and melanocortin antagonists can block leptin-induced anorexia (138-141). 
These melanocortinergic neurons project from the arcuate to other areas of the hypothalamus, such as 
the paraventricular nucleus (PVN) and the LHA where several additional peptides that influence food 
intake and body weight are synthesized. The second-order neurons acting to regulate energy 
homeostasis in the PVN synthesize and release anorexigenic compounds, such as corticotrophin-
releasing hormone (CRH), TRH, and oxytocin (142-147), while those in the LHA and adjacent perifornical 
area (PFA) are orexigenic, such as melanin-concentrating hormone (MCH) and orexin A and B (aka 
hypocretin 1 and 2) (148-151).   
 
While leptin and insulin appear to control energy balance over a longer time scale, short-term peripheral 
signals, such as ghrelin and nesfatin also appear to act via the hypothalamic system to regulate intake. 
Receptors for ghrelin are also located on arcuate AgRP/NPY neurons, which are activated by central 
ghrelin administration to increase food intake (152-154). Administration of peripheral ghrelin activates 
neurons in the ARC as well, and AgRP and NPY have been demonstrated to be requisite mediators of 
the hyperphagia induced by systemic ghrelin (155,156). On the opposite side of the intake equation, 
nesfatin-1 appears to be a central satiety signal that acts in the hypothalamus independent of leptin 
function (likely via melanocortin pathways). Central injection of this peptide reduced food intake and body 
weight, while infusion of targeted antisense oligonucleotides produce the opposite effect, and fasting 
decreased nesfatin expression in the PVN (157). Following the identification of nesfatin-1 in the brain, it 
was found that this peptide is also secreted peripherally from endocrine cells in the stomach, where it is 
co-localized with ghrelin, and has been shown to cross the blood-brain barrier where it acts on neurons 
located in the PVN and arcuate nucleus of the hypothalamus (158-161). Similar to central administration, 
peripherally delivered nesfatin-1 reduces food intake and this anorexigenic effect was abolished in mice 
pre-treated with capsaicin suggesting a vagally-mediated pathway between peripheral nesfatin-1 and 
central sites of action (162). Not surprisingly, like other vagally mediated GI satiety signals (e.g., CCK), 
nesfatin-1 influences food intake by reducing the size of individual meals and increasing the length of 
inter-meal intervals (163).  
 



Hindbrain 
In contrast to ghrelin and nesfatin-1, which are secreted from the stomach, most short-term signals 
arising from lower in the GI tract tend to be received and integrated in the hindbrain. Receptors for 
mechanical and chemical signals in the gut are found on afferent terminals of the vagus nerve, which 
tranduces these sensory signals and relays information to the nucleus of the solitary tract (NTS) (164). 
Studies using a chronic decerebrate rat model have demonstrated that these signals from the periphery 
(e.g., gastric preloads, CCK) can act to reduce meal size in the absence of hypothalamic input (165,166), 
however, there are a number of reciprocal connections between hypothalamic and hindbrain nuclei which 
suggest an integration of information from both sites acts to control food intake and energy balance (167-
169). In addition, there are neurons expressing receptors for leptin, melanocortins and NPY, as well as 
POMC/α-MSH found in brainstem nuclei (170-175). Administration of synthetic MC receptor agonists and 
antagonists, AgRP, or NPY or its receptor agonists to the fourth ventricle all yield similar effects on food 
intake as when they are delivered to hypothalamic sites via the third ventricle (176-179). Leptin appears 
to exert a modulatory influence on brainstem controls of feeding, as well, as its administration alters the 
responsiveness of NTS neurons to gastric distension and CCK, as well as mediating the effects of these 
and other peripheral factors on food intake (180-184). Selective leptin-R ablation in GLP-1 expressing 
neurons in the hindbrain produced an obese phenotype characterized by hyperphagia and increased 
metabolic rate in mice (185). Although the evidence clearly demonstrates a role for both hypothalamic 
and hindbrain sites in the regulation of food intake, it is still unclear which aspects are controlled by each 
of these areas and how these regions interact to ultimately regulate energy balance. 
 

“Gut” Peptides in the CNS 
In addition to acting through the vagus, a number the peptides identified primarily as peripheral signals 
also function directly at CNS sites to affect energy homeostasis.  Receptors for these peptides are often 
found in hindbrain areas, such as the NTS and DMH as well as in the circumventricular organs, allowing 
for central monitoring of the status of these circulating hormones (186). Whereas CCK-A receptors 
predominate in the GI tract, CCK-B receptors found largely in the CNS. It appears that CCK-A receptors 
are the primary mediators of food intake and satiety both peripherally and centrally, however under some 
conditions, central CCK-B receptors may be involved (187,188). Central CCK receptors, however, do not 
appear to be necessary for the intake suppressive effects of peripheral CCK and observed “central” 
feeding effects may be due to stimulation of peripheral receptors (189-191), indicating an independent 
role for centrally-produced CCK in food intake. CCK is produced and released in a number of brain 
regions, including the hypothalamus, but also the caudate nucleus, hippocampus, striatum, and cortical 
areas, and in addition to ingestive behavior, central CCK is implicated in anxiety, pain, and cognition, 
functions which seem predominantly related to CCK-B receptor activity (192-197).  
 
Beyond CCK, peripheral PYY 3-36 may cross the blood-brain barrier to act at Y2 receptors in the ARC, 
inhibiting NPY activity and stimulating POMC neurons (29,198). Direct central administration of PYY, 
however, produces a strong hyperphagic effect, likely acting via Y-family receptors, which also mediate 
NPY actions, in other brain regions, such as the PVN and hindbrain (178,199,200). GLP-1 and its 
receptors are also located in the hypothalamus as well as the brainstem, and icv infusion of GLP-1 
reduces food intake in fasted rats, likely acting in the PVN, while the receptor antagonist exendin9-39 
increased feeding behavior (201,202). 
 

Hippocampus 
Just as conventional thinking about the localization of brain function firmly seats control of ingestive 
behavior in the hypothalamus, the hippocampus is typically considered the region responsible for 
memory. This dates back to the observation that Patient HM was unable to create new long-term 
memories after surgery that lesioned the hippocampus and associated structures (203). In addition to 
broad-scope anterograde amnesia, HM repeatedly reported the same level of hunger/fullness when 
asked by researchers, and would continue to eat as long as food was placed in front of him (204). 



Studies of hippocampal lesions in animal models have yielded somewhat contradictory outcomes in 
terms of food intake and body weight, with the most common result being a pattern of increased number 
of meals/food contacts without an increase in either food intake or body weight (205,206), though other 
studies found increases in food intake that did not result in body weight changes and increases in both 
food intake and body weight relative to controls (207-209). The most recent study, employing a more 
specific lesioning technique and controlling for the effects of surgical recovery, found that hippocampal 
lesioned rats showed increased body weight, which could be attributed both to increases in food intake 
and to alterations in metabolic function (210).   
 
Furthermore, like HM, rats with selective hippocampal lesions appear unable to detect or interpret signals 
of hunger and satiety, as they are unable to learn a discrimination based on this internal state or to 
perform this discrimination when it is learned prior to the lesion, indicating it is an impairment in using 
hunger states, rather than a learning defiicit (206,211). In humans, activity in the hippocampus during 
periods of food restriction and negative energy balance is supportive of this region playing a role in 
response to these states (212).   
 
With respect to physiology, the hippocampus has bidirectional connections with traditional “feeding 
centers” including the hypothalamus and the brainstem, which may serve to communicate signals of 
energy balance to this region (213,214). Administration of either leptin or ghrelin alters food intake when 
injected directly into the ventral hippocampus, with leptin reducing and ghrelin increasing consummatory 
and appetitive behaviors (215,216) and inactivation of the dorsal hippocampal after a meal inhibits the 
onset of the next meal, suggesting a role for this region in meal initiation (217). 
 

Estrogens 
There are a number of other peptides that affect food intake outside of those listed above.  Estrogen has 
inhibitory effects on food intake that are observed both as cyclic changes in caloric consumption with 
hormonal fluctuations in females and as a dramatic increase in food intake following ovariectomy (218). 
Further, mice lacking lacking estrogen receptor alpha (ERα) have increased body adiposity (219). 
Recent experiments show that centrally administered estradiol acts in the medial preoptic area, arcuate 
nucleus and dorsal raphe to decrease food intake (220). Experiments utilizing peripherally administered 
estrogens suggest a modulatory effect on the function of a number of other food intake-related peptides, 
including leptin, insulin, ghrelin, CCK, and the melanocortins (218,221). Sensitivity to central leptin and 
insulin differ between female and male rats, with females being more sensitive than males to leptin, while 
the reverse is true for insulin, and estrogen is responsible for this sensitivity (222,223). ERβ is found on 
subcutaneous adipose tissue and likely plays a role in the observation that subcutaneous fat deposition 
is increased by the administration of estradiol (223,224).  
 

Other Neurotransmitter Systems  

Serotonin 
Monoamine systems, including dopamine (DA) and serotonin (5-HT) have also been shown to be 
involved in food intake. Activation of serotonin receptors using subtype-specific agonists or reuptake 
inhibitors (SSRIs) has been clearly demonstrated to reduce food intake and has been strongly targeted 
as an effective weight-loss treatment (225). It is likely that serotonin has it’s effects on body weight 
regulation through interaction with both hypothalamic and extra-hypothalamic systems, as receptors for 
this transmitter are widespread and co-localized with a number of key feeding peptides (e.g., 
melanocortins, orexins, ghrelin and leptin) (226). Dexfenfluramine, a broad serotonergic agonist, was one 
component of the weight loss treatment Fen-Phen, which was highly effective at producing weight loss in 
animal subjects and overweight/obese human patients (227,228). However, this treatment was removed 
from the market due to dangerous cardiovascular side effects (229). The weight loss success of these 
drugs, however, led to the search for more targeted serotonergic compounds for this purpose. The 



selective 5-HT2C receptor agonist lorcaserin has been shown to produce effective weight loss in short- 
and long-term clinical trials and in 2012 was approved by the FDA to treat obesity (230,231), in spite of a 
still very general understanding of the mechanism by which serotonin influences food intake and body 
weight. 
 

Dopamine 
Animals treated with DA receptor agonists also exhibit reductions in food intake with activation of D1, D2 
and D3 receptor subtypes seeming to alter different aspects of appetitive and consummatory behaviors 
with DA1 and DA3 receptors appearing to play the most specific roles in ingestion (232-234). The 
mesolimbic DA system in particular is posited to be robustly involved in food anticipation and learned 
appetitive behaviors, particularly those related to highly palatable foods, as indicated by increases in 
dopamine release in these regions in response to food and food stimuli (235-237). Reductions in short-
term tests of sucrose licking and sham feeding in rats treated with dopamine antagonists supports the 
notion that the effects of dopamine are primarily on taste hedonics, rather than post-ingestive effects 
(238,239). In particular, the mesolimbic DA system is posited to be robustly involved in food anticipation 
and learned appetitive behaviors, particularly those related to highly palatable foods, as indicated by 
increases in dopamine activity in these regions in response to food and food stimuli in both humans and 
non-human animals (235,236).  
 

Acetylcholine 
Although not given as much attention as other neurotransmitter systems, recent studies also indicate a 
role for cholinergic systems in food intake, as well, particularly within the nucleus accumbens-ventral 
tegmental pathway. Specifically, injections of muscarinic acetylcholine (mACh) receptor antagonists into 
the accumbens reduces consummatory, but not appetitive behaviors, in rats, and this effect appears to 
interact with the opioid, but not dopaminergic systems (240-242). Antagonism of nACh receptors in the 
VTA reduces ghrelin-induced food intake, likely through a reduction in the reward value of the food, as 
indicated by impaired development of a food-conditioned place preference (243). Outside of mesolimbic 
regions, nicotine, an nACh receptor agonist, has been shown to have a suppressive effect on food intake 
via binding to acetylcholine receptors on POMC neurons, activating anorexigenic MC4 pathways (244). 
 

Opioids 
The opioid system also has a potent effect on food intake, although, like dopaminergic effects, this 
system seems to reflect the hedonic impact of food with greater responsiveness to the palatability of the 
food than the energy status of the organism (245,246). Opioid agonists typically stimulate intake of 
preferred foods, while antagonists have the opposite effect (246). More recent evidence finds that opioid 
effects on feeding are particularly potent when acting in conjuction with endocannabinoids (247,248). 
 

Endocannabinoids 
Activation of cannabinoid (specifically, CB1) receptors by either exogenous or endogenous ligands (e.g., 
∆9-THC, anandamide) stimulates food intake, while pharmacological CB1 antagonists (e.g., rimonabant) 
reduce food intake generally in fasted animals. Endocannabinoid levels are elevated in the 
hypothalamus during food deprivation and are reduced by food consumption and by leptin, indicating 
they are likely also involved in homeostatic control of food intake (249,250). Rimonabant has also been 
demonstrated to be effective at producing weight loss in humans (251). The presence of 
endocannabinoids in limbic regions and their interaction with opioids to modulate food intake suggests 
that this system also functions to affect intake of palatable foods (252).  
 



Behavioral Effects of Molecular Genetics  
There are a number of ways by which the numerous peptides and neural systems described here may 
act to alter food intake. They may alter meal initiation (i.e., the likelihood of beginning an eating bout), 
which is generally observed as a change in meal frequency, or they may alter meal termination (i.e., how 
much is consumed prior to ending a meal), which is generally observed as a change in meal size. They 
may also affect the subjective feelings that an individual interprets as “hunger” or “fullness” and uses to 
determine when to begin or end a meal or the subjective palatability or reward value associated with 
eating particular foods. 
 

Meal Initiation, Meal Termination and Food Selection 
Meal pattern analysis indicates that size of individual meals is the mechanism by which total food intake 
is generally altered. Increased meal size is the primary response to fasting and is almost exclusively 
responsible for the elevated caloric intake in rats bred for their susceptibility to diet-induced obesity (253-
255). Furthermore, although some reports show overweight and obese humans consume both larger and 
more frequent meals, there is evidence that it is meal size that differs most significantly between those 
gaining weight and those maintaining their current weights (256,257). When analyzing the component of 
food intake that is influenced by peptides found either peripherally or centrally, it is meal size that is most 
often found to be affected, leading some to suggest that meal termination is more strongly controlled by 
biological processes, while there a vast number of environmental influences that are more likely to be 
involved in meal initiation (i.e., availability of food, time of day, cognitive factors, learned 
associations/signals) (258). The majority of the peripheral satiety hormones, including CCK, gastrin 
releasing peptide/bombesin, GLP-1 agonist exendin-4, amylin and leptin, appear to act by reducing meal 
size with little or no effect on meal frequency (27,28,50,259-263). However, one study found that an 
obesogenic phenotype characterized by high meal frequency was significantly correlated with 
polymorphism and haplotype variants in leptin and leptin-R genes (264). Not surprisingly, as central 
leptin effectors, melanocortin agonists have been shown to reduce meal size, while MC antagonists have 
the opposite effect (265,266). Similarly, icv administration of CART decreased and NPY increased meal 
size (267,268). In contrast to these signaling molecules, ghrelin acts to increase intake by playing a role 
in meal initiation and food anticipation (67,71,269,270), which is consistent with its role as a “hunger” 
signal (see below). Recent data indicates that there may be a meal anticipatory effect for GLP-1, as well 
(271). 
 
In addition to influencing total energy intake via changes in these basic meal parameters when a 
constant test diet is used, some systems also differentially affect food selection or intake based on the 
macronutrient compositions of the diet. While NPY and AgRP both increase total caloric intake, NPY 
appears to induce greater appetitive and consummatory behaviors for foods high in carbohydrates, while 
the melanocortin system selectively affects fat intake and responding for fat-associated stimuli (199,272-
275). Not surprisingly, leptin, acting to inhibit both NPY and AgRP, reduces intake of both carbohydrates 
and fats (276).   
 

Interoceptive States: “Hunger” and “Satiety” 
A number of these peripheral signals seem to be responsible for the subjective feelings of “hunger” or 
“satiety”. These states can be assessed in a rodent model using a experimental design known as the 
“deprivation intensity discrimination paradigm”, in which rats are trained to discriminate between internal 
cues associated with 24 hours or 1 hour of food deprivation by receiving a reinforcer in a specific 
environment under only one of these conditions (277,278). The generalization between these deprivation 
states and those of a variety of potential hunger- or satiety-inducing peptides is tested by administering 
an exogenous dose of the peptide of interest and measuring the animal’s behavior in the training 
environment. These types of experiments have suggested that ghrelin produces interoceptive cues 
similar to that of 24-hr food deprivation (i.e., “hunger”), while CCK and leptin produce cues similar to 1-hr 
food deprivation (i.e., “fullness”) (279-281). Other peptides that influence food intake, such as NPY, 



bombesin, and MC-R agonists and antagonists do not appear to produce cues that generalize to either 
deprivation state, suggesting that their mechanism of action is independent of inducing a subjective 
feeling of “hunger” or “satiety” (280, 282-284). In humans, rating scales are often used to measure the 
subjective sensations perceived by subjects following administration of pharmacological agents 
associated with food intake regulation. These ratings are frequently, but not always, correlated with or 
predictive of consummatory behaviors, suggesting that, as in animals, these reported sensory stimuli 
may represent only one mechanism of altering food intake (285,286). Mechanical distention of the 
stomach and systemic infusion of CCK seem to produce consistent increases in self-reported ratings of 
“fullness” and decreases in ratings of “hunger”, while the effects of infusions of GLP-1 and PYY on these 
sensations are not as clear (33,287-291). Conversely, increased “hunger” ratings have been observed 
following treatment with peripheral ghrelin and CCK-A receptor antagonists (63,292). Ghrelin levels are 
also correlated with reported hunger levels and meal initiation in humans in the absence of external cues 
associated with meals, including time and food-related stimuli (71). 
 

Reward Value, “Hedonic” Eating and Food Motivation 
While the peripheral and hypothalamic systems have largely been viewed as involved in the homeostatic 
aspects of food intake based on energy balance, other systems, primarily the dopaminergic, opioidergic 
and, more recently, cannabinoid systems, seem to influence intake based on palatability, or subjective 
“reward value” of the food being consumed (245,246,252,293). Extensive work has characterized the 
roles of dopamine and opioids in reward-related eating as associated with “wanting” and “liking” palatable 
foods, respectively (245,294,295). However, the involvement of cannabinoids in metabolic processes, 
the interconnection of hypothalamic circuits with those in mesolimbic and striatal regions involved in 
reward, the effect of “feeding peptides” (such as leptin, ghrelin, and GLP-1) in the nucleus accumbens to 
alter appetitive and consummatory behaviors, and evidence of interaction between these systems is 
further blurring the lines (249,296-301,212).   
 
Food motivation is often measured by the use of operant conditioning procedures – most commonly, a 
progressive ratio (PR) test in which the number of responses required increases for each reinforcer 
earned. The maximum number of responses that an animal is willing to engage in to earn a reinforcer is 
termed the “break point” and considered a measure of motivation. A number of studies have tested the 
administration of feeding peptides and hormones in this paradigm. As would be predicted, increases in 
PR break point have been observed in response to ghrelin, orexin-A, NPY, a CB1 receptor agonist and 
deletion of melanocortin-4 receptors, while decreases were observed after administration of leptin, 
insulin, a CB1 receptor antagonist, a GLP-1 agonist or deletion of CB1 receptors (272,302-306). While 
reductions in appetitively motivated behavior may stem from a number of underlying, modulatory 
mechanisms (e.g., shifts in hunger state, recall of the food value, etc.), this measure is a reliable indicator 
of the effort that will be expended to obtain food, which is both necessary for consumption and appears 
to be correlated with future weight gain in humans (307). 
 

Cognitive Function   
Learning and memory processes are critical to the regulation of food intake behaviors. Flavor-flavor and 
flavor-nutrient learning contribute significantly to learned food preferences and engaging explicit 
memories of eating episodes or manipulating attention to food during an eating episode can alter food 
intake (308,309). The hippocampus appears to be critically involved in the ability to use hunger and 
satiety as discriminative cues to control behavior, as described above (206,211) – and the ability to use 
those cues to determine eating, or not, in the presence of food cues has been posited as a model that 
describes the way in which we regulate energy balance (310). Several of the molecules discussed here 
as “feeding” peptides have been shown to play roles in various cognitive functions, both food-related and 
non-food-related (311,312). In particular, there is substantial evidence for ghrelin and leptin acting in the 
hippocampus to alter physiological function associated with memory, such as altering long-term 
potentiation and other measures of synaptic plasticity (313,314), as well as to influence a number of 



food-motivated and food-seeking behaviors (215,216), which are necessary precursors to intake in 
animals and humans in environments with readily available food..  
 

Regulatory Disturbances Associated with Obesity 
Prolonged high-fat diet consumption, leading to obesity, in both humans and non-human animal models 
alters the endogenous profiles and the efficacy of a number of these energy balance-related signaling 
molecules. As would be expected, leptin and insulin levels are elevated in overweight subjects, as these 
adiposity signals circulate in levels proportional to the amount of body fat (315-317). Obese humans and 
rodents consuming diets high in fat also display peripheral reductions in circulating ghrelin and fasting 
PYY levels (318-321), although diet-induced obesity in rodents does not alter the effectiveness of PYY 
(322). Rodents who have been maintained on a diet high in saturated fat exhibit reduced expression of 
NPY and AgRP mRNA in the hypothalamus (323,324), although levels of these peptides measured in the 
cerebrospinal fluid of humans did not differ significantly between lean and obese subjects (325). These 
increases in the anorexigenic signals leptin and insulin and decreases in orexigens, such as ghrelin, 
AgRP and NPY would be predicted based on the state of positive energy balance in obese individuals 
and would be expected to reduce food intake and body weight. However, these individuals tend to 
remain at elevated weights and, frequently continue to gain weight, suggesting that these systems 
become dysfunctional in obesity. In fact, there is a large body of evidence supporting just that notion.  
Studies have clearly demonstrated that diet-induced obese humans and animals become resistant to the 
anorectic effects of both peripheral and central leptin, as well as central insulin (316,326-331). A number 
of experiments have demonstrated that obesity and consumption of high-fat diet impair the transport of 
leptin across the blood-brain barrier, reduce the sensitivity of intracellular signaling pathways activated by 
insulin and leptin, reduce the capacity of these hormones to act through central effector systems such as 
NPY and melanocortin pathways and decrease hypothalamic NPY and CCK levels (332-339). Diet-
induced obese rodents also appear to be less sensitive to the food intake-reducing effects of centrally 
administered melanocortin agonists (316).   
 
Although peripheral satiety signals tend to maintain normal basal levels in obese subjects, several of 
these peptides, including CCK, PYY and Apo A-IV are less responsive to nutrient influx into the gut, with 
decreased release following meals and reduced satiety effects. Postprandial ghrelin levels tend to remain 
high, which may contributing further to reduced feelings of satiety (340-343). However, there appears to 
be reduced responsiveness (i.e., “resistance”) to administration of both ghrelin and GLP-1 in obese 
animals (319,344,345). Chronic high-fat diet consumption in rats leads to reduced operant responding for 
sucrose, as well as impaired conditioned place preference and altered mesolimbic dopamine function 
(346). Correspondingly, neuroimaging assays have indicated a reduction in central dopamine D2 
receptors in obese humans, as well as increases in neural activity in reward areas during food 
anticipation, but decreased activity during consumption, leading to speculation that this may indicate 
decreased reward sensitivity and result in compensatory overeating (347-349).  
 
In addition to changes in sensitivity in regulatory and reward systems, changes in memory structures, 
primarily the hippocampal formation, have also been observed following diet-induced obesity. These 
changes include reductions in BDNF levels, reductions in the capacity for LTP, decreases in 
neurogenesis, and loss of blood-brain barrier integrity (350-353), along with behavioral deficits that mimic 
the impairments observed following hippocampal damage, such as poor performance in spatial memory 
tasks and inhibitory learning (350,353). It has been proposed that these impairments are part of a 
“vicious cycle” that contributes to the maintenance of obesity by further impairing the ability to use 
hunger/satiety signals to regulate eating based on prior associative learning (310). 
 
However, a major difficulty with these types of studies, in which comparisons are made between obese 
and lean populations, is the inability to dissociate whether these alterations cause obesity or are a 
consequence of chronic overeating and increased body adiposity (e.g., 356). Prospective studies in 
humans have been minimal and interpretation complex, with attempts to predict weight gain or future 
BMI based on neural activity in reward regions in response to palatable food cues yielding inconsistent 



results (357,358). A particularly useful tool in addressing this issue has been the development of 
selectively bred rats either prone or resistant to obesity induced by the consumption of high-fat, 
calorically dense diets (359). Studies of these animals on standard low-energy-density diets prior to 
divergence in weight gain and body adiposity have demonstrated that animals prone to diet-induced 
obesity also have a pre-disposition to insulin and leptin resistance, reduced central leptin signaling, 
reduced central insulin and leptin receptor binding, and increased expression of hypothalamic NPY, 
indicating that these factors may play a role in the development of obesity (328,331,360-369). On the 
other hand, no differences were observed in melanocortin binding and ghrelin and GHSR expression 
were reduced in obesity-prone relative to obesity-resistant rats, suggesting that these systems are not 
implicated in the onset of hyperphagia and weight gain (360,362).   
 

Conclusion 
The control of food intake involves the detection and integration of many different stimuli beginning with 
gastrointestinal detection of food volume and nutrient content acting to limit consumption within meals 
and peripheral adiposity signals acting via central sites and interacting with other peptides and hormones 
to balance short-term intake with long-term energy stores. In addition, there are a number of systems 
which act to select particular foods based on their nutrient content or, outside of homeostatic regulation, 
based on their palatability or reward value. These signals can alter a range of behaviors, including 
appetitive behavior, consumption, food selection, the interoceptive states labeled “hunger” and “satiety”, 
and even memory and other cognitive functions, to ultimately control energy intake. In spite of this 
complex regulatory system, a large proportion of the population of the United States is currently 
overweight or obese, suggesting a dysfunction. In fact, obesity and the consumption of high-fat diets 
appear to induce resistance to a number of the signals designed to limit intake in the face of positive 
energy balance, complicating the search for effective treatments. However, furthering a careful 
understanding of ingestive behaviors and the biological mechanisms that underlie them is the best hope 
for identifying a way to reverse the current obesity epidemic.  
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