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ABSTRACT 
 
Atherosclerosis is the underlying cause of heart attack and stroke. Early observations that 
cholesterol is a key component of arterial plaques gave rise to the cholesterol hypothesis for the 
pathogenesis of atherosclerosis. Population studies have demonstrated that elevated levels of 
LDL cholesterol and apolipoprotein B (apoB) 100, the main structural protein of LDL, are directly 
associated with risk for atherosclerotic cardiovascular events (ASCVE). Indeed, infiltration and 
retention of apoB containing lipoproteins in the artery wall is a critical initiating event that sparks 
an inflammatory response and promotes the development of atherosclerosis. Arterial injury 
causes endothelial dysfunction promoting modification of apoB containing lipoproteins and 
infiltration of monocytes into the subendothelial space. Internalization of the apoB containing 
lipoproteins by macrophages promotes foam cell formation, which is the hallmark of the fatty 
streak phase of atherosclerosis. Macrophage inflammation results in enhanced oxidative stress 
and cytokine/chemokine secretion, causing more LDL/remnant oxidation, endothelial cell 



activation, monocyte recruitment, and foam cell formation. HDL, apoA-I, and endogenous apoE 
prevent inflammation and oxidative stress and promote cholesterol efflux to reduce lesion 
formation. Macrophage inflammatory chemoattractants stimulate infiltration and proliferation of 
smooth muscle cells. Smooth muscle cells produce the extracellular matrix providing a stable 
fibrous barrier between plaque prothrombotic factors and platelets. Unresolved inflammation 
results in formation of vulnerable plaques characterized by enhanced macrophage apoptosis 
and defective efferocytosis of apoptotic cells resulting in necrotic cell death leading to increased 
smooth muscle cell death, decreased extracellular matrix production, and collagen degradation 
by macrophage proteases. Rupture of the thinning fibrous cap promotes thrombus formation 
resulting in clinical ischemic ASCVE. Surprisingly, native LDL is not taken up by macrophages 
in vitro but has to be modified to promote foam cell formation. Oxidative modification converts 
LDL into atherogenic particles that initiate inflammatory responses. Uptake and accumulation of 
oxidatively modified LDL (oxLDL) by macrophages initiates a wide range of bioactivities that 
may drive development of atherosclerotic lesions. Lowering LDL-cholesterol with statins 
reduces risk for cardiovascular events, providing ultimate proof of the cholesterol hypothesis. All 
of the apoB containing lipoproteins are atherogenic, and both triglyceride rich remnant 
lipoproteins and Lp(a) promote atherothrombosis. Non-HDL cholesterol levels capture all of the 
apoB containing lipoproteins in one number and are useful in assessing risk in the setting of 
hypertriglyceridemia. Measures of apoB and LDL-P are superior at predicting risk for ASCVE, 
when levels of LDL-C and LDL-P are discordant.  Here, we also describe the current landscape 
of HDL metabolism. Epidemiological studies have consistently shown that HDL-C levels are 
inversely related to ASCVE. We highlight recent clinical trials aimed at raising HDL-C that failed 
to reduce CVE and the shifting clinical targets of HDL-C, HDL particle numbers, and HDL 
function (e.g. cholesterol efflux capacity). Furthermore, we describe many beneficial properties 
of HDL that antagonize atherosclerosis and how HDL dysfunction may promote cardiometabolic 
disease. 
 
PATHOPHYSIOLOGY OF ATHEROSCLEROSIS 
 
Atherosclerosis in Cardiovascular Disease 
 
As the underlying cause of heart attack, stroke, and peripheral vascular disease, atherosclerosis 
is the major cause of death and morbidity in the United States and the industrial world (1). The 
discovery by Virchow more than 100 years ago that atheroma contained a yellow fatty 
substance, later identified as cholesterol by Windaus, suggested a role for lipids in the 
pathogenesis of atherosclerosis (2). Indeed, the goal of this chapter is to focus on the role of 
lipids and lipoproteins in the pathogenesis of atherosclerosis as well as their critical roles in risk 
assessment and as targets of therapy. The recognition that atherosclerosis is an inflammatory 
disease has led to tremendous progress in our understanding of the pathogenesis of 
atherosclerosis (3). First, we provide brief description of the cellular and molecular events in the 
key stages of atherosclerosis.  
 
Initiation and Fatty Streak Phase of Atherosclerotic Lesions 
 



The endothelial lining of arteries responds to mechanical and molecular stimuli to regulate tone, 
(4) hemostasis, (5) and inflammation (6) throughout the circulation. Endothelial cell dysfunction 
is an initial step in atherosclerotic lesion formation and is more likely to occur at arterial curves 
and branches that are subjected to low shear stress and disturbed blood flow (atherosclerosis 
prone areas) (7,8). These mechanical stimuli activate signaling pathways leading to a 
dysfunctional endothelium lining that is barrier compromised, prothrombotic, and 
proinflammatory (9). In atherosclerosis susceptible regions, the endothelial cells have cuboidal 
morphology, a thin glycocalyx layer, and a disordered alignment (8,10,11). In addition, these 
regions have increased endothelial cell senescence and apoptosis as evidenced by ER stress 
markers (12-14). In contrast, less atherosclerosis prone endothelium is exposed to laminar 
shear stress causing activation of signaling pathways that maintain endothelial cell coaxial 
alignment, proliferation, (13,14) glycocalyx layer, (15) and survival (12,16). In atherosclerosis 
resistant regions, the transcription factors, Kruppel-like factors (KLF) 2 and 4, are activated via 
MEK5/ERK5/MEF2 signaling which enhances expression of endothelial nitric oxide synthase 
(eNOS) (17-19). The increased nitric oxide (NO) production promotes endothelial cell migration 
and survival thereby maintaining an effective barrier (20). In addition, the expression of 
superoxide dismutase (SOD) is increased to reduce cellular oxidative stress (18). In 
atherosclerosis susceptible regions, reduced expression of eNOS and SOD leads to 
compromised endothelial barrier integrity (Figure 1), leading to increased accumulation and 
retention of subendothelial atherogenic apolipoprotein B (apoB)-containing lipoproteins (low-
density lipoproteins (LDL)) and remnants of very low-density lipoproteins (VLDL) and 
chylomicrons) (21,22). KLF2, KLF4, and NO production inhibit activation of the nuclear factor 
kappa B (NF-κB) pathway. Increased NF-κB activation in atherosclerosis susceptible areas 
leads to endothelial cell activation (Figure 1), as evidenced by increased expression of 
monocyte adherence proteins (VCAM-1, ICAM-1, and P-selectin) and proinflammatory 
receptors (toll-like receptor 2, TLR2) and cytokines (MCP-1 and IL-8) (19,23,24). In addition, 
endothelial cell activation leads to increased production of reactive oxygen species (25) that can 
cause oxidative modification of apoB-containing lipoproteins (26). Besides mechanical stimuli, 
endothelial cell activation is increased by various molecular stimuli, including oxidized LDL, 
cytokines, advanced glycosylation end products, and pathogen-associated molecules (27-30). 
In contrast, an atheroprotective function of HDL is to prevent endothelial activation and enhance 
NO production to maintain barrier integrity (see details below) (31). 
 



 
Figure 1. Initiation of the atherosclerotic lesion. The fatty streak phase of atherosclerosis 
begins with dysfunctional endothelial cells and the retention of apoB-containing 
lipoproteins (LDL, VLDL, and apoE remnants) in the subendothelial space. Retained 
lipoproteins are modified (oxidation, glycation, enzymatic), which, along with other 
atherogenic factors, promotes activation of endothelial cells. Activated endothelial cells 
have increased expression of monocyte interaction/adhesion molecules (selectins, 
VCAM-1) and chemoattractants (MCP-1) leading to attachment and transmigration of 
monocytes into the intimal space. Activated endothelial cells also promote the 
recruitment of other immune cells including dendritic cells, mast cells, regulatory T (T-
reg) cells, and T helper 1 (Th-1) cells. The monocytes differentiate into macrophages and 
express receptors that mediate the internalization of VLDL, apoE remnants, and modified 
LDL to become foam cells. In addition, inflammatory signaling pathways are activated in 
macrophage foam cells leading to more cell recruitment and LDL modification. 
 
Immune Cell Recruitment and Foam Cell Formation 
 
Activation of endothelial cells causes a monocyte recruitment cascade involving rolling, 
adhesion, activation and transendothelial migration (Figure 1). Selectins, especially P-selectin, 
mediate the initial rolling interaction of monocytes with the endothelium (32). Monocyte 
adherence is then promoted by endothelial cell immunoglobulin-G proteins including VCAM-1 
and ICAM-1 (32). Potent chemoattractant factors such as MCP-1 and IL-8 then induce migration 
of monocytes into the subendothelial space (33-35). Ly6hi monocytes, versus Ly6lo, 
preferentially migrate into the subendothelial space to convert to proinflammatory macrophages 
in mice (36-38). The enhanced migration of Ly6hi versus Ly6lo monocytes likely results from 
increased expression of functional P-selectin glycoprotein ligand-1 (39). In addition, the number 
of blood monocytes originating from the bone marrow and spleen, especially Ly6hi cells, 
increases in response to hypercholesterolemia (36). Furthermore, hypercholesterolemia and 
atherosclerosis increase monocytosis in humans (40,41). Importantly, increased numbers of 



inflammatory CD14++CD16+ monocytes independently predicted cardiovascular death, 
myocardial infarction, and stroke in patients undergoing elective coronary angiography (42). 
Intimal macrophages also result from proliferation of monocyte/macrophages, especially in more 
advanced lesions (43). During the initial fatty streak phase of atherosclerosis (Figure 1), the 
monocyte-derived macrophages internalize the retained apoB-containing lipoproteins, which are 
degraded in lysosomes, where excess free cholesterol is trafficked to the endoplasmic reticulum 
(ER) to be esterified by acyl CoA:cholesterol acyltransferase (ACAT), and the resulting 
cholesteryl ester (CE) is packaged into cytoplasmic lipid droplets, which are characteristic of 
foam cells (42) (Figure 2) (44,45). Modification of apoB lipoproteins via oxidation and glycation 
enhances their uptake through a number of receptors not down-regulated by cholesterol 
including CD36, scavenger receptor A, and lectin-like receptor family (see details below) (Figure 
2) (46,47). Enzyme-mediated aggregation of apoB lipoproteins enhances uptake via 
phagocytosis (Figure 2) (48,49). In addition, native remnant lipoproteins can induce foam cell 
formation via a number of apoE receptors (LRP1 and VLDLR) (Figure 2) (50,51). Uptake of 
native LDL by fluid phase pinocytosis may also contribute to foam cell formation (Figure 2) 
(52,53).  
 



 
Figure 2. Macrophage Cholesterol Metabolism. Native LDL is recognized by the LDL 
receptor (LDLR). The LDL is endocytosed and trafficked to lysosomes, where the 
cholesteryl ester (CE) is hydrolyzed to free cholesterol (FC) by the acid lipase. The FC is 
transported to the endoplasmic reticulum (ER) to be esterified by acyl CoA:cholesterol 
acyltransferase (ACAT). Increased FC in an ER regulatory pool initiates a signaling 
cascade resulting in down-regulation of the LDL receptor. Cholesterol regulation of the 
LDLR prevents foam cell formation via this receptor in the setting of 
hypercholesterolemia. ApoB containing lipoproteins that also contain apoE (apoE 
remnants, VLDL) can cause cholesterol accumulation via interaction of apoE with apoE 
receptors including the LRP1 and the VLDL receptor, which are not regulated by cellular 
cholesterol. Uptake of native LDL by fluid phase pinocytosis may also contribute to foam 
cell formation. Modifications of apoB containing lipoproteins induce significant 
cholesterol accumulation via a number of mechanisms. Enzyme-mediated aggregation of 



apoB lipoproteins enhances uptake via phagocytosis. Oxidation and/or glycation 
enhances internalization via a number of receptors that are not regulated by cholesterol, 
including CD36, scavenger receptor A (SRA), lectin-like receptors (LOX), and toll-like 
receptors (TLR4). The CE generated by ACAT is stored in cytoplasmic lipid droplets, 
where there is a continual cycle of hydrolysis to FC by neutral cholesterol esterase and 
re-esterification by ACAT.  Cytoplasmic CE is cleared by two main pathways.  In one 
pathway, removal of FC from the plasma membrane stimulates transport of FC that has 
been generated by neutral cholesterol esterase away from ACAT to the plasma 
membrane. Alternatively, cytoplasmic CE is packaged into autophagosomes, which are 
transported to fuse with lysosomes, where the CE is hydrolyzed by acid lipase and the 
resulting FC is then transported to the plasma membrane.  The efflux of FC to lipid-poor 
apolipoproteins or HDL occurs by a number of mechanisms to reduce foam cell 
formation. Exogenous lipid-free apoA-I or endogenous apoE that is produced by the 
macrophages interacts with ABCA1 to stimulate the efflux of phospholipid and FC to 
form nascent HDL particles (e.g. apoA-I or apoE containing phospholipid discs). ApoE 
produces the most buoyant, FC-enriched particles. ABCA1 plays a major role in the 
clearance of cytoplasmic CE via autophagy. The apoA-I/apoE discs as well as mature 
HDL containing apoA-I and/or ApoE stimulate FC efflux via three major mechanisms 
including ABCG1, SR-BI, and aqueous diffusion. ABCG1 may also play a role in the 
intracellular trafficking of cholesterol. 
 
The triggering of macrophage inflammatory pathways is also a critical event in lesion 
development. Inflammatory M1 phenotype macrophages exhibit increased oxidative stress, 
impaired cholesterol efflux and enhanced cytokine/chemokine secretion, leading to more 
LDL/remnant oxidation, endothelial cell activation, monocyte recruitment, and foam cell 
formation (54-59). Oxidative stress, modified lipoproteins, and other lesion factors (bioactive 
lipids, pattern recognition molecules, cytokines) are capable of inducing inflammation via 
receptors (54,55,60). In addition, plasma membrane cholesterol in macrophage foam cells 
enhances signaling via inflammatory receptors (61,62). Recently, inflammasome activation of 
IL-1β and IL-18 has been implicated in atherogenesis (63,64). Indeed, a recent clinical trial 
showed that subjects treated with the IL-1β monoclonal antibody, canakinumab, had a 
significantly lower rate of recurrent cardiovascular events which were independent of cholesterol 
lowering (65). Macrophage foam cell formation and cholesterol dependent inflammatory 
receptor signaling can be reduced by the removal of cholesterol by atheroprotective HDL and 
apoA-I via a number of mechanisms including ABCA1, ABCG1, SR-BI, and aqueous diffusion 
(Figure 2) (61,66-68) (see details below). Lipid-poor apoA-I stimulates efflux via ABCA1, 
whereas lipidated apoA-I or mature HDL are the main drivers of efflux via ABCA1, ABCG1, SR-
BI, and aqueous diffusion (Figure 2) (61,69-71). Cytoplasmic CE is cleared by two major 
pathways. One route involves the hydrolysis of cytoplasmic CE by neutral cholesterol esterase 
and the resulting free cholesterol is mobilized away from the ACAT pool (72,73) and made 
available for efflux via ABCA1, ABCG1, SR-BI, and aqueous diffusion (Figure 2). Alternatively, 
cytoplasmic CE is packaged into autophagosomes, which are trafficked to lysosomes, where 
the CE is hydrolyzed by acid lipase(73,74), generating free cholesterol that is made available for 
efflux mainly via ABCA1(Figure 2) (73,74). Furthermore, HDL and apoA-I protect against 



atherosclerosis by reducing inflammation via mechanisms independent of cholesterol efflux 
(31,75) (see details below). In addition, small non-coding RNAs have been found to impact 
atherosclerosis development by regulating inflammation and/or cholesterol homeostasis in 
different cell types in lesions (76,77). MiR-33a and MiR-33b promote atherosclerosis by 
impairing cholesterol efflux and promoting inflammatory M1 macrophage conversion (78-
80).Other microRNAs including MiR-223 and MiR-93 exhibit atheroprotective effects by 
increasing cholesterol efflux and conversion to the anti-inflammatory M2 macrophage 
phenotype (76,81-83). HDL carry small non-coding RNAs (77), which can also reduce or 
promote atherosclerosis development depending upon composition of individual non-coding 
RNAs (see details below).  
 
Although macrophages are the main infiltrating cells, other cells contribute to the development 
of lesions including dendritic cells (84,85), mast cells, T cells, and B cells (Figure 1) (86,87). 
Dendritic cells promote the priming of reactive T cell clones and secrete cytokines, functioning in 
a largely pro-inflammatory capacity(88). They also take up lipid, which leads to inflammasome 
activation and increased pro-inflammatory cytokine secretion (89). Mast cells produce 
interferon-g (IFNg) and IL-6 and appear to promote lesion development (90). Atherosclerotic 
plaques also contain a significant number of adaptive immune cells, including T and B 
lymphocytes. The role of T cells is subset-dependent and atherosclerotic plaques have been 
shown to contain CD4+ and CD8+ effector T cells as well as T helper 1 (Th-1), Th-2, Th-17, and 
regulatory T (T-reg) cells. Antigen-specific Th-1 cells produce IFNg that converts macrophages 
to a proinflammatory M1 phenotype. Th-17 cells have also been identified in atherosclerotic 
plaques and have been shown to produce IFNg. However, their specific role in atherosclerosis 
has not yet been elucidated (91). Classical T-reg cells produce anti-inflammatory cytokines 
(TGF-β and IL-10) and inhibit activation of Th-1 cells, leading to more anti-inflammatory M2 
macrophages. As atherosclerosis progresses, T effector cell numbers increase or remain 
constant, while T-reg numbers decline. This reduction in T-regs is due in part to their heightened 
susceptibility to cell death as well as their impaired trafficking into lesions (91). Further, T-regs 
may appear fewer in number because they undergo phenotypic switching into other T-reg 
subtypes. Several subclasses of these ‘former’ T-regs have been identified in the atherosclerotic 
lesions of mice, including Th1-Tregs (CD4+CCR5+IFN-g+FoxP3+T-bet+) and T follicular helper 
cells (CXCR5+PD1+Bcl6+CD62LloCD44hiCD4+Foxp3-), and these have been shown to have both 
impaired regulatory and enhanced inflammatory function, therefore contributing to 
atheroprogression (91,92). B cells preferentially reside in the adventitial layer of arteries 
neighboring sites of plaque, in regions known as tertiary lymphoid organs (TLOs). The function 
of B lymphocytes is also subset dependent, with B-1 cells being atheroprotective and B-2 cells 
being atherogenic. B-1 cells undergo limited or no affinity maturation and produce natural 
antibodies (NAbs) that have broad specificity and low binding affinity. Among these are NAbs, 
found within atherosclerotic plaques, that can bind to oxidation motifs in LDL and block the 
uptake of oxLDL by macrophages (93). Mice engineered to overexpress a single-chain variable 
fragment of E06, an IgM NAb directed against oxidized phospholipids (oxPL), were found to 
have reduced atherosclerosis and features consistent with greater overall plaque stability, 
confirming the atheroprotective nature of these B-1 cell-derived antibodies (94). B-2 cells 
produce high-affinity IgA, IgE and IgG antibodies. While the role of IgA in atherosclerosis 



remains controversial, IgG and IgE are atherogenic. IgG forms immune complexes with oxLDL 
and promotes an inflammatory macrophage phenotype while IgE also stimulates macrophages 
and mast cells to produce proatherogenic cytokines (95).    
 
ApoE in Atherosclerosis 
 
In addition to apoA-I and HDL, the endogenous production of apoE by macrophages is critical in 
preventing atherosclerotic lesion formation. The majority of apoE in plasma is produced by the 
liver, but macrophages are responsible for producing 5 -10% of apoE in plasma (96). ApoE 
serves as the ligand for clearance of all of the apoB containing lipoproteins from the blood by 
the liver except for LDL. Gene knockout of apoE in mice results in hypercholesterolemia and 
spontaneous atherosclerotic lesion development (97,98). Hence, ApoE deficient mice have 
been used widely to study mechanisms of atherosclerotic lesion development. Bone marrow 
transplantation studies were used to examine the role of macrophage apoE in lipoprotein 
metabolism. Transplantation of Apoe-/- mice with wildtype bone marrow, resulted in 
normalization of plasma cholesterol levels and protection from atherosclerosis (99), 
demonstrating the ability of macrophage apoE to exchange between lipoproteins and to serve 
as a vehicle for cellular gene therapy of atherosclerosis. Furthermore, reconstitution of wildtype 
(100) or LDL receptor deficient mice(Ldlr -/-) (101) with Apoe-/- bone marrow accelerates 
atherosclerotic lesion development without affecting plasma cholesterol levels, demonstrating 
an atheroprotective role for macrophage apoE. Interestingly, ApoE protects against 
atherosclerosis via several mechanisms. Expression of apoE by hematopoietic stem cells 
reduces monocyte proliferation and infiltration into the intima (102). In addition, apoE on apoB 
lipoproteins reduces the lysosomal accumulation of cholesterol by enhancing the expression of 
acid lipase (103). Importantly, secretion of apoE by macrophages stimulates efflux in the 
absence and presence of exogenous acceptors, including HDL and lipid-free apoA-I (Figure 2) 
(104-107). Recent studies demonstrated that macrophage apoE facilitates reverse cholesterol 
transport in vivo (108). Macrophage apoE stimulates phospholipid and cholesterol efflux via 
ABCA1, and the apoE particles formed then promote cholesterol efflux through ABCG1, SR-BI, 
and aqueous diffusion (104,109-111). Endogenous apoE is required for efficient formation of the 
most buoyant, cholesterol-enriched particles by macrophages (Figure 2) (104,112-116). In 
addition to cholesterol efflux, macrophage apoE prevents inflammation (117-120) and oxidative 
stress (121-124). The local production of apoE is likely a critical atheroprotective mechanism 
considering that areas of atherosclerotic lesions have limited accessibility to plasma apoA-1 and 
HDL (100,101,125). Humans express three common apoE polymorphisms that predict CAD 
rates independently from plasma cholesterol levels (126). ApoE3 (C112, R158) is the most 
common isoform and is functionally similar to mouse apoE. Compared to apoE3 and apoE2 
(C112, C158), apoE4 (R112, R158) are impaired in stimulating cholesterol efflux (127-130) and 
in preventing inflammation and oxidation (117,124,131). Consistent with the compromised 
function of apoE4, human carriers exhibit increased risk of CAD compared to humans 
expressing apoE3 or apoE2 (heterozygous) (126,132,133). 
 
Progression to Advanced Atherosclerotic Lesions 
 



Fatty streaks do not result in clinical complications and can even undergo regression. However, 
once smooth muscle cells infiltrate, and the lesions become more advanced, regression is less 
likely to occur (134,135). Small populations of vascular smooth muscle cells (VSMCs) already 
present in the intima proliferate in response to growth factors produced by inflammatory 
macrophages (136). In addition, macrophage-derived chemoattractants cause tunica media 
smooth muscle cells to migrate into the intima and proliferate (Figure 3). Critical smooth muscle 
cell chemoattractants and growth factors include PDGF isoforms, (137) matrix 
metalloproteinases, (138) fibroblast growth factors, (139) and heparin-binding epidermal growth 
factor (Figure 3) (140). HDL prevents smooth muscle cell chemokine production and 
proliferation. The accumulating VSMCs produce a complex extracellular matrix composed of 
collagen, proteoglycans, and elastin to form a fibrous cap over a core comprised of foam cells 
(Figure 4) (141). A vital component of the fibrous cap is collagen, and macrophage-derived 
TGF-b stimulates its production (Figure 4) (142). In addition, HDL maintains plaque stability by 
inhibiting degradation of the fibrous cap extracellular matrix through its anti-elastase activity 
(143). A subset of VSMCs accumulates CE and resides in the lesion core (Figures 3 and 4). 
This smooth muscle cell phenotype produces less a-actin and expresses macrophage markers, 
including CD68, F4/80 and Mac2 (144-146). While studies have shown that VSMCs express the 
VLDL receptor and various scavenger receptors, (145,147,148) data showing that these cells 
robustly load with CE, (147) similar to macrophages via these mechanisms is lacking. As 
lesions advance, substantial extracellular lipid accumulates in the core, in part due to large CE-
rich particles arising from dead macrophage foam cells (149,150). Earlier in vitro studies 
showed that these CE-rich particles effectively cholesterol load VSMCs (151,152). Regardless 
of the mechanisms of cholesterol enrichment, VSMCs compared to macrophages are inefficient 
at lysosomal processing and trafficking of cholesterol (152,153) and express much less 
ABCA1(154), which all contribute to impaired cholesterol efflux (155). However, macrophages in 
more advanced plaques also have reduced lysosome function and trapping of free and 
esterified cholesterol within their lysosomes contributes to the overall sterol accumulation in the 
lesion (156-158). The reduced lysosome function appears multifactorial but includes direct and 
indirect inhibition of lysosomal acid lipase, the enzyme responsible for hydrolysis of cholesteryl 
esters in lysosomes, and a reduced capacity for transferring cholesterol from lysosomes (159-
162). In cell culture models of human macrophage foam cells, the inability to clear cholesterol 
from macrophages with compromised lysosome function continues even in the presence of 
compounds that stimulate efflux (161,163). Proteomic analysis of foam cells shows that 
changes in a number of lysosome proteases are related to macrophage sterol accumulation 
(164). Thus, at least in the advanced stages of atherosclerosis, lysosome dysfunction 
contributes to the overall lesion severity. As the intimal volume enlarges due to accumulating 
cells, there is vascular remodeling to lessen protrusion of the lesion into the lumen (Figure 4), 
thereby decreasing occlusion and the appearance of clinical symptoms for much of the life of 
the lesion (165-167). 
 



 
Figure 3. Progression of the atherosclerotic plaque. Macrophage foam cell and 
endothelial cell inflammatory signaling continues to promote the recruitment of more 
monocytes and immune cells into the subendothelial space. Transition from a fatty 
streak to a fibrous fatty lesion occurs with the infiltration and proliferation of tunica 
media smooth muscle cells. Macrophage foam cells and other inflammatory cells 
produce a number of chemoattractant and proliferation factors, including transforming 
growth factor-β (TGF-β), platelet-derived growth factor (PDGF) isoforms, matrix 
metalloproteinases, fibroblast growth factors (FGF), and heparin-binding epidermal 
growth factor (HB-EGF).  Smooth muscle cells are recruited to the luminal side of the 
lesion to proliferate and generate an extracellular matrix network to form a barrier 
between lesional prothrombotic factors and blood platelets and procoagulant factors. A 
subset of smooth muscle cells express macrophage receptors and internalize 
lipoproteins to become foam cells.  Fibrous fatty lesions are less likely to regress than 
fatty streaks. 
 



 
Figure 4.  Features of the stable fibrous plaque. As the cell volume of the intima 
increases, there is vascular remodeling so that the lumen is only partially occluded, 



substantially lessening clinical events resulting from occlusion. The stable plaque 
contains a generous fibrous cap composed of layers of smooth muscle cells ensconced 
in a substantial extracellular matrix network of collagen, proteoglycans, and elastin. The 
thick fibrous cap of the stable plaque provides an effective barrier preventing plaque 
rupture and exposure of lesion prothrombotic factors to blood, thereby limiting thrombus 
formation and clinical events. Maintenance of a thick fibrous cap is enabled by regulation 
of the inflammatory status of the foam cell core of the lesion. Regulatory T (T-reg) cells 
produce transforming growth factor-β (TGF-β) and IL-10. In addition, T-reg cells inhibit 
antigen-specific activation of T helper 1 (Th-1) cell to produce interferon gamma (IFNg). 
Increased TGF-β and IL-10 and decreased IFNg reduce the proinflammatory macrophage 
phenotype leading to reduced cell death, effective efferocytosis (phagocytosis of dead 
cells), and anti-inflammatory cytokine production (i.e. TGF-β, IL-10). Thus, stable plaques 
have small necrotic cores containing macrophage debris and extracellular lipid resulting 
from secondary necrosis of noninternalized apoptotic macrophage foam cells. The 
production of TGF-β by T-reg cells and macrophages maintains fibrous cap quality by 
being a potent stimulator of collagen production in smooth muscle cells. 
 
Vulnerable Plaque Formation and Rupture 
 
The advanced atherosclerotic lesion is essentially a nonresolving inflammatory condition leading 
to formation of the vulnerable plaque, increasing the risk of plaque rupture. The vulnerable 
plaque is characterized by two fundamental morphological changes: 1) Formation of a necrotic 
core and 2) Thinning of the fibrous cap. Sections of the atheroma with a deteriorated fibrous cap 
are subject to rupture (Figures 4 and 5) (168,169). A recent lipidomics study showed that stable 
versus unstable plaques have different lipid subspecies profiles (170). Compared to plasma and 
control arteries, stable plaques have increased CE containing polyunsaturated fatty acids (170), 
which have increased susceptibility to oxidation. The CE containing polyunsaturated fatty acids 
are decreased in unstable plaques compared to stable plaques of the same subjects (170). In 
addition, 18:0 containing lysophosphatidylcholine is increased in unstable plaques indicating 
enhanced oxidation (170). Plaque rupture leads to acute exposure of procoagulant and 
prothrombotic factors from the necrotic core of the lesion to platelets and procoagulant factors in 
the lumen, thereby causing thrombus formation (Figure 5) (168,169). Thrombus formation at 
sites of plaque rupture accounts for the majority of clinical events with acute occlusive luminal 
thrombosis causing myocardial infarction, unstable angina, sudden cardiac death, and stroke 
(168,169).  
 



 
Figure 5.  Formation of the vulnerable plaque. The vulnerable plaque results from a 
heightened, unresolved inflammatory status of the lesion foam cell core. Antigen-specific 
activation of T helper 1 (Th-1) cells produces interferon gamma (IFNg) resulting in a 
proinflammatory macrophage phenotype. The proinflammatory macrophage foam cells 
exhibit enhanced inflammatory cytokine secretion and apoptosis susceptibility. There is 
less secretion of the anti-inflammatory cytokines, TGF-β and IL-10. In addition, 
proinflammatory macrophages have impaired atheroprotective functions including 
cholesterol efflux and efferocytosis.  The defective efferocytosis of inflammatory 
apoptotic macrophages results in secondary necrosis leading to an enlarged necrotic 
core composed of leaked oxidative and inflammatory components. This unresolved 
inflammation causes thinning of the fibrous cap resulting from increased smooth muscle 
cell death, enhanced extracellular matrix degradation and decreased extracellular matrix 
production. Areas of thin fibrous cap are prone to rupture exposing prothrombotic 
components to platelets and procoagulation factors leading to thrombus formation and 
clinical events. 
 
Macrophage Cell Death and Efferocytosis Influence Plaque Stability 
 
The necrotic core results from a combination of accelerated macrophage death and impaired 
efferocytosis (receptor-mediated phagocytosis of apoptotic cells) (Figure 5) (171,172). As 
apoptotic cells accumulate and fail to be internalized by phagocytes, they undergo secondary 



necrotic death leading to the leakage of intracellular oxidative and inflammatory components, 
which then propagate more inflammation, oxidative stress, and death in neighboring cells 
(Figure 5) (173). Multiple triggers likely occur in lesions to accelerate macrophage death, 
including oxidative stress, death receptor activation, and nutrient deprivation (174). Prolonged 
ER stress and activation of the unfolded protein response (UPR) contribute to macrophage 
apoptosis as substantiated by studies showing that apoptosis and the UPR effector, CHOP, 
increase with each stage of atherosclerosis in humans, but the largest increase is observed in 
the vulnerable plaque (175). In diabetes and obesity, accelerated formation of an enlarged 
necrotic core is likely instigated by defective macrophage insulin signaling (176) and saturated 
fatty acids (177,178), which are potent inducers of ER stress. In addition, other triggers act in 
tandem with ER stress to accelerate apoptosis. In particular, activation of toll-like receptors 
(TLR) (TLR2 and TLR4) and scavenger receptors (CD36 and SR-A) by oxidized phospholipids 
induces apoptotic signaling (178-181). Death is also accelerated by simultaneous suppression 
of survival pathways such as pAkt and NF-κB via these same receptors. Accelerated apoptotic 
macrophage death is not sufficient to promote necrosis. Apoptotic cells undergo secondary 
necrotic death if they are not internalized by phagocyte efferocytosis receptors. Necrotic death 
leads to the leakage of intracellular oxidative and inflammatory components, which then 
propagate more inflammation, oxidative stress, and death in neighboring cells (Figure 5) (173). 
The presence of necrotic tissue together with apoptosis is consistent with defective efferocytosis 
in human plaques. Studies have shown that the majority of apoptotic cells are free in advanced 
human lesions, whereas in tonsils apoptotic cells are macrophage-associated (182). 
Efferocytosis also becomes defective in advanced atherosclerosis through several different 
mechanisms. First, accumulating evidence has shown that the expression and function of key 
efferocytosis receptors, MerTK (183),  LRP1 (184), and SR-BI (185) are impaired in advanced 
atherosclerosis. These receptors recognize apoptotic cell ligands such as phosphatidylserine 
(185,186). and efferocytosis efficiency is enhanced by bridging molecules such as apoE and 
MFG-E8 that interact with efferocytosis receptors to enhance their efficiency and also have 
reduced expression in advanced lesions (186-190). Compared to apoE3, apoE4 is defective at 
facilitating efferocytosis of apoptotic cells (191). Efferocytosis via LRP1 (187) and SR-BI (185) 
also stimulates signaling pathways leading to pAkt production to promote phagocyte survival. In 
addition, anti-inflammatory signaling (185,192) is activated so that phagocytes secrete TGF-β 
and IL-10 (Figures 4 and 5). In addition, efferocytosis may be limited by competition for 
apoptotic cell binding. For example, oxPLs bind efferocytosis receptors and effectively compete 
for apoptotic cell recognition. In addition, lesional autoantibodies to oxPL and oxLDL are able to 
bind to ligands on the apoptotic cell themselves in order to prevent their binding and ingestion. 
Finally, apoptotic cells in advanced lesions appear to become poor substrates for efferocytosis. 
CD47, which typically acts as a “don’t eat me” signal expressed by live cells, is upregulated by 
apoptotic cells within human and murine atherosclerotic plaques, allowing them to evade uptake 
by phagocytes. When given to atheroprone Apoe-/- mice, a CD47-blocking antibody enhanced 
lesional efferocytosis and resulted in smaller necrotic cores (193). Similarly, mice that express 
low levels of the “eat me” signal, calreticulin, have increased necrotic cores compared to control 
mice and apoptotic cells from these mice demonstrate resistance to uptake by phagocytes 
(194).  
 



Components of the necrotic core promote thinning of the fibrous cap. Loss of extracellular 
matrix is in part due to death of fibrous cap smooth muscle cells, resulting from macrophage-
derived Fas receptor ligand (195), inflammatory cytokines (196), and oxidation products (Figure 
5) (197,198). Smooth muscle cells are inefficient at efferocytosis (199) relying on macrophages 
to internalize apoptotic smooth muscle cells. As such, the impaired efferocytosis by lesional 
macrophages likely leads to uncontrolled VSMC death (Figure 5). In addition, impaired 
production of TGF-β by phagocytes (185,200) reduces collagen production by healthy smooth 
muscle cells (Figures 4 and 5). The extracellular matrix components are degraded by 
macrophage-derived matrix metalloproteinases, (201-203) elastases, and cathepsins (Figure 5) 
(204). HDL can reduce VSMC apoptosis and elastin degradation induced by elastases 
(143,205).  
 
Importantly, HDL can prevent efferocyte apoptosis via ER stress by its cholesterol efflux and 
anti-oxidant functions (179,206,207). Furthermore, HDL drives conversion to the anti-
inflammatory M2 macrophages which have enhanced efferocytosis ability compared to 
inflammatory M1 macrophages (56,208) leading to increased plaque stability. Once plaque 
rupture occurs, critical HDL functions may also include prevention of platelet activation and 
thrombus formation. In addition to the role of HDL in stabilizing plaques, recent studies have 
focused on the lesional loss of specialized proresolving mediators (SPM) versus 
proinflammatory factors (i.e.  leukotriene B4) in promoting uncontrolled inflammation and 
formation of vulnerable plaques (209). Studies on human atherosclerotic lesions have shown 
that unstable versus stable plaques have decreased lipid-derived SPM including resolvin D1 
and lipoxin A4 (210). In addition, resolving D1 treatment of Ldlr-/- mice with established 
atherosclerosis increased lesional efferocytosis and collagen content and reduced the 
necrotic area and reactive oxygen species content (210).  Similar results were observed in 
Apoe-/- mice treated with the phospholipase D derived proresolving lipid, palmitoylethanolamide 
(211). Other lipid derived resolving mediators which impact atherosclerotic plaques include 
maresin 1 and resolvin D2 (212). Protein SPM have also been identified including annexin 1 and 
IL-10 (209). Administration of lesion targeting nanoparticles containing the bioactive annexin 1 
peptide, Ac2-26, to Ldlr-/- mice with atherosclerosis reduced both lesional oxidative stress and 
necrosis while increasing collagen content and fibrous cap thickness (213). Enhancing the 
lesional IL-10 content also improved atherosclerotic lesion stability (214). In addition, Treg 
cells likely control atherosclerotic lesion inflammation resolution as recent studies 
demonstrated that Treg cells regulate efferocytosis in atherosclerotic lesions by secreting IL-13 
to stimulate macrophage production of IL-10 to induce Vav-1 activation of Rac1 and increased 
efferocytosis (215).  
 
Summary 
 
Atherosclerotic lesions initiate with endothelial cell dysfunction causing modification of apoB 
containing lipoproteins (LDL, VLDL, remnants) and infiltration of immune cells, particularly 
monocytes, into the subendothelial space (Figure 1). The macrophages internalize the retained 
apoB containing lipoproteins to become foam cells forming the fatty streak (Figure 1). 
Macrophage inflammatory pathways are also activated leading to increased oxidative stress and 



enhanced cytokine/chemokine secretion, causing more LDL/remnant oxidation, endothelial cell 
activation, monocyte recruitment, and foam cell formation (Figure 1). HDL, apoA-I, and 
endogenous apoE reduce lesion formation by preventing endothelial cell activation, 
inflammation, and oxidative stress and also by promoting cholesterol efflux from foam cells. As 
the lesion progresses to fibrotic plaques as a result of continued inflammation, macrophage 
chemoattractants stimulate infiltration and proliferation of smooth muscle cells (Figure 3). 
Smooth muscle cells produce the extracellular matrix providing a stable fibrous barrier between 
plaque prothrombotic factors and platelets (Figure 4). Unresolved inflammation results in 
formation of vulnerable plaques, which have large necrotic cores and a thinning fibrous cap 
(Figure 5). Enhanced macrophage apoptosis and defective efferocytosis of apoptotic cells 
results in necrotic cell death causing heightened inflammation leading to increased smooth cell 
death, decreased extracellular matrix production, and collagen degradation by macrophage 
proteases. An imbalance between inflammatory factors and SPMs is prominent in facilitating 
formation of the vulnerable plaque.  Rupture of the thinning fibrous cap promotes thrombus 
formation resulting in clinical ischemic cardiovascular events (Figure 5).  
 
  



THE ROLE OF CHOLESTEROL AND LIPOPROTEINS IN ATHEROGENESIS 
 
Metabolism of ApoB Containing Lipoproteins 
 
Apolipoprotein B (apoB) occurs in two isoforms, apoB100 and apoB48. ApoB100 is the main 
structural apolipoprotein of low-density lipoproteins (LDL), and there is only one molecule of 
apoB100 per LDL particle (216). ApoB100 is produced mainly by the liver, where it is required 
for the synthesis and secretion of triglyceride-rich very low-density lipoprotein (VLDL) particles 
(Figure 6). In the circulation, VLDL is metabolized to the cholesteryl ester-enriched intermediate 
low-density lipoprotein (IDL) and LDL particles through the progressive hydrolysis of 
triglycerides by lipoprotein lipase (LPL) and hepatic lipase (Figure 6). In humans, apoB48 is 
produced exclusively in the intestine through an unique RNA editing mechanism by the apobec-
1 enzyme complex (217). ApoB100 is the full-length protein, which contains 4536 amino acids, 
whereas apoB48 contains the first 48% of the amino terminal amino acids. ApoB48 is required 
for the synthesis and secretion of triglyceride-rich chylomicrons, which play a critical role in the 
intestinal absorption of dietary fats and fat-soluble vitamins. Similar to the metabolism of VLDL, 
chylomicrons are metabolized in the circulation through the hydrolysis of triglycerides by LPL 
and hepatic lipase to form cholesteryl ester-enriched chylomicron remnants, which release free 
fatty acids that can be used for energy by the tissues.  
 



 
Figure 6. Metabolism of ApoB100 containing lipoproteins. ApoB100 is critical for the 
production and secretion of very low-density lipoprotein (VLDL) by the liver. Plasma 
VLDL is metabolized to cholesteryl ester-enriched intermediate low-density lipoprotein 
(IDL) and LDL particles via hydrolysis of triglycerides by lipoprotein lipase (LPL) and 
hepatic lipase (HL). In addition, cholesteryl ester transfer protein (CETP) transfers CE 
from HDL to VLDL in exchange for triglyceride (TG) to HDL. ApoCII and apoCIII are 
transferred from HDL to VLDL and act as an activator or inhibitor of LPL activity, 
respectively. ApoB100 is the ligand for hepatic LDL receptor-mediated clearance of LDL. 
VLDL acquires apoE from HDL, and apoE mediates the clearance of triglyceride-enriched 
remnants and IDL. In addition, HDL can directly transfer cholesterol to liver via 
interaction with SR-BI. VLDL and IDL remnants can induce foam cell formation by 
internalization via apoE receptors on macrophages. LDL, IDL, and VLDL can be modified 
(oxidation, glycation) and internalized by a number of macrophage receptors including 



scavenger receptors and lectin-like receptors. HDL and lipid-poor apoA-I reduce foam 
cell formation by stimulating cholesterol efflux. 
 
Static measurements of cholesterol in the LDL pool (LDL-C) represent the steady state of 
production of VLDL, its metabolism to LDL, and the receptor-mediated clearance of LDL by the 
LDL receptor (LDLR). Mutations in the Ldlr gene are the most common cause of familial 
hypercholesterolemia (FH), an autosomal dominant disorder associated with elevated levels of 
LDL-C and increased risk for premature cardiovascular disease (218). ApoB100 serves as the 
ligand for receptor-mediated clearance of LDL by the liver (Figure 6). In contrast, apoE mediates 
the clearance of triglyceride-rich remnants (IDL and chylomicron remnants) either through the 
LDLR or the remnant receptor pathway (Figure 6). The existence of the remnant receptor 
pathway was suggested by the fact that patients with homozygous FH, who completely lack 
LDLR function, have severely elevated levels of LDL-C but normal blood levels of triglycerides. 
The clearance of these remnant lipoproteins involves binding to heparin sulfate proteoglycans 
and the LDLR like protein -1 (LRP1) in the hepatic space of Disse, in a process called secretion 
capture that requires local enrichment by hepatic expression of apoE  
(96,219). 
 
The Cholesterol Hypothesis 
 
Studies by Anitschkow showing that feeding cholesterol in oil to rabbits caused the formation of 
atheroma, similar to those seen in humans, demonstrated a causal role of cholesterol in the 
pathogenesis of atherosclerosis in 1913 (220). In 1939, Muller described families with inherited 
high cholesterol and increased risk for cardiovascular disease (221). Yet it would take several 
decades before compelling evidence from epidemiological studies, such as Framingham (221) 
and MRFIT (222), demonstrated that elevated blood cholesterol levels were associated with 
increased risk of cardiovascular events (CVE). Subsequently, LDL-C levels were found to be 
directly associated with CVE (223); whereas HDL-C levels were shown to be inversely related to 
risk of CVE (224). The Seven Countries Studies by Ancel Keys showed that coronary heart 
disease (CHD) mortality rates were higher in countries with higher blood levels of cholesterol 
(e.g. Finland, Norway, and the USA) than in countries of southern Europe and Japan with lower 
blood levels of cholesterol (225). The high levels of cholesterol were proposed to be associated 
with the amount of saturated fat in the diet. As such, the cholesterol hypothesis was born, 
proposing that lowering LDL-C would reduce CVE (226).  
 
Response to Retention Hypothesis for the Initiation of Atherosclerosis 
 
The response to retention hypothesis holds that retention of atherogenic lipoproteins in the 
artery wall is a critical initiating event that sparks an inflammatory response and promotes the 
development of atherosclerosis (Figure 1). First articulated in 1995 by Williams and Tabas 
(227), the hypothesis was based on more than two decades of work demonstrating that apoB-
containing lipoproteins are retained in the artery wall by interaction with proteoglycans 
(228,229). Proteoglycans consist of a protein core bound covalently to one or more 
glycosaminoglycans (GAGs). The most common proteoglycans in the artery wall are decorin, 



biglycan, perlecan, versican, and syndecan-4 (230). There is ionic binding between the 
positively charged GAGs and negatively charged amino acids of apoB100 (229). Boren et al. 
identified the principal proteoglycan-binding site in LDL and showed that a single point mutation 
in apoB100 impaired binding to proteoglycans (231). The major proteoglycan binding site 
consists of residues 3359-3369 in apoB100 (site B), which is in the C-terminal half of apoB100. 
Furthermore, mutation of “site B” in mice resulted in reduced retention of apoB100 in the artery 
wall and reduced atherosclerosis, providing in vivo support for the response to retention 
hypothesis (232). Subsequently, proteoglycan binding sites were identified for apoB48 (233) 
and a second site (site A) on apoB100, which is exposed when LDL is modified by secreted 
phospholipase A2 (sPLA2), forming a small dense LDL particle (234). 
 
Surprisingly, native LDL, despite the strong evidence for its critical role in promoting 
atherosclerosis, does not induce macrophage foam cell formation or much in the way of 
inflammation in vitro. These observations led to the hypothesis that LDL has to be modified to 
promote foam cell formation and induce inflammation. Binding of proteoglycans induces 
structural changes in LDL impacting both the configuration of apoB100 and the lipid composition 
(234). Hence, the binding of LDL to proteoglycans makes the LDL more susceptible to oxidation 
and aggregation, which promotes foam cell formation and a proinflammatory response, and the 
process is self-perpetuating. Oxidized LDL (oxLDL) can induce further production of 
proteoglycans by vascular smooth muscle cells, retaining more LDL in the arterial wall. 
Furthermore, macrophages express LPL, which can serve as bridging molecules, binding both 
lipoproteins and proteoglycans (235,236). Consistent with an important role for LPL in 
atherogenesis, the loss of macrophage LPL expression protects mice from atherosclerosis 
(237,238). In addition, macrophages secrete sphingomyelinase, which has been reported to act 
synergistically with LPL to promote binding of LDL and lipoprotein (a) (Lp(a)) to vascular smooth 
muscle cells (VSMC) and the extracellular matrix promoting their retention in the artery 
(239,240). Furthermore, sphingomyelinase induces aggregation and fusion of LDL particles, 
promoting increased binding to proteoglycans and induces foam cell formation (241). Thus, 
interfering with the retention of apoB-containing lipoproteins in the artery wall is a potential 
strategy for preventing atherosclerosis.  
 
OXIDATION OF PHOSPHOLIPIDS AND PROTEINS IN LIPOPROTEINS AND THEIR ROLE 
IN ATHEROSCLEROSIS 
 
Overview 
 
The response to retention hypothesis for the initiation of atherosclerosis posits that retention of 
LDL in the artery wall leads to its modification into highly atherogenic particles that initiate 
inflammatory responses. A key overall point is that retention of LDL leads to oxidative 
modification of LDL, allowing this oxidized LDL (oxLDL) to be recognized by scavenger 
receptors on macrophages and other cells. Uptake of oxLDL by macrophages leads to marked 
accumulation of cholesterol, converting them to foam cells and initiating development of 
atherosclerotic lesions. In addition to serving as a substrate for cholesterol accumulation, oxLDL 
exerts a wide range of bioactivities that are consistent with it being critical for driving 



atherogenesis (Table 1). In mouse models, loss of enzymes that modulate LDL oxidation 
increases atherosclerosis, and dietary antioxidants that reduce levels of oxLDL also inhibit 
atherosclerosis. Although human trials with dietary antioxidants have failed to reduce disease 
outcomes, it is important to recognize that these interventions are less efficacious in reducing 
oxLDL levels in humans than in rodent models. Additional studies are needed to determine 
optimal interventions for lowering oxLDL levels and whether such interventions will be effective 
for preventing or treating atherosclerosis. 
 

Table 1-Potential Atherogenic Activities of Oxidized LDL (oxLDL) 
Macrophages Smooth muscle cells 
Serves as ligand for recognition by scavenger receptors 
256, 257, 258 

Induces proliferation, migration, and transition 
to inflammatory phenotype 276, 277, 278, 279 

Serves as substrate for unregulated cholesterol uptake 
262 

 

Induces expression and secretion of inflammatory 
cytokines 280, 281, 282, 283 

Lymphocytes 

Induces polarization to M1 (minimally oxidized LDL) or 
M2-phenotype (highly oxidized LDL) 284 

Serves as a neo-antigen 274  

Inhibits egress from atherosclerotic lesions 289 Induces chemotaxis 275 
Induces macrophage apoptosis and rupture of 
atherosclerotic plaques 290, 291, 292 

Increases antibody production 275 

 Other cell types 
Endothelial cells Induces chemotaxis of monocytes, PMN, and 

eosinophils 285, 286, 287, 288 
Induces surface expression of adhesion molecules 266, 

268, 269, 270 
Increases platelet aggregation 293, 294, 295, 296 

Induces inflammatory genes including cytokine release 
271, 272 

Activates dendritic cells and induces their 
release of T cells stimulating cytokines 284 

 
Peroxidation of Polyunsaturated Fatty Acids Generates Oxidatively Modified 
Lipoproteins 
 
The outer shell of lipoproteins is composed of phospholipids with polyunsaturated fatty acid 
(PUFA) side chains. These PUFAs (and to a lesser extent the PUFAs of cholesterol esters and 
triglycerides in the lipoprotein core) are highly vulnerable to oxidation by free radical species, 
particularly hydroxyl radicals (●OH). This vulnerability results from the relatively low energy 
required for free radicals to abstract hydrogen atoms located between two adjacent double 
bonds (bis-allelic hydrogens). Hydrogen abstraction by free radicals creates a lipid radical that 
reacts nearly instantaneously with any molecular oxygen present in the environment. 
 
The resulting lipid peroxide radical (LOO●) can then propagate the radical reaction by 
abstracting hydrogens from neighboring phospholipids or can react with itself to create a large 
number of secondary peroxidation products (Figure 7). Secondary products that may be 



relevant to atherogenesis can be thought of in two broad classes: oxidized lipids (primarily 
oxidized phospholipids but also oxidized cholesterol esters) and reactive lipid aldehydes that 
exert their effects by modifying proteins and other macromolecules. Oxidized phospholipids 
(oxPL) include chain shortened oxPL such as 1-palmitoyl-2-oxovaleroyl-sn-glycero-3-
phosphorylcholine (POVPC)(242), 1-O-alkyl-2-azelaoyl-sn-glycero-3-phophorylcholine (azPAF) 
(243), and 1-(Palmitoyl)-2-(5-keto-6-octene-dioyl) phosphatidylcholine (KOdiA-PC)  and cyclized 
oxPL such as  1-palmitoyl-2-(5,6)-epoxyisoprostane E2-sn-glycero-3-phosphocholine (PEIPC) 
(244) and 1-palmitoyl-2-F2-isoprostane-sn-glycero-3-phosphocholine (F2IsoP-PC) (245). 
Reactive lipid species include malondialdehyde  (246), 4-hydroxynonenal (246), and 
isolevuglandins (247) that modify proteins associated with lipoprotein particles including 
ApoB100 (Figure 7).  
 

 
Figure 7. Oxidation of Phospholipid Polyunsaturated Fatty Acids. Oxidation of 
phospholipids containing polyunsaturated fatty acids present in plasma lipoproteins 



results in formation of a variety of reactive lipid aldehydes and oxidized phospholipids 
that convert these lipoproteins to atherogenic particles. Reactive lipid species include 
malondialdehyde (MDA), isolevuglandins (IsoLG), methyglyoxal (MGO), 4-oxononenal 
(ONE), and 4-hydroxynonenal (HNE). Oxidized phospholipids include 1-palmitoyl-2-
oxovaleroyl-sn-glycero-3-phosphorylcholine (POVPC), 1-O-alkyl-2-azelaoyl-sn-glycero-3-
phophorylcholine (azPAF), 1-(Palmitoyl)-2-(5-keto-6-octene-dioyl) phosphatidylcholine 
(KOdiA-PC), 1-palmitoyl-2-F2-isoprostane-sn-glycero-3-phosphocholine (F2IsoP-PC), and 
1-palmitoyl-2-(5,6)-epoxyisoprostane E2-sn-glycero-3-phosphocholine (PEIPC). 
 
It is critical to keep in mind that oxidatively modified LDLs (oxLDLs) are in fact highly 
heterogeneous and complex particles, even though oxLDL is usually referred to as a discrete 
entity. Oxidation of LDL in vitro has been used extensively to study the biological activities of 
oxLDL, but, even here, the actual species present varies significantly based on the oxidation 
method (exposure to air, to copper, or to oxidases) and length of oxidation. Many of the 
methods commonly used to measure the concentration of oxLDL in vivo only measure general 
characteristics of oxLDL. For instance, because the reaction of reactive lipid species with lysine 
residues of ApoB100 converts LDL from a positively charged particle to a negatively charged 
particle, oxLDL is often detected by increased mobility during agarose gel electrophoresis. 
Alternatively, oxLDL in plasma and other tissues can be quantified by the immunoreactivity of 
the natural IgM autoantibody E06. However, while E06 recognizes a variety of oxidized 
phosphatidylcholines, it does not necessarily recognize all oxPL equally. Therefore, equivalent 
E06 immunoreactivity does not necessarily mean exposure to identical oxLDL particles. While 
modification of LDL with malondialdehyde (MDA-LDL) (248) is often used as a model of oxLDL 
for bioactivity assays, modification of LDL by other reactive lipid species can exert unique 
effects from MDA-LDL, and MDA-LDL does not include any of the various oxPL species. 
Therefore, it is important to keep in mind that in vivo oxLDL is a mixture of many different 
compounds and that the atherogenic activities of oxLDL represent the net cellular responses to 
the full range of compounds present. 
 
While oxLDL has been studied in greatest detail, all lipoproteins are vulnerable to oxidation at 
least in vitro, and this oxidative modification alters their biological activities in ways that may be 
atherogenic. The species of plasma lipoprotein that has the highest content of oxidized 
phospholipids (oxPL) depends on the species of oxPL under consideration. This suggests that 
not all oxPL are formed in situ on the lipoprotein where they are found and might instead be 
transferred from other lipoproteins or tissues. Lp(a) is the major carrier in plasma of oxPLs that 
are detected by E06 immunoreactivity (249) and these oxPLs associate with Lp(a) in preference 
to native LDL particles in human plasma (250). E06 immunoreactive oxPL generated in 
chemically oxidized LDL can rapidly transfer to Lp(a) (249), so the high content of these lipids in 
Lp(a) isolated from human plasma may be due either to direct oxidation of Lp(a) or by transfer 
of the oxPL from oxLDL to Lp(a). In LDL and Lp(a) isolated from human plasma, levels of MDA-
modified lysine (based on E014 immunoreactivity) are higher in LDL than Lp(a), while E06 
immunoreactivity is much greater for Lp(a) than for LDL (249). Because MDA-modified proteins 
do not readily transfer between particles, these findings suggest that oxidation initially occurs in 
LDL with subsequent transfer of oxPL to Lp(a). Thus, a physiological role has been proposed for 



Lp(a) in binding and transporting oxPL in the plasma (251). Unlike oxPL detected by E06 
immunoreactivity that are highest in Lp(a), the F2-IsoP-phospholipids forms of oxPL are highest 
in HDL (252). As with Lp(a), the high levels of these oxPLs in HDL may well be the result of 
transfer from other oxidized lipoproteins and tissues. Because oxidation is unlikely to occur in 
the circulation, the rate that oxPL are transferred from tissue to various plasma lipoproteins 
could potentially be an important determinant of the risk for atherosclerosis.  
 
Significant correlations have been found between levels of oxLDL and extent of atherosclerosis 
in human patients. Measurement of oxLDL using E06 antibody showed that: 1) significant 
elevation of oxLDL in acute coronary syndromes (250), 2) treatment with a statin markedly 
reduced these levels (253), 3) oxLDL levels are higher in children with familial 
hypercholesterolemia compared to their siblings (254), and 4) oxLDL levels predict the presence 
and progression of atherosclerosis and symptomatic cardiovascular disease (255). 
Measurement of oxLDL using antibodies against MDA-LDL found that oxLDL were elevated in 
patients with coronary artery disease (CAD) (256), that elevated levels of oxLDL predicted 
future cardiac events in diabetic patients with CAD, that oxLDL were particularly elevated in 
patients with rheumatoid arthritis and CAD compared to either alone (257), and that treatment 
with fibrates decreased levels of oxLDL (258). Thus, there is a clear correlation between the 
presence of oxLDL and cardiovascular disease. 
 
Mechanisms of Lipoprotein Oxidation In Vitro And In Vivo 
 
The precise mechanisms that generate oxidized lipoproteins in vivo are still only partially 
understood. LDL circulating in the plasma appears to be protected from oxidation, both by 
dietary antioxidants such as vitamin E and C (259) and by protective enzymes including 
glutathione peroxidases (260,261), peroxiredoxins, PAF-acetylhydrolase (also known as 
lipoprotein-PLA2) (262,263), and paraoxonases (PON) (264,265). Penetration of LDL into the 
artery wall occurs at branch points in the aorta and other places with turbulent flow and shear 
stress. Retention of LDL in the intima, due to interactions with extracellular matrix such as 
chondroitin sulfate-rich proteoglycans, sequesters LDL away from the antioxidant environment 
of the plasma and exposes LDL to oxidation. A variety of oxidases and peroxidases generate 
strong oxidants that can readily oxidize LDL. These include myeloperoxidase (MPO) (266), 
xanthine oxidase (XO) (267), NADPH oxidases (NOXs) (268), and inducible nitric oxide 
synthase (iNOS) (269). Oxygenases such as lipoxygenases (LOX) have also been shown to 
oxidize LDL in vitro (270,271). The extent that each of these enzymes contributes to lipoprotein 
oxidation in vivo and thus to atherosclerosis remains to be fully elucidated, and there is much 
we do not understand about these individual processes. This is illustrated by studies on MPO 
and the 12/15-Lipoxygenase, the two enzymes most closely linked to lipoprotein oxidation.  
 
MYELOPEROXIDASE (MPO) 
 
MPO released from activated neutrophils (and to a lesser extent from monocytes/macrophages) 
can accumulate in the subintimal space of the artery wall(272), so neutrophil activation indirectly 
increases the chance for lipoprotein oxidation. Increased plasma levels of MPO correlate with 



increased levels of oxLDL in hypercholesterolemic children (273). Increased MPO blood levels 
also associate with increased risk for atherosclerosis (274-277) and polymorphisms in the MPO 
gene that lower MPO activity reduce the risk for atherosclerosis (278,279).  
 
Incubation of lipoproteins with MPO generates oxidized phospholipids that serve as ligands for 
CD36(280). A putative binding site for MPO with the apoB of LDL has been identified (281), 
although further verification is needed. Of interest, MPO also associates with HDL via binding to 
ApoAI and PON1 in a ternary complex (282), so that the binding of MPO to HDL and 
subsequent generation of reactive oxygen species may account for the high levels of oxidized 
lipids carried by HDL. Association of MPO with HDL leads to modification of tyrosine 71 of 
paraoxonase, reducing PON1 activity (282). It also generates reactive lipid dicarbonyls such as 
isolevuglandins that modify ApoAI (283) and phosphatidylethanolamine (284). In the presence 
of small molecules that scavenge lipid dicarbonyls, the ability of MPO to crosslink ApoAI is 
markedly reduced (283).  Modification of HDL by lipid dicarbonyls such as isolevuglandins and 
MDA reduce its ability to drive cholesterol efflux from macrophages and protect against 
inflammatory stimuli such as LPS (283,285). 
 
Mouse models have been used to directly examine the contribution of MPO to atherosclerosis, 
although these studies carry the caveat that mouse MPO levels are only 10-20% that of humans 
(286,287). Transplantation of bone marrow from genetically altered mice into atherosclerosis 
susceptible strains (e.g. Ldlr -/- and Apoe-/- mice) after lethal irradiation to ablate host 
hematopoietic cells is commonly used to study the effect of specific genes expressed by 
macrophages and other hematopoietic cells on atherogenesis (99). Reconstitution of Ldlr -/- mice 
with macrophages overexpressing MPO markedly increased their susceptibility to 
atherosclerosis (288). However, transplantation of MPO-/- macrophages into Ldlr -/- mice, also 
markedly increased atherosclerosis, and this was confirmed in MPO-/-/ Ldlr -/- double knockout 
mice compared to MPO+/+/ Ldlr -/- controls (289). The reasons for these paradoxical findings with 
both MPO overexpression and deletion remain unclear. Perhaps the complete lack of MPO 
activity is harmful because it allows overgrowth of specific microbes that incite atherosclerosis 
via alternative mechanisms. In contrast to effects of complete ablation, a recently developed 
selective MPO inhibitor (e.g. INV315) that only partially reduces MPO activity markedly reduced 
atherosclerosis in Apoe-/- mice (290). Thus, clinical studies with selective MPO inhibitors are 
needed to determine if this will be a meaningful therapeutic approach to the treatment of 
atherosclerosis in humans. 
 
12/15-LIPOXYGENASES      
 
Although the primary substrates for lipoxygenases are non-esterified fatty acids, exposure of 
LDL to 15-LOX also leads to oxidation of phospholipids and cholesterol esters (270,271). In 
mice, the gene analogous to the human 15-LOX encodes a lipoxygenase that converts 
arachidonyl chains to both 12-HPETE and 15-HPETE and is thus a 12/15-LOX. 12/15-LOX-/-  
mice on Apoe-/-  background have reduced atherosclerosis compared to Apoe-/- mice (291). 
Importantly, they also have lower levels of autoantibodies against oxLDL and MDA-LDL (291). 
These results support the notion that 12/15-LOX can directly contribute to atherosclerosis via 



LDL oxidation. Nevertheless, the role of 15-LOX in human atherogenesis is less clear-cut. While 
homozygotes of an Alox15 variant that almost completely ablates 15-LOX activity tended to 
have a reduced risk for coronary artery disease, heterozygotes paradoxically have increased 
risk of disease (292). Other polymorphisms in the Alox15 gene encoding 15-LOX increase risk 
for coronary artery calcification (293), yet others have no effect (294). Direct correlations 
between Alox15 polymorphisms and biochemical measurements of oxidized lipoproteins or 
oxPL and oxidized cholesterol esters have not been reported to date in humans, but are clearly 
needed.  
 
Biological Activities of OxLDL And Receptors That Mediate These Activities 
 
Perhaps the most important atherogenic effect of LDL oxidation is that this modification of LDL 
shifts recognition and internalization of the lipoprotein from the LDL receptor (LDLR) to 
scavenger receptors (295-297). While internalization of LDL by the LDLR in hepatocytes 
downregulates cholesterol synthesis to maintain cholesterol homeostasis, internalization of 
oxLDL by scavenger receptors fails to trigger this inhibition (298,299,300). Thus, cholesterol 
synthesis continues unabated despite the fact that peripheral cells are accumulating large 
amounts of cholesterol. In particular, macrophages express scavenger receptors and 
gluttonously take up large quantities oxLDL to form foam cells in the initial atherosclerotic lesion 
(301).   
 
OxLDL also activates a number of cellular responses in macrophages, dendritic cells, 
endothelial cells, T cells, and smooth muscle cells that in aggregate promote inflammation, 
lesion formation, atherogenesis, and unstable atherosclerotic plaques (302-304). OxLDL 
induces surface expression of adhesion molecules and the release of chemokines from 
endothelial cells (305-311),  all of which are important steps in recruitment of leukocytes to sites 
of lesions. Exposure to oxLDL activates dendritic cells so that they induce T-cell proliferation 
and production of IL-17 (312). OxLDL itself also serves as a neo-antigen (313). OxLDL also 
induces increased antibody generation by lymphocytes (314). OxLDL also promotes smooth 
muscle cell proliferation, migration, and transition to a proinflammatory phenotype (315-318). 
OxLDL induces secretion by macrophages of inflammatory cytokines (e.g. TNF�, IL-1, MCP-1, 
and IL-8) that activate other inflammatory cell types (319-322). OxLDL polarizes macrophages 
towards the M1-like phenotype or M2-like phenotype depending on its extent of oxidation (323). 
OxLDL promotes the chemotaxis of monocytes, neutrophils,  eosinophils, and T cells (314,324-
327), bringing them into the arterial wall. In contrast, oxLDL inhibits macrophage emigration out 
of atherosclerotic lesions, because it induces netrin-1 (328). OxLDL induces apoptosis of 
macrophages and development of unstable plaques prone to rupture (329-331). Thrombotic 
arterial occlusion in the aftermath of plaque rupture is a critical cause of mortality, therefore the 
fact that oxLDL increases platelet aggregation (332-335) suggests an additional mechanism 
whereby elevated circulating oxLDL may increase risk of mortality during acute coronary events 
(336). As discussed in detail below, identification of cognate receptors for various components 
of oxLDL and other oxidized lipoproteins has provided important insight into the mechanisms by 
which these oxidized lipoproteins exert their pathophysiological effects. 
 



MACROPHAGE SCAVENGER RECEPTOR (SR-AI) 
 
In 1979, Brown and Goldstein demonstrated that macrophages had specific binding sites for 
acetylated LDL (AcLDL) that allowed uptake of this modified LDL even in the presence of high 
cellular cholesterol levels (298). This was in contrast to LDL uptake by the LDLR, which is 
markedly downregulated when cellular cholesterol levels rise (Figure 2). Cholesterol synthesis is 
also downregulated by LDL uptake by LDLR (337). The lack of feedback inhibition during uptake 
of modified LDL by this unidentified receptor suggested a plausible mechanism for the massive 
accumulation of cholesterol in macrophages that generates foam cells. The putative receptor 
mediating this binding was named the macrophage scavenger receptor (MSR). Later, oxLDL 
(338) and MDA-LDL (248) were shown to compete with AcLDL for binding and uptake by 
macrophages, suggesting they were native ligands for MSR. In 1990, Kodama et al. purified and 
sequenced this scavenger receptor, allowing identification of the MSR gene (339). Through 
alternative gene splicing, this gene gives rise to Scavenger Receptor A–I (SR-AI), SRA-II, and 
SRA-III.  Deletion of the MSR gene in C57BL6 mice fed butterfat diet substantially reduced 
atherosclerotic lesions and deletion of MSR in Ldlr-/- mice also reduced lesion formation (340).  
 
CD36 AND OTHER SCAVENGER RECEPTORS 
 
Subsequent work has shown that in addition to SR-AI, macrophages express a wide range of 
scavenger receptors that recognize oxidized lipoproteins including MARCO, scavenger 
receptor-B1, -B2, -B3 (CD36), and Lectin-like oxLDL Receptor-1 (LOX-1) (341). These 
scavenger receptors belong to a larger family of pattern recognition receptors, all of which are 
individually capable of binding to a wide spectrum of ligands. Quantitatively, SR-A1 and CD36 
account for the vast majority of all oxLDL uptake by macrophages (342). The specific ligands of 
the two receptors on oxLDL appear to diverge (342).  SR-AI appears to preferentially recognize 
more rigorously oxidized LDL and seems to primarily recognize modified lysine residues like 
MDA-lysines. In contrast, the primary ligands of CD36 on oxLDL appear to be oxidized 
phospholipids, in particular fragmented phosphatidylcholine including azPAF (243), POVPC 
(343) and KOdiA-PC (280). Apoe-/- mice lacking CD36 are more vulnerable to some bacterial 
infections (344) but also have less atherosclerosis when fed a high cholesterol diet (345).  
 
Recent findings suggest that SR-AI and other scavenger receptors have both pro- and anti-
atherosclerotic effects, depending on the context. For instance, deletion of the MSR gene 
actually increased lesion size in male Apoe-/- mice (346); however, deletion of both MSR and 
CD36 greatly reduces lesion complexity and vulnerable plaques, the most critical aspect of 
lesion development (347). The complex results of scavenger receptor deletion should not be 
surprising given that scavenger receptors have multiple ligands and that an important role of 
scavenger receptors expressed by macrophages is to allow these macrophages to remove 
bacteria and damaged cells from surrounding tissues. Under normal physiological conditions, 
uptake of oxLDL by macrophages is probably generally protective, because subsequent efflux 
of the cholesterol from the macrophages to HDL via reverse cholesterol transport as well as 
emigration of these macrophages from the arterial wall to lymph nodes serves to minimize the 
accumulation of cholesterol-laden macrophages in the arterial wall. However, under conditions 



where reverse cholesterol transport capacity is reduced or where emigration of macrophages is 
inhibited, uptake of oxLDL by macrophages leads to its accumulation and initiation of 
pathophysiological processes.  
 
TOLL-LIKE RECEPTORS AND OTHER TARGETS OF OXLDL 
 
In addition to scavenger receptors, other pattern recognition receptors also recognize 
components of oxLDL. Perhaps most important among these are the Toll-like Receptors (TLR) 
including TLR-2 (348,349), TLR-4 (350), TLR-6 (351), TLR-7 (352), and TLR-9 (352).  TLRs can 
interact with scavenger receptors, for instance, CD36 forms complexes with TLR4 and TLR6 
that recognize oxLDL and activate NFkappaB (351). While bacterial components such as 
bacterial lipopolysaccharide (LPS) are full agonists for TLRs, oxLDL components like POVPC 
often appear to act functionally as partial agonists of TLRs, so that activation of macrophages 
and dendritic cells by full agonists like LPS is reduced in the presence of oxLDL (353,354).  
 
In addition to TLRs, another important pattern recognition receptor for oxLDL is the receptor for 
advanced glycation end-products (RAGE) (355). Other factors of the innate immune response 
that bind oxidized phospholipids including C-reactive protein(CRP) (356,357) and natural IgM 
antibodies like E06 (358,359). While scavenger and pattern recognition receptors tend to 
recognize broad classes of compounds, a number of G-protein coupled receptors (GPCRs) 
recognize specific oxidized phospholipids. These include the receptor for platelet-activating 
factor (PAFR) (360-362), prostaglandin receptor EP2 (363,364), and sphingosine-1-phosphate 
receptor 1 (S1P1) (365). Intracellular receptors for oxidized phospholipids include nuclear 
hormone receptors PPAR alpha (366) and PPAR gamma (243). Non-receptor, intracellular 
targets for oxLDL include c-SRC (367) and NRF-2 (368,369).  
 
Mechanisms Protecting Against LDL Oxidation In Vivo 
 
Given the susceptibility of LDL to oxidation, it is perhaps not surprising that a number of 
mechanisms appear to exist in order to protect LDL from oxidation. These include small 
molecule antioxidants circulating in plasma and enzymes that catabolize oxidized lipids. How 
essential each of these mechanisms are to the control of oxLDL levels and preventing the 
development of atherosclerosis remains an area of active investigation. Obviously, a better 
understanding of the relationship between changes in protective mechanism and atherogenesis 
might allow identification of particularly vulnerable individuals and the development of novel 
therapeutic approaches. 
 
SMALL MOLECUE ANTIOXIDANTS 
 
Circulating small molecule antioxidants such as ascorbate (vitamin C), alpha-tocopherol (vitamin 
E), urate, and bilirubin serve as sacrificial targets reacting with free radicals and reactive oxygen 
species to prevent lipid and protein oxidation. Thus, even when strong oxidants are added to 
plasma ex vivo, there is relatively little generation of oxLDL until the oxidants have depleted 
these small molecule antioxidants, most specifically ascorbate (370). Depletion of vitamin C and 



vitamin E increase atherosclerosis in Apoe-/-mice (371). Importantly, plasma ascorbate levels 
inversely correlate with prevalence of cardiovascular disease in humans (372). Supplementation 
with vitamin C appears to play a role in preventing endothelial dysfunction in humans (373). 
However, it is not clear that supplementing dietary antioxidants beyond those typically obtained 
in a well-balanced diet endows any additional atheroprotective effects. Supplementation with 
dietary antioxidants inhibits development of atherosclerosis in susceptible mice (374-378). While 
a few human trials with dietary antioxidants have demonstrated reduced atherosclerosis and 
cardiovascular disease (379-382), most large-scale trials have failed to demonstrate any 
disease reduction (383-387). The reasons underlying these failures continue to be investigated 
and debated (388,389). Because it had not been fully appreciated that relatively high doses of 
these antioxidants were needed to markedly alter lipid peroxidation rates in humans (390), one 
possibility is that the doses used in most large scale prevention trials were simply insufficient 
(390,391)  . However, the ability to use very high doses of small molecule antioxidants like 
vitamin E for extended periods of times may be limited by the toxicity of these high doses (392).   
 
ANTIOXIDANT ENZYMES 
 
Antioxidant enzymes appear to play a more critical role than dietary antioxidants in limiting 
lipoprotein oxidation. Two families of nonheme peroxidases, the glutathione peroxidases and 
the peroxiredoxins, appear to be the most critical. Glutathione peroxidases (Gpx) 1-4 are 
selenoproteins that convert glutathione to glutathione disulfide while reducing peroxides 
(including lipid peroxides) to water (393,394). Polymorphisms in glutathione peroxidase 1 
(Gpx1) are associated with increased risk for atherosclerosis in various human populations 
(395-397). Furthermore, genetic deletion of Gpx1 markedly exacerbates atherosclerosis in 
Apoe-/- mice (398,399), while overexpression of Gpx4 in Apoe-/- mice inhibits atherogenesis 
(400). Peroxiredoxins (Prdx) are cysteine containing proteins where the cysteine is oxidized to 
sulfenic acid during reduction of peroxides (401). Deletion of either Prdx1 or Prdx2 increases 
atherosclerosis in Apoe-/- mice (402,403). Overexpression of Prdx4 inhibits atherosclerosis in 
Apoe-/- mice (404). In contrast, overexpression of Prdx6 failed to inhibit atherosclerosis in 
C57BL6 mice fed an atherogenic diet (405). 
 
In general, studies looking for associations between risk for atherosclerosis and polymorphisms 
or deficiencies in other major antioxidant genes including catalase, SOD-1, -2, and -3, and 
glutathione S-transferase have been negative (406,407). In fact, SOD-1 overexpression may 
even increase fatty streak lesions in mice (408). However, SOD-1 does inhibit proliferation and 
migration of smooth muscle cells induced by oxLDL in vitro   (315), and overexpression of both 
SOD-1 and catalase reduce atherosclerosis in Apoe-/- mice (409). Sod2+/- mice crossed with 
Apoe-/- mice have increased atherosclerosis compared to control Apoe-/- mice (410), but there is 
little effect on atherosclerosis of crossing Sod3-/- mice with Apoe-/- mice (411).  Several studies 
have demonstrated an association between SOD2 and hypertriglyceridemia (412,413).  
 
ENZYMES THAT CATABOLIZE LIPIDS 
  



In addition to anti-oxidant enzymes, several enzymes specifically catabolize oxidized 
phospholipids including secreted Platelet-Activating Factor Hydrolases (sPAF-AH) and 
Paraoxonases (PON). sPAF-AH, also known as lipoprotein associated PLA2 (LP-PLA2) is a 
calcium independent PLA2 secreted by macrophages that primarily circulates on LDL and to a 
lesser extent on HDL (414,415). sPAF-AH does not hydrolyze phospholipids with the typical 
long-chain fatty acids, but efficiently cleaves phospholipids with oxidatively fragmented (e.g. 
azPAF and POVPC) (362,416,417) or oxidatively cyclized (e.g. F2-isoprostane-PC) sn-2 chains 
(418). Whether this effect results in a net gain of pro- or anti-inflammatory lipids is controversial, 
because only some of these oxPL are highly potent inflammatory mediators, while others are 
partial agonists that might therefore antagonize inflammatory responses to other mediators like 
LPS. Furthermore, this hydrolysis generates lysoPC and lysoPAF, which are proinflammatory at 
high concentrations. This ambivalent effect is also seen in vivo. While a large number of clinical 
studies have found that increased sPAF-AH predicts increased risk for atherosclerosis 
(419,420), whether increased sPAF-AH actually contributes to atherogenesis or simply reflects 
a compensatory increase in response to elevated oxLDL is unclear (421,422). Some gene 
polymorphisms in sPAF-AH that reduce its activity (i.e. Val279Phe) appear to increase the risk 
of myocardial infarction (423), yet another polymorphism (i.e. Ala379Val) appears to have little 
effect (424). The interpretation that increased sPAF-AH activity caused an increased risk of 
atherosclerotic cardiovascular disease (ASCVD) led to the development of selective sPAF-AH 
inhibitors and their clinical trials (425). However, two recently completed phase III trials with one 
such inhibitor, darapladib, found that while this drug significantly reduced circulating PAF-AH 
activity, it had no effect on ASCVD events (426,427).  
 
Paraoxonases (PONs) were originally named for their ability to hydrolyze the neurotoxin 
paraoxon and this activity is still routinely used to assay paraoxonase activity in plasma. 
However, in terms of atherosclerosis, the most important physiological function of PONs 
appears to be their ability to protect against LDL oxidation (428). PON-1 and PON-3 circulate 
bound to HDL. HDL treated with specific inhibitors of PON fails to protect LDL from oxidation 
(429). Treatment of oxLDL with purified PON1 markedly decreases its ability to induce 
endothelial cell activation and monocyte binding (264). Genetic deletion of PON1 markedly 
increases atherosclerosis in C57BL6 mice(430) , and this is further exacerbated in Apoe-/- mice 
(431). Conversely, overexpression of PON-1 reduces atherosclerotic lesions in both wild-type 
mice fed high cholesterol diets and Apoe-/- mice (432). Adenovirus expression of PON-2 and 
PON-3 also inhibits atherosclerosis in Apoe-/- mice (433,434), indicating that all three PON 
enzymes have protective effects. However, transgenic Apoe-/- mice overexpressing the entire 
gene cluster of PON genes (PON-1, -2, -3) were not further protected compared to Apoe-/- mice 
with transgenic expression of PON-1 or PON-3 alone (435), suggesting these effects are 
redundant rather than additive. These mouse studies appear relevant to human disease, as a 
large number of studies have shown that polymorphisms in PON1 are associated with increased 
risk for atherosclerosis (265). It should be noted that PON activity varies greatly even in persons 
with the same polymorphism, suggesting that environmental factors leading to PON inactivation 
may also be important in determining disease risk. 
 
Summary for Oxidized Lipoproteins 



 
In summary, substantial evidence has accumulated over the past several decades for a 
causative role for oxidized lipoproteins in the initiation and progression of atherosclerosis and 
the need to reduce lipoprotein oxidation in order to reduce disease burden. Nevertheless, 
significant questions remain including which mechanisms are most important for driving 
lipoprotein oxidation, what treatment strategies can effectively reduce lipoprotein oxidation, and 
what are the key components of oxidized lipoproteins that drive atherogenesis? 
 
  



ELEVATED LDL-C AND RISK FOR ASCVD 
 
Genetic Causes of Elevated LDL-C 
 
As described above, FH is an autosomal dominant inherited disorder associated with elevated 
levels of LDL-C and premature ASCVD, and provides some of the most compelling evidence for 
a causal role for LDL-C in atherosclerosis. Brown and Goldstein discovered the LDLR pathway 
and found that mutations in the Ldlr gene cause FH (300). Heterozygotes for loss-of-function 
mutations have cholesterol levels that are about twice normal, and these subjects are at 
increased risk of premature CVE. In contrast, individuals with homozygous FH have extremely 
high levels of LDL-C (> 500 mg/dL) and often develop severe coronary atherosclerosis and 
supravalvular aortic stenosis in early childhood. The prevalence of heterozygous FH is around 
1/200-250 in the USA, whereas homozygous FH is extremely rare affecting only about 
1/160,000 to 1/250,000 individuals (436). Nonetheless, about 20% of people having myocardial 
infarctions (MI) before 40 years of age have heterozygous FH. Thus, FH offers an important 
opportunity to target therapies to prevent atherosclerosis (437), but FH remains under 
recognized with recent evidence suggesting that only 1-10% of subjects with FH have been 
identified (438). Most individuals with significant hypercholesterolemia do not have classic 
monogenic autosomal dominant inherited dyslipidemias, but polygenic factors contributing to 
susceptibility to environmental factors underlie the observed increase in LDL-C levels.  A recent 
study suggests that among individuals with LDL cholesterol ≥190 mg/dl, gene sequencing 
identified a monogenic FH mutation in only <2%of subjects (439). However, for any observed 
LDL cholesterol, FH mutation carriers are at substantially increased risk for CAD (439). 
Pathogenic variants in three genes (LDLR, APOB, and PCSK9) account for the majority of 
monogenic FH cases. Recent genome-wide association studies (GWAS) have identified more 
than 50 discrete genetic loci that are associated with an increased risk of CVE(440,441). Many 
of these genetic loci are associated with genes previously known to impact LDL-C levels and 
cardiovascular risk (e.g. Ldlr, APOB, PCSK9), but novel loci that impact both LDL-C levels and 
risk for MI have also been identified, e.g. sortilin-1 (SORT1) (442,443). Most importantly, 
inherited low levels of LDL-C due to loss-of-function mutations in the PCSK9 gene have been 
shown to be associated with dramatic reductions in risk for ASCVD events in the 
Atherosclerosis Risk in Communities study (444). Hence, genetic disorders of lipoprotein 
metabolism provide strong evidence that the impact of LDL-C on the development of 
atherosclerosis is dose- and time-dependent (445), supporting a causal role for LDL-C in 
atherosclerosis. 
 
Lowering LDL-C Reduces ASCVD 
 
Large randomized outcomes trials of cholesterol lowering drugs have provided critical proof of 
the cholesterol hypothesis (446). The Coronary Drug Project, conducted between 1966 and 
1975, found niacin treatment showed modest benefit in decreasing definite nonfatal recurrent 
myocardial infarction by 26% (10.2% for niacin group vs 13.8% for placebo group) (447). 
However, there was no benefit in primary endpoint, total mortality. Impressively, with a mean 
follow-up of 15 years, nearly 9 years after termination of the trial, all-cause mortality was 11% 



lower in niacin group than in the placebo group (448). The Lipid Clinics Research trial was 
another early major outcomes trial to show that lowering cholesterol reduced cardiovascular 
events. Treatment with cholestyramine, a bile acid binding inhibitor, resulted in a 12% reduction 
in LDL-C levels and a 19% reduction in CHD events (449). The early lipid lowering 
cardiovascular outcomes trials were limited by a lack of highly effective approaches for lowering 
LDL-C levels, and several trials raised concerns that cholesterol lowering did not reduce total 
mortality and might increase the risk of cancer, accidental death and suicide (446). The advent 
of the statin drug class (HMG-CoA reductase inhibitors) provided a much more effective 
approach to lowering LDL-C and laid to rest the concerns raised by the earlier trials. The 4S trial 
was a landmark clinical trial of cholesterol lowering with simvastatin in patients with coronary 
artery disease (CAD) and severely elevated levels of LDL-C that was designed to look at total 
mortality as the primary endpoint (450). The 4S showed for the first time that lowering LDL-C 
levels by 35% with simvastatin resulted in a 30% reduction in total mortality with a 42% 
reduction in CHD deaths and a 34% reduction in the risk of Major Coronary Events (450). A 
large number of subsequent trials extended these results to populations with CHD with low 
levels of LDL-C and to subjects without known CAD (primary prevention) with high or low levels 
of LDL-C (451). It is important to note that the relationship between on-treatment LDL-C 
lowering and reduction in cardiovascular events in secondary prevention trials was similar for 
both statin and non-statin approaches to lowering LDL-C levels. A large meta-analysis of 26 
statin trials involving over 170,000 subjects demonstrated that statin treatment for 5–years 
reduced the combined incidence of major coronary events, coronary revascularization, and 
stroke by 20% per every 1 mmol/l (38.7 mg/dL) reduction in LDL-C (452). These results have 
been extended by a recent large meta-analysis of 49 trials involving 9 different interventions to 
lower LDL that included more than 300,000 patients and approximately 40,000 major vascular 
events, each 1mmol/l (38.7mg/dl) reduction in LDL-C was associated with 23% relative 
reduction in the risk of major vascular events (453). This raised the question of whether further 
lipid lowering would be of additional benefit. With the recent development of proprotein 
convertase subtilisin/kexin type 9 (PCSK9) inhibitors, dramatic additional LDL lowering up to 50 
-70% is now possible. In the FOURIER trial, patients with prior stable CAD who received the 
PCSK9 inhibitor, evolocumab, in combination with statin therapy achieved median LDL-C levels 
of 30 mg/dl. This was associated with a 15% reduction in the composite endpoint of 
cardiovascular death, MI, stroke, hospitalization for unstable angina or coronary 
revascularization (454). Similarly, ODYSSEY demonstrated that administration of alirocumab to 
acute coronary syndrome patients already on maximally tolerated statin therapy led to LDL-C 
values <50 mg/dl and was associated with a 15% reduction in the composite endpoint of death 
from coronary heart disease, nonfatal MI, ischemic stroke or unstable angina requiring 
hospitalization, and this benefit approached 24% in the subgroup of patients with initial LDL-C 
values >100 mg/dL (455). Together, the results of these PCSK9 trials reinforce the “lower is 
better” hypothesis.  
 
Although statins are very effective in preventing CVE, many patients on statins do still have 
CVE, a phenomenon referred to as residual risk (456). This residual risk is likely attributable at 
least in part to inflammation. Indeed, definitive support for this hypothesis recently came from 
the Canakinumab Anti-inflammatory Thrombosis Outcome Study (CANTOS), where 



administration of an anti-IL1b antibody to patients with prior MI and elevated serum hsCRP 
successfully reduced recurrent CVE independent of lipid lowering (>90% of patients were 
receiving concurrent statin therapy) (457). A secondary analysis of the FOURIER trial also 
demonstrated that, while relative risk for the primary cardiovascular endpoint was consistent 
across groups, the absolute risk reduction with evolocumab was greatest in patients with 
elevated hsCRP (458). These results suggest that targeting both LDL and inflammation will 
provide the most robust strategy for lowering ASCVD risk.   
   
Levels of LDL-C, ApoB-100, Non-HDL Cholesterol and LDL-P as Markers for ASCVD Risk.  
 
Based on the strength of the direct association of LDL-C levels and risk for ASCVD, the 
guidelines for treatment of hypercholesterolemia have focused on LDL-C levels for risk 
assessment, stratification and treatment recommendations. Indeed, the terms LDL-C and LDL 
are often, though incorrectly, used interchangeably in practice. It is important to understand that 
LDL is a collection of particles defined by density (d = 1.019 – 1.063 g/ml) that are 
heterogeneous, consisting of a large variety of lipids and proteins (459). In addition, LDL 
particles vary in size and cholesterol content. The relationship between LDL-C levels and risk 
for ASCVD is “J-shaped”, and the predictive value of LDL-C levels is better at higher levels of 
LDL-C. Surprisingly, the majority of subjects presenting to the hospital with acute coronary 
artery syndrome do not have elevated levels of LDL-C, but tend to have low levels of HDL-C 
and elevated triglycerides (460). There has been tremendous interest in whether other 
measures of LDL, including subpopulations, apoB100, or particle number, might serve as a 
better predictors of CVE than quantifying LDL cholesterol content.  
 
Groundbreaking studies by Krauss and co-workers (461) described two major patterns for LDL 
subpopulations based on size and density of the LDL particles. Pattern A is characterized by 
large buoyant LDL (lbLDL) particles, whereas Pattern B is associated with small dense LDL 
(sdLDL). Importantly, sdLDL is associated with increased triglyceride levels and low HDL-C, 
which is referred to as the lipid triad, a phenotype common in insulin resistance. Hence, Pattern 
B is commonly seen in subjects with obesity, metabolic syndrome and type 2 diabetes mellitus. 
A number of studies have reported that Pattern B is associated with an increased risk of CVE 
(462). Several different approaches have been used to characterize LDL phenotypes, including 
gradient gel electrophoresis, ultracentrifugation (sequential and vertical), ion mobility and 
nuclear magnetic resonance (NMR) (462,463). A number of mechanisms have been proposed 
to underlie the proatherogenic properties of sdLDL, including increased susceptibility of 
oxidation (464) and glycation (465), promoting arterial retention and increased macrophage 
foam cell formation. Cholesteryl ester transfer protein (CETP), which transfers CE from HDL to 
VLDL/LDL and triglycerides in the opposite direction, and hepatic lipase, which hydrolyses 
triglycerides, impacts the lipid composition and size of sdLDL. As such, increased levels of 
sdLDL have the potential to provide additional information regarding risk of CVE in individuals 
with normal LDL-C levels but elevated triglycerides and low HDL. Alternatively, it has been 
proposed that the real impact of sdLDL is due to increased LDL particle number. 
 



Each LDL particle contains one molecule of apoB100, and the majority of apoB100 in plasma is 
on LDL particles (466). Hence, levels of apoB100 correlate directly with LDL particle (LDL-P) 
number. A large number of studies have shown that levels of apoB100 are superior markers of 
ASCVD risk compared to LDL-C (467). Because the mass of cholesterol in LDL particles varies, 
LDL-C levels will result in overestimation apoB levels and the number of LDL particles, when 
LDL particles are cholesterol-enriched (Figure 8) and underestimate apoB and LDL particle 
number when the particles are cholesterol depleted (Figure 8) (468).  
 



 
Figure 8. Schematic of the Relationship Between Measurements of LDL-C Versus 
ApoB100 Particle Number in Concordant and Discordant Human Populations. Subjects 
with hypertriglyceridemia have enhanced numbers of small dense LDL where each 
particle is enriched in triglyceride (TG) and relatively poor in cholesteryl ester (CE) 



content compared to normal subjects, and measurement of LDL-C underestimates 
particle numbers and apoB100 levels.   Other subjects have enlarged CE-enriched LDL 
particles and measurement of LDL-C overestimates the number of LDL particles and 
apoB100 molecules. Thus, LDL particle number or apoB100 levels are a more accurate 
predictor of cardiovascular risk in the setting of discordance between the percentiles for 
measures of cholesterol carried by LDL (LDL-C or Non-HDL-C) and particle number 
(apoB100 or LDL-P). Adapted from Sniderman, A.D. et al. Curr Opin Lipidol 2014, 25:461–
467. 
 
Furthermore, all of the major atherogenic lipoproteins contain apoB (LDL, triglyceride rich 
remnants of VLDL, IDL, chylomicron remnants, and Lp(a)). LDL-C is routinely calculated using 
the Friedewald formula (LDL-C = TC – HDL-C – TG/5), but this formula is not accurate when 
serum TG levels are > 400 mg/dl. It has long been recognized that LDL-C underestimates risk 
of ASCVD in the setting of hypertriglyceridemia (467). Non-HDL cholesterol is the mass of 
cholesterol in all of the apoB-containing particles: Non-HDL-C = TC – HDL-C. The ATPIII 
guidelines recommended using Non-HDL-C to estimate risk of ASCVD, when TG > 200 mg/dL 
(469,470). A meta-analysis by Sniderman et al. found that Non-HDL-C was a slightly better 
marker of ASCVD risk than LDL-C, but apoB was far superior to Non-HDL-C (471). NMR 
spectroscopy is another way to measure LDL-P concentrations. Table 2 includes selected 
percentiles for mean levels for the various LDL-related markers from the Framingham Offspring 
Study (472). In an analysis of the Framingham Offspring Study, LDL-P determined by NMR was 
more strongly related to incident CVD events than LDL-C levels, and the ability of Non-HDL-C to 
predict risk was less than LDL-P, but better than LDL-C (473). In addition, they found that low 
LDL-P numbers were a better index of low CVD risk than low LDL-C (473). In contrast, an 
earlier meta-analysis from the Emerging Risk Factors Collaboration found LDL-C, Non-HDL and 
apoB to be equivalent markers of CVE (474). The lack of difference may relate to the population 
studied. When the LDL particles have normal cholesterol content, then LDL-C, Non-HDL and 
apoB are equivalent markers (Figure 8) of risk (471,473). Interestingly, data from the Multi-
Ethnic Study of Atherosclerosis (MESA) demonstrated that when LDL-C and LDL-P are 
discordant (Figure 8), then LDL-P proves to be a better predictor of risk for incident CVD events 
than LDL-C (475).  
 

Table 2. Equivalent Percentiles in the Framingham Offspring Study 
Percentile % LDL-C mg/dL Non-HDL-C mg/dL ApoB mg/dL LDL-P nmol/L 
2 70 83 54 720 
20 100 119 78 1100 
50 130 153 97 1440 
80 160 187 118 1820 
95 191 224 140 2210 
Adapted from Contois JH, et al. Clinical Chemistry 2009; 55:407-419 

 
For several decades the guidelines for treatment of hypercholesterolemia have focused on LDL-
C levels both for risk stratification and as the principal target of therapy to prevent ASCVD. 
Indeed, therapeutic goals for LDL-C of < 100 mg/dL and < 70 mg/dL for subjects at high-risk 



and very high risk of CVE, respectively, were recommended by the 2004 update of the NCEP 
ATPIII, guidelines (469,470). The 2013 ACC/AHA guidelines for treatment of 
hypercholesterolemia abandoned these targets in favor of recommending the use of high-
intensity statins in high risk individuals (476), there are numerous sets of guidelines that have 
maintained the recommendation for LDL-C targets, including those of the National Lipid 
Association (NLA) (477), the American Association for Clinical Endocrinologists (478), and the 
European Guidelines (479). The Canadian guidelines include targets for levels of apoB(480), 
and the NLA guidelines include targets for both LDL-C and Non-HDL-C(477). Table 2 includes 
the percentiles for mean levels for these various LDL markers from the Framingham Offspring 
Study. The levels of LDL-C shown in Table 2 closely coincide with levels that have been widely 
used in guidelines for lipid management for decision-making regarding levels at which to initiate 
therapy and goals of therapy. The recent NLA guidelines recommend using both LDL-C and 
Non-HDL-C as targets of therapy with only two sets of targets: LDL-C < 70 mg/dL and Non-
HDL-C < 100 mg/dL for very high-risk subjects and LDL-C < 100 mg/dL and Non-HDL-C < 130 
mg/dL for high, moderate or low risk subjects (who qualify for drug therapy). Most recently, 
AHA/ACC published a new version of guidelines for cholesterol management (481). These 
guidelines included evidence from recent 2 large randomized clinical end-point trials of PCSK9 
inhibitors (454,455) and a long-awaited ezetimibe trial in patients with recent acute coronary 
syndromes (482). The new guidelines re-introduced LDL-C treatment goals in some high-risk 
patient groups, such as those with high risk of ASCVD and those with very high baseline LDL-C. 
The new AHA/ACC guidelines also stated that elevated apoB particle number, elevated Lp(a) 
and hypertriglyceridemia are all additional risk factors for ASCVD.  
 
Lp(a) 
 
Lp(a) has been shown to be an independent risk factor for atherothrombotic events, including 
heart attack, stroke and peripheral vascular disease, in multiple prospective studies (451,483). 
The new AHA/ACC guidelines list elevated Lp(a) a one of the risk-enhancing factors for 
developing ASCVD (481). Lp(a) consists of an LDL particle in which apoB100 is covalently 
linked via a disulfide bridge to apo(a), a glycoprotein with repeating Kringle units that share 
homology with plasminogen. Although apo(a) is synthesized by the liver, the Lp(a) particles are 
not formed in the liver but in the plasma. Despite being a modified LDL particle, Lp(a) levels are 
independent of LDL-C levels. The catabolism of Lp(a) is poorly understood, but Lp(a) is not 
cleared by the LDLR (484).  The number of repeating Kringle units is highly variable but largely 
genetically determined, and this contributes to tremendous heterogeneity in size of Lp(a). The 
plasma levels of Lp(a) vary tremendously in humans, and plasma Lp(a) levels are generally 
inversely related to the size of the apo(a) isoform (485). Thus, smaller Lp(a) particles with fewer 
Kringle repeats are present at higher levels in the plasma. In American Caucasians, the 
increased levels of smaller Lp(a) particles is largely explained by the size of the LPA gene, 
based on the size of the repeated KIV2 domain (486), which is believed to be due to difficulty of 
hepatic secretion of larger apo(a) isoforms. Nevertheless, this relationship varies in different 
ethnic populations. Early studies suggested that even though Lp(a) levels are higher in African 
Americans that Lp(a) levels did not appear to be an independent risk factor for cardiovascular 
events in this group (487). However, by determining allele specific Lp(a) concentrations, a larger 



more recent analysis demonstrated that elevated Lp(a) levels associated with small apo(a) 
isoform sizes serve as an independent risk factor for CHD in both African Americans and 
Caucasians (488). Similarly, a 20 year follow up study of the ARIC cohort found that elevated 
levels of Lp(a) are associated with a similar degree of risk in in both African Americans and 
Caucasians (489). A recent meta-analysis by the Emerging Risk Factors Collaboration 
evaluated 36 prospective studies with 126,634 subjects found that Lp(a) is an independent risk 
factor for CHD (490). In contrast to previous studies that suggested Lp(a) was only relevant as a 
risk factor when levels were extremely elevated, the meta-analysis demonstrated that risk and 
that Lp(a) levels are continuously associated with CHD risk (490). The Ile4399Met 
polymorphism (rs3798220) in the protease-like domain of apo(a) is particularly associated with 
increased risk for severe CAD (491). Subsequently, Clarke et al. found that the rs3798220 and 
rs10455872 variants were associated with small apo(a) isoform size, increased Lp(a) levels and 
substantially increased risk of CAD (492). Furthermore, a Mendelian randomization study by 
Kamstrup et al. demonstrated that a genetically determined doubling of Lp(a) plasma levels 
leads to a 22% increase in the risk of MI, strongly supporting a causal role for elevated levels of 
Lp(a) and risk for MI (493). 
 
The proatherogenic mechanisms for Lp(a) remain incompletely understood, but recent studies 
suggest an important role for oxidative modification of Lp(a) by oxidized phospholipids (OxPL) 
(251). Mounting evidence supports an important role for OxPLs in the development of 
atherosclerosis (251). Interestingly, OxPLs associate with Lp(a) in preference to native LDL 
particles in human plasma (250). Hence a physiological role has been proposed for Lp(a) for 
binding and transporting OxPL in the plasma (251). Although, Lp(a) is found only in humans and 
Old-World monkeys, mice expressing human Lp(a) have been developed to examine the role of 
Lp(a) in atherogenesis and lipoprotein metabolism. The first transgenic mice expressing high 
levels of human apoB100 were created using a 79.5-kb human genomic DNA fragment 
containing the entire human APOB gene that was isolated from a P1 bacteriophage library, and 
crossing these mice with apo(a) transgenic mice produced high levels of human Lp(a) in plasma 
(494). In a study of transgenic mice expressing high and low concentrations of Lp(a), high levels 
of OxPLs were found in transgenic mice with very high levels of Lp(a), but not in LDL of apoB 
transgenic control mice (495). These studies support the concept of preferential transfer of 
OxPL to Lp(a). In the Dallas Heart Study, levels of OxPL on apoB were strongly correlated with 
Lp(a) levels, and inversely related to the size of the apo(a) isoforms (496). In the European 
Prospective Investigation of Cancer (EPIC)–Norfolk prospective study the impact of OxPL and 
Lp(a) levels on CHD risk was additive (497). Further studies are needed to define the extent to 
which the preferential binding of OxPL by Lp(a) is responsible for mediating the increased risk of 
atherothrombotic events attributable to Lp(a).  
 
Lp(a) is considered an emerging risk factor, but the approach to managing patients with 
elevated levels of Lp(a) has not been well established. Elevated levels of Lp(a) do not respond 
well to changes in diet or statin therapy. Analysis of data from the Familial Atherosclerosis 
Treatment Study (FATS) showed that substantial lowering of LDL-C (with lovastatin plus 
colestipol or niacin plus colestipol) in subjects with CAD and high apoB100 eliminated the 
increased risk attributable to having very high Lp(a) (498). The JUPITER trial showed that 



treatment of subjects with low levels of LDL-C, but increased hsCRP, with rosuvastatin (20 mg) 
reduced CVE. In JUPITER, elevated Lp(a) was a significant determinant of residual risk, but the 
reduction in relative risk with rosuvastatin was similar among participants with high or low Lp(a) 
(499,500). Treatment with niacin reduces Lp(a) by 20-30%, and the European guidelines 
recommend treating patients with elevated Lp(a) who are at intermediate to high risk of CVD 
with extended release niacin to obtain levels of Lp(a) < 50 mg/dL (501). Nonetheless, the recent 
failure of the AIM-HIGH and HPS-2 THRIVE studies have cast doubt on the use of extended 
release niacin in subjects fitting the profile of those studies (CAD with LDL well treated on a 
statin). LDL apheresis is approved and effective for lowering Lp(a) in individuals with recurring 
CVE in the setting of very high levels of Lp(a). There are a number of new therapies that may 
prove useful in treating patients with elevated levels of Lp(a). The recently approved monoclonal 
antibodies to PCSK9 significantly lower Lp(a) by around 30% in addition to lowering LDL-C by 
30-50%. Furthermore, a Phase 1 clinical trial of a second-generation antisense to apo(a) has 
recently reported potent, dose-dependent, selective reductions of plasma Lp(a) (502). This 
approach has the appeal of specifically targeting apo(a) to reduce Lp(a) levels. Hopefully, these 
new approaches will ultimately yield an effective approach to lower levels of Lp(a) that 
translates into reduced cardiovascular events.  
 
INTESTINAL LIPID METABOLISM AND CHYLOMICRON ASSEMBLY 
 
Intestinal Lipid Absorption 
 
Through absorption of dietary lipids, the intestine is a key regulator of stored and circulating 
lipids. Primarily it is enterocytes in the small intestine that actively regulate the release of dietary 
lipids into circulation (503-505). The predominant lipids derived from diet are triglycerides, 
phospholipids and cholesteryl esters. In the intestinal lumen, ingested lipids are emulsified by 
bile salts to enhance their hydrolysis by lipases (Figure 9) (506-509). Triglycerides make up the 
largest percentage of the intestinal lipids. Lipolysis of triglycerides releases free fatty acids (non-
esterified fatty acids) and monoacylglycerides (Figure 9). These are absorbed on the luminal 
surface of the enterocytes both by free diffusion and actively by protein-mediated transport into 
the enterocyte cytosol (Figure 9) (508-510). The principal transporters identified to date are 
CD36 (now known as SR-B2 (511)) and several fatty acid binding and transport proteins (512-
514).  
 



 
Figure 9. Intestinal Triglyceride and Cholesterol Metabolism. In the intestinal lumen, 
dietary triglyceride (TG) and cholesterol are emulsified by bile salts which enhance their 
uptake. Lipases in the intestinal lumen digest triglycerides to free fatty acids (FFA) and 
monoacylglycerides (MAG). These are absorbed into the enterocyte where they are used 
in the synthesis of TG, phospholipid and cholesteryl ester (CE). Much of the synthesized 
TG in enterocytes is packaged, along with phospholipids, cholesterol and proteins into 
chylomicrons, which are secreted at the basolateral surface of the enterocyte and enter 
the lymphatic system. The assembly of chylomicrons begins in the endoplasmic 
reticulum. During the synthesis of apolipoprotein B48 (apoB48), the protein acquires 
phospholipid from the endoplasmic reticulum membrane and also cholesterol and TG to 
form a primordial chylomicron. Continued acquisition of TG and CE and smaller, 



exchangeable proteins (e.g. apolipoprotein A-IV and apolipoprotein C-III) in the 
endoplasmic reticulum enlarges the particle to form a prechylomicron. Prechylomcirons 
are transported to the Golgi apparatus in specialized COPII vesicles. In the Golgi 
apparatus, the prechylomicron matures into a chylomicron. The maturation process 
includes the glycosylation of apoB48, the acquisition of additional proteins (e.g. 
apolipoprotein A-I) and lipid. Secretory vesicles formed from the Golgi carry the mature 
chylomicrons to the basolateral surface of the enterocyte. Fusion of the secretory vesicle 
membrane with the plasma membrane releases the chylomicron into the extracellular 
space where it is taken up into lacteals near the enterocyte and, thus, enters the 
lymphatic circulation. Dietary cholesterol in the intestinal lumen is taken into the 
enterocyte by a process involving Niemann-Pick C1-like protein 1 (NPC1L1). Enterocyte 
cholesterol and CE can be incorporated into chylomicrons and secreted with TG. In 
addition, enterocyte cholesterol can be directly excreted into the intestinal lumen using 
the heterodimer ATP-binding cassette transporter G5 and G8 (ABCG5/G8). Enterocyte 
cholesterol can also be transported to and incorporated into the basolateral membrane 
for efflux into the circulation. 
 
Chylomicron Assembly and Secretion 
 
In the enterocyte, the free fatty acids and monoacylglycerides are used to synthesize 
triglycerides, phospholipids, and cholesteryl esters (Figure 9) (508,509,513,515-517). The 
majority of the triglycerides formed in the enterocytes are repackaged into large, buoyant 
lipoproteins, called chylomicrons, and secreted from the basolateral surface of the cell (Figure 
9). These particles play a central role in the transport of triglycerides and fat-soluble vitamins to 
the rest of the body (518). 
 
The assembly of the chylomicron particle from precursors is a complex process. Each particle 
contains a single copy of apolipoprotein B48 and assembly begins with the synthesis of this 
protein in the rough endoplasmic reticulum. Apolipoprotein B48 is a truncated form of 
apolipoprotein B100 that is formed by posttranscriptional editing (519,520). As apolipoprotein 
B48 is synthesized and translocated across the endoplasmic reticulum membrane, it becomes 
lipidated to form a phospholipid-rich, dense primordial chylomicron in the lumen of the 
endoplasmic reticulum (Figure 9). The primordial chylomicron contains apolipoprotein B48, 
phospholipid, cholesterol and minor amounts of cholesteryl ester and triglyceride (513,521,522). 
The assembly process requires microsomal triglyceride transfer protein (523). In the absence of 
sufficient lipid, or if microsomal triglyceride transfer protein function is impaired, apolipoprotein 
B48 is ubiquitinated and targeted for proteasome degradation (524). The importance of this 
initiating assembly step is seen in patients with a defect in the MTP gene leading to the rare 
recessive disorder abetalipoproteinemia. Individuals with abetalipoproteinemia have almost 
undetectable levels of apoB or and very low total cholesterol levels in their plasma because of 
the inability to assemble apoB-containing lipoproteins in their enterocytes or hepatocytes. 
Among the sequelae experienced by these patients are accumulation of triglycerides in their 
intestines and livers and a deficiency of lipid-soluble vitamins in their plasma (525,526). If 



untreated, these patients develop severe neurological problems; mostly related to vitamin E and 
A deficiency. 
 
After formation, the initial primordial particle expands by the acquisition of additional triglyceride 
and cholesteryl ester (Figure 9). The additional lipid is acquired by fusion with non-
apolipoprotein B48 containing particles that are rich in triglyceride and cholesteryl ester. The 
exact origin of these lipid particles and their precise composition is currently actively debated 
(504,505,513,527,528), but the fusion of the primordial chylomicron with the apolipoprotein B48-
free particles occurs in the endoplasmic reticulum (513). The resulting particle is a 
prechylomicron (Figure 9).  In addition to apolipoprotein B48, the prechylomicron surface can 
contain multiple copies of other small, exchangeable apoproteins including apolipoprotein A-IV 
and apolipoprotein C-III. Exchangeable apoproteins are soluble proteins that are not as tightly 
adherent to the particle surface and so can be exchanged between lipid particles.  
 
Prechylomicrons are transported out of the endoplasmic reticulum and delivered to the Golgi 
apparatus for further processing (Figure 9). Transport occurs in specialized vesicles that can 
accommodate their large size. The unique vesicles contain a number of specific proteins 
necessary for the transport and docking process. Vesicle-associated membrane protein-7, 
coatomer protein II and Sar1b, a small GTPase component of the coatomer protein II vesicle 
assembly machinery (Figure 9)  are among the specialized proteins on the lipid transport 
vesicles (505,529-531). The maturation of the particle in the Golgi apparatus includes further 
glycosylation of apolipoprotein B48 and the addition of apolipoprotein A-I to the surface 
(505,532,533). After processing, the mature chylomicron is packaged into Golgi-derived 
secretory vesicles and transported to the basolateral surface and exocytosed into the lymph 
(Figure 9) (527,534,535).  
 
The assembly of chylomicrons in enterocytes is a complex process requiring a number of 
coordinated steps and specific factors to work in unison. A failure in any of these can lead to 
lipid-related disease states. For instance, mutations in the SAR1B gene lead to retention of 
prechylomicrons within membrane-bound structures in the enterocytes (529). The condition is 
marked in childhood by decreased blood cholesterol levels, lipid accumulation in the 
enterocytes, chronic fat malabsorption with steatorrhea, and deficiencies in fat-soluble vitamin 
and essential fatty acids.   
 
Chylomicron Cholesterol 
 
Although chylomicrons are triglyceride-rich, they also carry substantial amounts of cholesterol 
(536,537). The cholesterol in chylomicrons comes from the general pool of enterocyte 
cholesterol. Enterocytes acquire cholesterol by uptake at the luminal surface, acquisition from 
lipoproteins at the basal lateral surface, and by de novo synthesis within the enterocyte. 
Niemann-Pick C1-Like 1 protein is a key component of the luminal acquisition machinery 
(Figure 9) (538), while the low density lipoprotein receptor appears to be a major mediator of 
cholesterol acquisition at the basolateral surface (539,540). The incorporation of cholesterol into 
chylomicrons contributes to the circulating levels of cholesterol, and increases in intestinal 



synthesis of chylomicrons due to increased dietary lipids contributes to cardiovascular risk and 
atherosclerosis, albeit by complex mechanisms (516,541,542).  
 
Non-Chylomicron Intestinal Lipid Metabolism 
 
Enterocytes can also regulate circulating lipids by means other than chylomicron secretion.  In 
the presence of excess fatty acids or cholesterol, the enterocyte can store excess lipid in their 
esterified forms (triglycerides and cholesteryl esters, respectively) within cytoplasmic lipid 
droplets (543-545). The neutral lipids in the droplets can subsequently be mobilized by 
hydrolysis as needed by the cell. The free fatty acids liberated from storage droplets can be 
incorporated into the chylomicron production pathway to become part of secreted chylomicrons.  
 
Finally, the intestine also regulates circulating cholesterol levels by taking up excess circulating 
cholesterol and excreting it into the intestinal lumen for clearance in the feces. This process is 
known as trans-intestinal cholesterol excretion. It acts as an adjunct to liver biliary secretion and 
can account for as much as 30% of neutral sterol excretion (546). Trans-intestinal cholesterol 
excretion occurs at the luminal surface of the enterocytes by a process that primarily utilizes the 
ATP-binding cassette transporter pair ABCG5/G8 (Figure 9) but can use other pathways as well 
(547).  
 
Summary 
 
It is clear that intestinal lipid processing is a key contributor to the circulating levels of both 
triglyceride and cholesterol. Dietary, genetic and metabolic factors that disrupt the process of 
enterocyte lipid metabolism potentially can alter lipid homeostasis and produce disease states.  
 
  



TRIGLYCERIDES, CARDIOVASCULAR DISEASE AND ATHEROSCLEROSIS 
 
Causes of Hypertriglyceridemia 
 
The prevalence of high circulating triglyceride levels is increasing worldwide, particularly in 
developed countries. In the United States there has been a greater than 7 fold increase in 
average plasma triglyceride concentration over the last 30 years (548). This increase coincides, 
in part, with increased instances of obesity and type 2 diabetes (T2DM) although the 
relationship of these conditions to hypertriglyceridemia is complex (549-553). Most 
classifications of hypertriglyceridemia are based, at least in part, on the Third Report of the 
National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and 
Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) (469). These 
guidelines classified circulating triglyceride levels <150 mg/dL as normal. Values between 150 
mg/dL and 199 mg/dL are considered borderline high and anything above 200 mg/dL are 
classified as high, with those above 500 mg/dL deemed to be very high (469,470). 
Hypertriglyceridemia is generally the result of increases in one or more of the triglyceride-rich 
lipoproteins; chylomicrons, VLDL, or their remnants. The increase occurs because of increased 
synthesis, decreased catabolism or both, with the underlying cause generally being the result of 
alterations in metabolic factors such as apolipoprotein C-II, apolipoprotein C-III, CETP and 
lipoprotein lipase. However, hypertriglyceridemia can also be secondary to other disease states 
(e.g. diabetes mellitus, hypothyroidism, renal disease, and nephrotic syndrome) (548,554). Not 
surprisingly, environmental conditions, particularly a diet with high fat or high glycemic index 
content and in which energy intake is out of balance with energy utilization, are associated with 
hypertriglyceridemia as is excess alcohol consumption (548,554). In fact, dietary choices and 
lack of exercise are widely held to be a major contributor to the recent rise in circulating 
triglyceride levels in developed countries.  
 
Hypertriglyceridemia as an Independent Risk Factor for Cardiovascular Disease 
 
Individuals with elevated triglyceride levels are at increased risk for cardiovascular 
complications, particularly atherosclerosis (555,556). The Framingham Study was one of the 
first large studies to associate hypertriglyceridemia with cardiovascular disease, particularly in 
women (557). However, many other studies before and since have also shown a univariate 
association of high triglycerides and increased risk of cardiovascular disease. In many of these 
studies, however, the affect went away after accounting for other major risk factors (558-
561),calling into question whether triglycerides represent an independent risk factor. For 
instance, a meta-analysis of the Emerging Risk Factors Collaboration data revealed 
triglycerides as a strong risk factor for cardiovascular disease and stroke, but, after adjusting for 
standard risk factors (primarily lipoprotein-associated cholesterol), the researchers concluded 
that triglyceride levels provided no additional predictive value (474). The authors did note, as 
have other studies (562-565), that patients with triglyceride levels above 500 mg/dL are at 
increased risk of pancreatitis; providing impetus for measuring triglyceride levels in patients and 
treating those with high levels irrespective of cardiovascular risk. The lack of strong association 
of triglyceride concentration with cardiovascular disease (after accounting for other risk factors 



such as elevated LDL-C and low HDL-C) has led some to question whether measuring 
triglyceride levels has any utility for cardiovascular patient management. In contrast, we argue 
below that there are a number of important reasons for evaluating triglyceride levels in patients, 
particularly those with cardiovascular disease, metabolic syndrome or diabetes.  
 
First, we would point out that the difficulty in substantiating an independent association of 
triglycerides with cardiovascular disease may simply reflect the fact that a number of interrelated 
risk factors make it difficult to determine to what extent triglycerides independently contribute to 
cardiovascular events. One key issue is that, even in studies suggesting independence, the 
effect size has been small compared to traditional risk factors like LDL-C (548). Therefore, 
independence is very hard to detect in small studies. There are also issues regarding the way 
triglyceride levels are determined, the high variability of triglyceride concentrations in a single 
individual, and the association of triglyceride levels with other atherogenic conditions such as 
low HDL-C, obesity and T2DM (548,566-571). These confounding issues are not always 
considered by authors when drawing conclusions. Moreover, endpoints have differed widely 
among studies. Despite the confounding issues, an increasing number of case control studies 
do indicate triglycerides as an independent risk factor for cardiovascular disease even when 
adjusting for total cholesterol, LDL-C and HDL-C (572-578). The PROCAM study, for instance, 
found increases in risk for cardiovascular events as triglyceride levels increased and residual 
risk remained after accounting for other major risk factors (579), and the PROVE IT-TIMI 22 
study revealed that triglyceride levels had a substantial impact on cardiovascular outcomes in 
patients with acute coronary syndrome that was independent of LDL-C (580). Moreover, 
Mendelian randomization studies strongly suggest a causal relationship between factors 
involved in regulating triglyceride rich lipoprotein levels and cardiovascular disease (581-583). 
For instance, analysis of data from the Copenhagen City Heart Study showed that genetic 
variants of lipoprotein lipase that resulted in reduced circulating triglyceride levels also reduced 
all-cause mortality (583).  
 
Meta-analyses of randomized, prospective trials probably provide the strongest evidence for 
triglyceride levels as an independent risk factor. One such analysis assessing the effects of 
lowering circulating cholesterol levels with statins, indicated that in patients with preexisting 
coronary heart disease, there was a reduction in residual risk not associated with lowering LDL-
C that could be related to other lipoproteins, such as triglyceride-rich lipoproteins (584). Most 
convincingly, a recent meta-analysis of 29 prospective studies showed that considering 
triglyceride concentrations yielded an adjusted odds ratio of 1.72 (95% Confidence 
interval=1.56-1.90) for those in the top tertile of triglyceride levels even after adjusting for other 
common risk factors (556). A similar odds ratio was reported in a meta-analysis that included 
data from 26 prospective studies in Asian and Pacific populations (585).  
 
Given the increasing evidence that hypertriglyceridemia is indicative of increased cardiovascular 
disease risk, a key question is whether reducing triglyceride levels are protective. The results of 
several studies do suggest that reducing TG levels can reduce risk of cardiovascular events. An 
analysis of two secondary prevention trials of pravastatin suggests that high HDL-C and low 
triglycerides were significant predictors of reduced risk for CHD events (586). A recent meta-



analysis of 18 trials evaluating the effects of fibrates on cardiovascular outcomes reported a 
10% relative risk reduction for major cardiovascular events in individuals with 
hypertriglyceridemia alone or in combination with low HDL-C (587). Other meta-analyses have 
generally shown small but significant associations of low triglycerides and protection from 
cardiovascular events independent of other major risk factors (588). 
 
Thus, the evidence is mounting for an independent role of circulating triglyceride levels in 
mediating cardiovascular risk and certainly has established the utility of determining triglyceride 
levels in at-risk patients. However, the studies also suggest that the association between high 
triglycerides and cardiovascular disease is complicated, multidimensional, and possibly indirect.  
 
Is There a Direct Role for Triglycerides in Promoting Cardiovascular Disease? 
 
If hypertriglyceridemia does directly affect cardiovascular disease, the mechanism(s) remain to 
be fully elucidated. Nonetheless, several hypotheses have been put forward. As the most 
prevalent form of cardiovascular disease, atherosclerosis has been the target for most 
explorations of a direct role for triglycerides in cardiovascular disease, and there is growing 
evidence, albeit circumstantial, that triglycerides can directly influence specific aspects of 
atherosclerotic lesion development. Many of the hypotheses are based on the fact that 
triglyceride rich lipoproteins (VLDL, chylomicron) also contain significant amounts of cholesterol 
(536) and could promote foam cell formation by contributing cholesterol to the lesion. Remnants 
of VLDL and chylomicrons are created by partial hydrolysis of their triglycerides through the 
action of lipoprotein lipase. These particles have an increased percentage of cholesterol 
(537,589) and can acquire additional cholesterol by transfer from HDL through the action of 
cholesterol ester transfer protein(CETP) (590). In hypertriglyceridemia, there is increased VLDL 
synthesis, delayed clearance and often increases in remnant particles (591,592). In fact, it has 
been argued that nonfasting triglyceride levels primarily reflect remnant lipoproteins, particularly 
in hypertriglyceridemia, and these particles may be the atherogenic moiety (593). Although 
chylomicrons and, to some extent, very low density lipoproteins are generally too large to cross 
the endothelial layer and invade the arterial intima, conversion to remnants allows these 
particles to accumulate within atherosclerotic lesions and to deposit their cholesterol (594-596). 
This would imply that levels of lipoprotein lipase, by increasing remnants, could influence 
atherosclerotic lesion development and there are animal studies showing just such a correlation 
(237,238,597). Evidence for the importance of remnants in atherogenesis also comes from 
individuals with type III hyperlipoproteinemia. Patients with type III hyperlipoproteinemia have 
decreased clearance of remnant lipoproteins and develop premature atherosclerosis (598).  
ApoE is crucial for the normal clearance of chylomicrons and VLDL remnants, but the ApoE-2 
isoform has reduced ability to bind to lipoprotein receptors and mediate clearance (599). Type III 
hyperlipoproteinemia occurs most often in subjects who are homozygous for APOE2, but the 
majority of E2/E2 individuals do not have the Type III phenotype, suggesting that a second hit is 
required to express the phenotype (600). Interestingly, rare genetic variants of APOE have been 
described that cause an autosomal dominant form of Type III hyperlipoproteinemia (601,602) 
and  ApoE deficiency in humans is extremely rare but is associated with the Type III phenotype  
(600,603).  



 
One mitigating factor in evaluating how much delivery of cholesterol in triglyceride-rich particles 
contributes to atherosclerosis is the fact that, although triglyceride-rich particles and their 
remnants contain large amounts of cholesterol, they also contain significant amounts of 
triglyceride. At least with respect to cellular cholesterol accumulation in macrophage foam cells 
(a hallmark of atherosclerosis), the presence of triglyceride in cells actually promotes the 
hydrolysis of cholesteryl esters to cholesterol (604,605). Cholesterol stored in foam cells is 
primarily in the form of cholesteryl esters. In order to be removed from the cell and eventually 
from the plaque, esterified cholesterol must first be converted to unesterified cholesterol (606). 
The presence of triglyceride intermixed with cholesteryl esters in foam cells facilitates the 
hydrolysis and removal of cholesterol (604,605,607). The differing effects of circulating 
triglyceride levels on cardiovascular disease risk and their cellular effects on cholesterol 
metabolism have yet to be reconciled.  
 
There are mechanisms other than cholesterol delivery by which triglycerides could influence 
atherosclerosis. Lipolysis of triglyceride rich particles not only concentrates cholesterol in the 
particles it also produces free fatty acids and monoglycerides. Cell culture studies have 
demonstrated that long-chain fatty acids, particularly saturated fatty acids like palmitate and 
stearate, are cytotoxic (608-610). Thus, the presence of triglyceride lipolysis within 
atherosclerotic lesions could raise toxic free fatty acid levels in cells of the arterial wall, which 
would promote cell death and resulting inflammation. Both increased cell death and increased 
inflammatory signaling are key attributes of atherogenesis (611-614). In support of triglyceride 
lipolysis as an atherogenic driver, macrophages make and secrete lipoprotein lipase (lipoprotein 
lipase) and it is estimated that macrophages are the primary source of lipoprotein lipase in 
atherosclerotic plaques (615). Localized lipolysis of triglyceride-rich lipoproteins and their 
remnants can also liberate other oxidized fatty acids, which can promote cytotoxicity and 
inflammation (616-619); key players in atherosclerotic lesion development. Increases in 
macrophage lipoprotein lipase do stimulate macrophage cytotoxicity (620), while diminution of 
macrophage lipoprotein lipase in mice reduces atherosclerotic plaque size (237,621,622). Thus, 
localized hydrolysis of triglyceride-rich particles by macrophages have the potential to produce 
cytotoxic and inflammatory effects.  
 
It is also becoming clear that the dietary fatty acid composition of lipoproteins, including 
triglyceride-rich lipoproteins, affects their metabolism in complex and not completely understood 
ways. The fatty acid composition of lipoproteins (as well as phospholipids and cholesteryl 
esters) is strongly influenced by dietary intake of fatty acids. Although dietary intake of saturated 
fatty acids is popularly believed to be bad, whether consuming saturated fat, per se, increases 
cardiovascular risk is somewhat controversial based on available evidence (623,624). However, 
in subjects with FH, increased saturated fat in the diet clearly increases LDL-C levels. What also 
appears clear is that replacing saturated fatty acids in the diet with polyunsaturated fatty acids 
(PUFA) reduces cardiovascular events (623-627). Omega-6 PUFA are the primary PUFA found 
in western diets. There is evidence these lower triglyceride levels, in part, by increasing lipolysis 
of triglyceride-rich lipoproteins (628). Omega-3 PUFA are the other major source of dietary 
PUFA. Fish are a rich source of long-chain omega-3 PUFA, and there is compelling evidence 



that omega-3 PUFA (at least from marine sources) reduce both triglyceride levels and 
cardiovascular risk (629-631). A recent large scale randomized controlled trial (REDUCE-IT) 
using an EPA only fish oil product reduced major cardiovascular event by 25% in patients who 
have hypertriglyceridemia (632). Replacing saturated fat with monounsaturated fatty acids may 
provide some reduction in cardiovascular events, but PUFA appear to have a stronger 
correlation with improved cardiovascular risk compared to monounsaturated fatty acids (633-
635). In contrast to cis fatty acids, trans unsaturated fatty acids, which are common in 
processed foods, have been convincingly associated with increased cardiovascular risk 
(623,636,637). Given this and other evidence, a recent report from the National Lipid 
Association’s Expert Panel recommends, for patients with low or moderate risk for 
cardiovascular disease, that intake of saturated fatty acids be reduced to <7% of total energy 
and trans fatty acids should be avoided (638). The reduction in saturated and trans fats should 
be replaced with PUFA, protein and carbohydrate (638). The guidelines also suggest eating fish 
twice weekly. For individuals with high triglyceride levels, the Expert Panel also recommends 
supplementation with omega-3 polyunsaturated fatty acids from marine sources (638). The 
2018 AHA/ACC listed persistent hypertriglyceridemia as a risk enhancer for developing ASCVD 
and recommend using omega-3 fish oil for individuals with high triglyceride levels to prevent 
pancreatitis. However, the AHA/ACC guidelines did not include the evidence of the REDUCE-IT 
trial. Therefore, in these individuals with hypertriglyceridemia and other risk factors for ASCVD, 
one should consider initiating omega-3 fish oil or intensifying statin therapy(481). 
 
Lipoprotein lipase-mediated hydrolysis of triglyceride is not the only mechanism in the artery 
wall for the metabolism of triglyceride rich particles to produce potentially atherogenic 
compounds. The foam cell macrophages are also capable of the endocytic uptake of VLDL and 
remnant particles, which can then be catabolized in the lysosome (Figure 2) (639-642). 
Interestingly, there is evidence that under atherogenic influences, including macrophage sterol 
engorgement, the route of triglyceride metabolism in macrophages can shift to favor endocytic 
delivery of triglyceride-rich lipoproteins rather than surface hydrolysis (641,643). Whereas 
surface hydrolysis of triglycerides by surface lipases primarily delivers only free fatty acids to 
cells, endocytic uptake of particles would include the delivery of the particle’s full content, 
including its sterol, which would exacerbate foam cell sterol accumulation.  
 
Another potential way that triglyceride-rich lipoproteins could influence atherosclerosis focuses 
on the apolipoprotein CIII content of VLDL and remnants. ApoCIII inhibits lipoprotein lipase, 
inhibits remnant uptake by the liver, and its levels are associated with hypertriglyceridemia (644-
648). Thus, high apolipoprotein CIII concentrations could promote arterial retention of VLDL and 
remnants making them more atherogenic, suggesting apolipoprotein CIII as a therapeutic target. 
In fact, individuals with certain mutations in APOC3 have low triglycerides and LDL-C (649,650). 
Two recent studies show that loss-of-function mutations in apoCIII lowered serum triglycerides 
by >39%, significantly reduced LDL-C and raised HDL-C, and lowered the incidence of 
cardiovascular events by >36% (651,652). An antisense oligonucleotide selective inhibitor of 
apoCIII has been developed that lowers serum apoCIII and triglycerides in mice, non-human 
primates, and humans and is currently in a phase 2 clinical trial (653).  These studies indicate 
that reduction of apoCIII by antisense oligonucleotide inhibition significantly reduces circulating 



triglyceride levels (654,655). Besides their effects on circulating lipids, Apo CIII-containing 
lipoproteins also stimulate a range of processes including activation of monocytes, 
inflammation, endothelial cell NO production resulting in vascular dysfunction and increased 
lipid oxidation and binding of lipoproteins to PG which can stimulate macrophage foam cell 
formation (227,239,656-658).  
 
A final way in which triglyceride levels could influence atherogenesis is related to the finding that 
patients with hypertriglyceridemia also tend to have increased circulating levels of thrombotic 
factors such as fibrinogen and plasminogen activator inhibitor and inflammatory mediators 
(TNF-alpha, IL-6, VCAM-1 and MCP-1) (659-661). Thrombosis and inflammation are key factors 
in atherosclerosis and its progression to heart attack and stroke.  
 
Reducing Circulating Triglyceride Levels 
 
It is clear, therefore, that there are a variety of ways in which the triglyceride-containing particles 
in hypertriglyceridemic plasma could contribute either directly or indirectly to multiple aspects of 
atherosclerotic lesion development. Regardless of whether triglycerides are directly causative of 
cardiovascular disease, the evidence is mounting that assessment of triglyceride levels has an 
important role in evaluating and managing cardiovascular risk, and treating elevated triglyceride 
levels may reduce risk for cardiovascular events (548,662). This is particularly true for patients 
with coronary heart disease or diabetes (548,662-664). Several agents have shown efficacy in 
reducing triglyceride levels and also in reducing cardiovascular disease risk. The reduced risk is 
thought to occur to a large extent by reducing atherosclerosis. Currently, therapeutic agents 
recommended for treating hypertriglyceridemia are fibrates, statins, niacin and omega-3 PUFA 
but others are being developed. Unfortunately, clinical trials of the impact of triglyceride lowering 
medications on cardiovascular events in subjects with severe hypertriglyceridemia have not 
been undertaken.  
 
Fibrates are the most effective approach for directly lowering triglyceride levels. Fibrates have 
been shown to lower triglyceride levels by 30%-50% depending on the baseline levels (548). 
More importantly, fibrate therapy with gemfibrozil has been shown to reduce cardiovascular risk 
in patients with elevated triglycerides (665-667). Unfortunately, the trials of combination therapy 
of statins with fenofibrate have failed to meet their primary endpoints in terms of reducing 
cardiovascular events (668,669). However, posthoc analysis of all of the fibrate trials show 
significant benefits in terms of reducing CVD events, when looking at the subgroup of patients 
with elevated triglycerides and low HDL-C and features of the metabolic syndrome or diabetes 
(670,671). 
 
Statins inhibit HMG-CoA reductase, the rate-limiting enzyme in cholesterol biosynthesis, and 
produce dramatic reductions in LDL-C levels; typically from 20%-60% depending upon the 
particular statin used and dosage (672). However, they also reduce circulating levels of 
triglycerides (673) and Non-HDL-C (477). Levels of LDL-C are often low in the setting of 
hypertriglyceridemia, so Non-HDL-C levels are a more useful measure of the burden of 
atherogenic apoB-containing lipoproteins than LDL-C in patients with hypertriglyceridemia. 



Indeed, the National Lipid Association recommends using goals for Non-HDL-C levels of < 130 
mg/dl or < 100 mg/dl, in subjects at high- and very-high risk of cardiovascular events, 
respectively (477).  Niacin is a B vitamin that can lower overall circulating lipid levels when given 
in high doses. The mechanism of action is not entirely clear but niacin reduces VLDL production 
by the liver. Unfortunately, clinical trial data regarding the use of niacin on cardiovascular 
outcomes in severe hypertriglyceridemia is lacking. Although in a subgroup analysis of the AIM-
HIGH trial, niacin showed a trend toward benefit in the tertile of subjects with the highest 
triglycerides (>198mg/dl) and lowest HDL-C (<33mg/dl), which is consistent with the post hoc 
analysis of fibrate trials (674). Finally, evidence indicates that daily intake of omega-3 PUFA 
from marine sources (which primarily containing eicosapentaenoic and docosahexaenoic acids) 
can significantly reduce circulating triglyceride levels (675-678). Treatment with 3 – 4 grams a 
day of omega-3 PUFA (EPA+DHA) is effective in lowering triglycerides. A large meta-analysis of 
omega-3 FA in 20 studies including 63,000 participants did not see an impact on a combined 
cardiovascular endpoint or coronary events, but there was a reduction in vascular death (679). 
However, most omega-3 outcome trials used less than one gram of omega-3 PUFA, which was 
probably too low of a dose to have meaningful triglyceride lowering effects that could yield 
clinical efficacy. The JELIS trial, compared the effect of 1.8 g EPA vs. placebo on top of statin in 
a hypercholesteremic but relatively normal triglycerides patient population (mean LDL-C 182 
mg/dl and triglycerides 151 mg/dl) (95). JELIS found a 19% relative risk reduction in CV events 
but a more pronounced 53% reduction in the subgroup with mixed dyslipidemia, specifically the 
subgroup with triglycerides >150mg/dl and HDL<40 mg/dl(680). Most recently, a large 
randomized controlled trial (REDUCE-IT) of an EPA only fish oil product reduced major 
cardiovascular event by 25% in patients who have hypertriglyceridemia (632). Whether the 
clinical benefit was confined to EPA only or it can be generalized to all omega-3 PUFA is still yet 
to be determined. In contrast to marine-derived omega-3 PUFA, plant-derived omega-3 PUFA 
have generally not shown efficacy for lowering triglycerides(681,682). A number of new 
approaches for treating hypertriglyceridemia are in development including antisense 
oligonucleotides to ApoC3(654,655). 
 
Summary 
 
The association of elevated triglyceride levels and cardiovascular disease has been well 
established (555,556,579,588). What remains a subject of ongoing debate is the extent to which 
triglycerides directly promote atherogenesis or, alternatively, simply represent a biomarker for 
other processes that influence cardiovascular risk. (542,548,554,561,570,592,683,684). 
Nonetheless, the evidence supports measuring triglycerides and including triglyceride and Non-
HDL-C reduction in treatment regimens is strengthening especially in patients with metabolic 
syndrome, diabetes, or cardiovascular disease.  
 
HDL METABOLISM AND ATHEROSCLEROSIS 
 
HDL and Reverse Cholesterol Transport 
 



Apolipoprotein A-I (apoA-I) is the major protein on HDL and provides both structure and 
function. Lipid-poor apoA-I and mature HDL both contribute to removing cholesterol from 
macrophages and prevent foam cell formation (Figure 2). Although cholesterol flux from 
macrophages to HDL (or apoA-I) alleviates cholesterol-accumulation in lesions, the net flux of 
cholesterol from the lesion has little to no effect on systemic cholesterol levels. Nevertheless, 
macrophage cholesterol efflux to HDL reduces inflammation and the atherosclerotic burden, and 
is the first step in reverse cholesterol transport (RCT) (Figure 10) (685-687). This pathway was 
first described in 1966 (688). The rate at which cholesterol flows through the RCT pathway is of 
greater importance than steady state levels of HDL-cholesterol (HDL-C). Interestingly, 
cholesterol movement from macrophages to HDL occurs through at least 4 routes (70). First, 
lipid-poor apoA-I stimulates the efflux of phospholipid and free cholesterol through interaction 
with ATP-binding cassette transporter A1 (ABCA1) (Figure 2), which generates pre-beta HDL 
and nascent discoidal particles (689). The more lipidated the apoA-1 becomes, the discoidal 
HDL particles transition into a spherical structure and lose their ability to interact with ABCA1 
and stimulate cholesterol efflux through ABCA1. Both discoidal HDL particles and mature 
spherical HDL particles can also promote free cholesterol efflux from another transporter, ATP-
binding cassette transport G1 (ABCG1), which is thought to reside on sub-cellular organelles as 
opposed to the plasma membrane (Figure 2) (690,691). This transporter is a critical regulator of 
intracellular cholesterol trafficking cellular cholesterol availability, and cholesterol export 
(690,692). HDL’s primary receptor for cholesteryl ester (CE) uptake, scavenger receptor BI (SR-
BI), is also a bidirectional free cholesterol transporter in that it facilitates the efflux and influx of 
free cholesterol between cells and mature HDL (693-695) (Figure 2). The net direction of 
cholesterol flux is determined by the cholesterol concentration gradient (plasma membrane and 
HDL ratio of free cholesterol to phospholipid) (696) as well as by the phospholipid subspecies 
(697,698). Finally, cholesterol can simply move from the plasma membrane to HDL through 
passive aqueous diffusion, which is a major route of cholesterol efflux from macrophages 
(Figure 2) (70,687,695). On HDL free cholesterol is solubilized in the phospholipid surface layer 
and is rapidly esterified by lecithin:cholesterol acyltransferase (LCAT) (Figure 6), and the 
hydrophobic CE is then mobilized to HDL’s core (699,700). 
 



 
Figure 10. Beneficial Functions of HDL. HDL mediates a number of atheroprotective 
processes. HDL is critical in reverse cholesterol transport where it mediates the first step 
of removing cholesterol from the periphery and macrophage foam cells for clearance by 
the liver. HDL can directly mediate the last step in reverse cholesterol transport by 
delivering cholesterol to the liver via interaction with SR-BI. HDL reduces LDL oxidation 
and cell oxidative status by removing lipid hydroperoxides from LDL and cells.  HDL also 
prevents LDL oxidation via its anti-oxidant enzymes (PON1, LCAT, and Lp-PLA2) and by 
the reduction of lipid hydroperoxides by apoA-I. HDL maintains the endothelial cell 
barrier by stimulating vasorelaxation resulting from enhanced nitric oxide production 
from HDL induced signaling via a number of endothelial cell receptors (SR-BI, S1P, 
ABCG1).  HDL prevents thrombus formation by inhibiting coagulation factors and by 
stimulating efflux of cholesterol from platelets via SR-BI to reduce platelet aggregation. 
HDL prevents endothelial cell and macrophage apoptosis by signaling pathways which 
modulate expression of the pro-apoptotic protein, Bid, and the anti-apoptotic factor, Bcl-
xl. HDL also reduces apoptosis susceptibility by alleviating endoplasmic reticulum stress 
by removing excess free cholesterol and lipid hydroperoxides from cells. HDL limits 
atherosclerotic lesion inflammation by inhibiting endothelial cell activation resulting in 
less monocyte recruitment. HDL also reduces lesion inflammation by promoting the 
macrophage anti-inflammatory M2 phenotype via ABCA1/ JAK2 signaling to enhance 
anti-inflammatory cytokine production (IL-10, TGF-β).  HDL inhibits conversion to the 
macrophage inflammatory M1 phenotype by preventing antigen-specific activation of T 
helper 1 (Th-1) cell to produce interferon gamma. HDL contains an array of proteins and 
bioactive lipids that regulate HDL function. In addition, HDL controls a number of 
atheroprotective processes by modulating gene expression by transferring microRNAs 
to recipient cells. 
 



Spherical mature HDL then transports CE to peripheral cells and tissues, and back to the liver 
as part of the RCT pathway (Figure 10). HDL delivers CE to the liver through 2 primary routes. 
HDL delivers CE to the liver through binding to SR-BI (Figure 6), which drives selective uptake 
of core lipids (694). Another major route of cholesterol delivery to the liver is mediated through 
LDL and the LDL receptor (LDLR) (Figure 6) (701). In the circulation, HDL exchanges CE for TG 
from VLDL and LDL through cholesteryl ester transfer protein (CETP) activity (Figure 6), and 
this action is responsible for directing CE through the LDL receptor pathway (702). Besides 
these major routes holoparticle uptake of HDL may also contribute to delivery of HDL-CE to the 
liver. Hepatocytes, and many other cell types in other tissues, likely participate in HDL retro-
endocytosis where apoA-I or HDL particles are taken up by endocytosis and resecreted without 
degradation in late endosomes and lysosomes (703,704). SR-BI and CD36 may participate in 
this process as well as other potential HDL receptors (705-707) . For example, the F0F1 ATPase 
and P2Y13 receptor have been reported to facilitate the uptake of the entire HDL particle 
(703,704,708,709). The liver then excretes both cholesterol and bile acids-derived from 
cholesterol into the bile which are removed from the body in feces, thus completing RCT from 
peripheral macrophages to bile through HDL and the liver (710). Recent evidence suggests 
there is also likely an HDL-independent pathway for systemic cholesterol removal through 
transintestinal cholesterol excretion (TICE) (711). Historically, HDL’s anti-atherogenic properties 
were largely attributed to HDL’s role in RCT and removing excess cholesterol from 
macrophages and peripheral tissues; however, continually emerging alternative HDL functions 
likely significantly contribute to HDL’s protection against CVD.  
 
HDL Levels and Risk of CVD 
 
Historically, HDL-C was synonymous with the term HDL; however, the amount of cholesterol in 
the HDL pool (HDL-C) and the number and quality of HDL particles (HDL-P) are independent 
concepts that are important to consider in the context of HDL function. Several decades of high-
quality epidemiological studies have clearly shown that HDL-C levels are inversely correlated to 
CVD risk and events, independent of race, gender, and ethnicity (712). In well-controlled studies 
assessing CVD risk using multivariate approaches to adjust for covariates, both apoA-I and 
HDL-C are strong independent predictors of CVD risk (474). Nonetheless, HDL-C levels are 
also inversely correlated to insulin resistance, obesity, and triglycerides. As such, HDL-C’s 
causality in protection from CVD is difficult to define and is somewhat controversial, mainly due 
to epidemiological discrepancies between the dose-response of HDL-C levels to CVD 
outcomes. It is possible that HDL-C levels may simply be a biomarker for CVD and not play a 
causal role in atherosclerosis; however, an increasing number of functional studies clearly 
support HDL’s functional relevance in biochemical mechanisms of atherosclerosis. In any case, 
epidemiological studies over the past 50 years have provided many insights into HDL-C and 
CVD risk. The first evidence came from the Framingham Heart Study in 1966 demonstrating a 
link between HDL-C and ASCVD (713). In 1975, HDL-C levels were found to be inversely 
associated with CVD in a Norwegian trial (Tromso Heart Study) (714). In subsequent years, the 
Honolulu Heart Study (1976) (715) and Framingham Heart Study (1977) (559) both reported 
that many CVD patients had low HDL-C levels. Over the years, low HDL-C levels have 
consistently been reported to be associated with increased risk of ASCVD and events (716-



718). By the late 1980s and early 1990s, the relationship between HDL-C and CVD was 
generally accepted, as studies during this period established that low HDL-C levels were 
associated with CVD risk independent of other risk factors even in patients with normal total 
cholesterol levels (719-721).  
 
Clinical Outcomes Trials 
 
Prior to the statin-era, results from randomized controlled clinical trials suggested that 
increasing HDL-C levels 1 mg/dL or 1% reduces mortality from CVD by 3-4% (722,723). In the 
Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS), treatment of 
men and women with average TC and LDL-C levels and below-average HDL-C levels with 
lovastatin (20-40 mg) reduced LDL-C by 25% and raised HDL-C 6%, resulting in a 37% 
reduction in the risk for the first major acute coronary event (724). These results showed that 
statin therapy was effective in reducing risk for CVE in subjects with low-HDL-C. The extent to 
which the benefit came from HDL-C raising is unclear. Studies completed in subjects on statins 
have yielded inconsistent results with regard to the importance of raising HDL-C partly due to 
evidence suggesting that statin (fluvastatin) use in low HDL-C subjects decreased coronary 
artery disease (CAD) with little to no increase in HDL-C levels (725-727). In the fluvastatin 
regression study, low HDL-C subjects on placebo showed increased disease (angiographic) 
progression compared to subjects with high HDL-C levels (727). Collectively, evidence from 
these and a large number of epidemiological studies overwhelmingly support a clear inverse 
association between HDL-C levels and CVD risk. This is demonstrated clinically as raising HDL 
levels through injections of reconstituted HDL (rHDL) resulted in atherosclerotic plaque 
regression, as determined by intravascular ultrasound (728). A number of animal studies clearly 
support the HDL-C hypothesis. For example, raising HDL in mice and rabbits consistently 
blocks atherogenesis( 729-731). However, raising HDL-C levels by mono- or combined therapy 
to reduce risk and events has proven challenging. Two major clinical outcomes trials of raising 
HDL with niacin failed to show a benefit. In subjects with CAD with LDL-C levels well controlled 
with a statin, the addition of extended release niacin in AIM-HIGH (732) and extended release 
niacin plus laropiprant (prostaglandin D2 receptor blocker to inhibit flushing) in HPS-2THRIVE 
(733) failed to reduce cardiovascular outcomes. However, structural limitations of the two Niacin 
trials design complicated their interpretation (734). In addition, major cardiovascular outcomes 
trials of 3 CETP inhibitors torcetrapib (735), dalcetrapib (736), evacetrapib have now failed to 
show a benefit in reducing cardiovascular events. More recently, the CETP inhibitor 
(anacetrapib) was tested in the REVEAL trial, which was a positive outcomes trial (737). 
However, the benefit of anacetrapib in reducing CVE seems to be largely explained by lowering 
of non-HDL, rather than increases in HDL-C (738). More recently, two recombinant apoA-I 
products MDCO-216 and CER001 showed no benefit in imaging studies (739,740). Collectively, 
the failure of these clinical studies has raised doubts about the HDL hypothesis.  Indeed, raising 
HDL-C is presently not a primary target for therapeutic intervention. Nevertheless, HDL infusion 
in humans has been reported to improve endothelial function, which should contribute to 
inhibiting atherogenesis (741). At this time, HDL particle infusion therapies have not been 
proven to be an effective approach to reduce cardiovascular events (742); however, clinical 
trials with reconstituted HDL are still ongoing. Furthermore, recent studies indicate that HDL 



particle number and cholesterol efflux capacity are better indicators of CHD risk than HDL-C 
levels (743,744). The therapeutic targeting of HDL non-cholesterol cargo, quality, and function 
are emerging and gaining support, as HDL have many other biological properties that likely 
contribute to prevention of atherosclerosis and CVD (745). In addition, quantifying HDL function, 
including cholesterol efflux capacity, will provide a better risk index than steady-state HDL-C 
levels (746). 
 
Particle Number and Cholesterol Efflux 
 
A major blow to HDL causality in atherosclerosis comes from genetic studies. Mendelian 
disorders resulting in very low HDL-C levels have yielded conflicting data, as mutations to 
critical lipoprotein genes (e.g. apoA-I) were found to be associated with protection from 
atherosclerosis in one study (747) and increased risk in another study (748). The ApoA-I Milano 
mutation is associated with low levels of HDL-C and reduced risk of CVD (747). Infusion of 
recombinant apoA-I Milano was reported to induce regression of atherosclerosis (749), but there 
has not been clear progress in developing it as an approach to therapy since the initial 
regression study was published. The evidence that some genetic causes of low HDL-C are 
associated with increased risk for premature atherosclerosis, whereas others are not, supports 
the notion that HDL function may be more important than HDL-C levels. Nonetheless, 
Mendelian disorders of low HDL-C levels are rare, and thus the sample sizes in these studies 
are limited and it is difficult to draw accurate conclusions. To address this issue, genome-wide 
association studies were completed to attempt to resolve if HDL-C is a risk index or causal 
factor. These studies are limited in that many variants that raise or lower HDL-C levels also 
affect other lipoproteins, namely LDL-C levels. For example, variants in CETP raise HDL-C 
levels and reduce LDL-C levels, which complicates risk prediction based on HDL-C levels (750). 
Nevertheless, studies have found that variance solely associated with HDL-C levels is not linked 
to cardiovascular events. For example, single nucleotide polymorphisms (SNPs) in endothelial 
lipase (LIPG), which raises HDL-C levels, are not associated with decreased CVD(751). 
 
As failed clinical trials aimed at raising HDL-C levels and genetic studies do not uniformly 
support causality for HDL-C in CVD, HDL functional tests in future prospective studies will likely 
provide more resolution to HDL’s causal role in CVD. Cholesterol efflux capacity, a marker of 
HDL function, has been reported to be inversely associated with CVD risk independent of HDL-
C levels (744,746). This was first demonstrated in a cross-sectional study using radio-tracing of 
cholesterol efflux (746). A subsequent study also found an inverse association between HDL 
efflux capacity and atherosclerosis, but reported a positive link to cardiovascular events (752). 
In a third study assessing HDL cholesterol efflux in a US cohort using a fluorescence method, 
efflux was again linked to decreased risk of CVD (743). Recently, HDL cholesterol efflux 
capacity was found to be inversely associated with CVD risk and events in a large nested case-
control prospective study (n=3,494 subjects) from the EPIC-Norfolk Study (744,753). These 
associations were independent of many other co-founding factors, including HDL-C, T2DM, 
obesity, LDL-C, and age amongst others (744). 
 



In addition to HDL cholesterol efflux and functional indices as risk predictors, HDL particle 
number (HDL-P) has also been reported to provide biomarker potential. HDL-P numbers can be 
quantified using nuclear magnetic resonance (754) or calibrated ion mobility assays (755). HDL-
P was found to be inversely associated with carotid intima medial thickness (cIMT) and coronary 
heart disease (CHD) independent of LDL particle numbers and HDL-C levels in the large multi-
ethnic study of atherosclerosis (MESA) (756). Importantly, HDL-P remains inversely associated 
to CHD after adjusting for triglycerides and apolipoprotein B (apoB), thus suggesting that HDL-P 
is far superior to HDL-C levels as a biomarker of ASCVD and events (757,758). Furthermore, 
neither HDL-C levels nor HDL-P levels correlate to cholesterol efflux from macrophages; 
therefore, the rate of cholesterol efflux is still critical to understanding RCT and HDL function. 
Likewise, HDL quality is more important than apoA-I levels, which also do not correlate with 
HDL function, e.g. RCT (759). Serum samples with identical apoA-I and HDL-C levels were 
found to have differing cholesterol acceptance capacities, mostly due to pre-beta HDL levels, 
which contributed to altered ABCA1-mediated cholesterol efflux (759). These studies strongly 
suggest that HDL function (cholesterol efflux capacity), as opposed to HDL-C, HDL-P, and 
apoA-I levels, provide a more important risk assessment and better predictor of future events as 
well as a more reasoned therapeutic target for reducing CVD risk and events. However, clinical 
assays for apoA-I and HDL-P are widely available and well-established, whereas assays for 
cholesterol efflux capacity have not been standardized and remain a research tool at present.  
 
HDL Composition and Analysis 
 
Historically, HDL have been isolated by density-gradient ultracentrifugation (DGUC) based on 
isopycnic equilibrium, and HDL have been defined by their density 1.063-1.21 g/mL since the 
1950s (760,761). Based on mass, HDL can also be separated from other lipoproteins by size-
exclusion chromatography (fast protein liquid chromatography, FPLC), and HDL’s molecular 
weight ranges from 175,000 - 360,000 Da (762). In addition to DGUC and FPLC, affinity 
chromatography can also be used to purify HDL from plasma using antibodies against apoA-I 
(763) or apoA-II, as HDL heterogeneity includes particles containing apoA-I:apoA-II (75%) or 
apoA-I only (25%) (763,764). Furthermore, asymmetric flow field-flow fractionation is now being 
used to isolate and characterize HDL (765). HDL can also be separated by non-denaturing 
gradient gel electrophoresis, e.g. polyacrylamide gel electrophoresis. Large HDL (HDL2, 8.8-
12.9 nm in diameter) and small HDL (HDL3, 7.2-8.8 nm) are both α migrating particles (high 
negative charge), whereas pre-β HDL (5.4-7 nm) are β migrating particles for which they are 
defined. To quantify pre-β HDL particles, 2-D gel electrophoresis is often used to separate pre-β 
from mature HDL (766). HDL-P numbers can be quantified by either nuclear magnetic 
resonance spectroscopy or calibrated ion mobility assays. HDL can also be quantified and 
qualified by other methods, including vertical rotor ultracentrifugation, and transmission electron 
microscopy. 
 
HDL are very dynamic and should be acknowledged as a heterogeneous pool of sub-classes 
with differing sizes, shapes, densities, protein compositions, and lipid diversity. Lipid-free apoA-I 
is secreted from the liver and small intestine as an amphipathic helix, and it quickly becomes 
lipidated by ABCA1 to form pre-β HDL, which then becomes discoidal after accepting 



phospholipid and free cholesterol from hepatocytes and peripheral cells. Upon further lipidation 
and cholesterol accumulation and esterification, nascent spherical HDL forms that range 7-12 
nm in diameter. Mature HDL contains 3-4 apoA-I molecules of which 1 remains on the particle 
and the other apoA-I are free to (dis)associate (exchange) on and off the particle with other 
HDL. This is predominantly associated with rearrangement of HDL’s aqueous phase and 
surface area (767). As such, HDL are in a constant state of remodeling and interconversion. 
Each spherical HDL particle has approximately 50-130 phospholipids, 10-50 free cholesterol 
molecules, 30-90 CE molecules, and 10-20 triglyceride (TG) molecules (536). 
Phosphatidylcholine makes up the largest amount of lipid on HDL (approximately 90%); 
however, over 200 species of lipids have been reported, including sphingolipids, acylglycerols, 
isoprenoids, glycerophospholipids, and vitamins (768,769). The HDL proteome has been 
extensively studied and there is a general consensus of approximately 80 proteins (770,771). In 
addition to apoA-I and apoA-II, HDL transports over a dozen other apolipoproteins, as well as 
many enzymes and other factors. HDL have also been found to transport small RNAs, namely 
microRNAs (miRNA), which were found to be altered in hypercholesterolemia and 
atherosclerosis (772,773). Most interestingly, HDL have been demonstrated to transport a wide-
variety of exogenous non-host small RNAs, including rRNA and tRNA fragments derived from 
bacterial and fungal species present in the microbiome and environment (774).The size of HDL 
is determined by the amount of CE and triglyceride (TG) in the hydrophobic core, and HDL is 
generally separated into 5 sub-classes based on size. Distinct HDL sub-species have been 
associated with CVD risk, and the sub-species have differential biological functions, e.g. large 
HDL are less anti-inflammatory (775-777). Many of the cargo or components of HDL are 
enriched in the small HDL sub-class which provides many of the alternative functions to the total 
HDL pool (778,779). The concentration of all HDL particles in plasma is approximately 20 
umol/L; however, small HDL particles are the most abundant sub-class at approximately 10 
umol/L. HDL are heterogeneous particles that transport a wide-variety of proteins, lipids, and 
nucleic acids, which confer many of HDL’s biological properties and beneficial functions in 
health and dysfunction in specific diseases. 
  
HDL Cell Signaling 
 
Many of HDL’s cellular functions – cell survival, proliferation, vasodilation -- are mediated by 
HDL-induced cell signaling cascades (780). As such, HDL can be characterized as hormone-
like agonists. Although substantial work still remains in identifying HDL binding proteins and 
receptors on the cell surface, HDL have been found to activate many signaling cascades 
through various receptors. The most studied example of this is HDL’s ability to bind to the 
plasma membrane and through cell signaling mobilize cholesterol from intracellular stores in 
organelles to the plasma membrane for efflux. This has been attributed to HDL-induced 
activation of protein kinase C (PKC) (781). Specifically, apoA-I binds to ABCA1 and activates 
phosphatidylcholine lipases, which activate PKC leading to the movement of cellular cholesterol 
from intracellular stores to the plasma membrane for efflux, as well as PKC-mediated 
phosphorylation of ABCA1, which increases the transporter’s stability and efflux activity (782-
784). This is a prime example of HDL-induced cell signaling that contributes to HDL cholesterol 
efflux capacity, which reduces the cholesterol burden for macrophages in the lesion, prevents 



foam cell formation, and antagonizes atherogenesis. Other HDL-induced signaling pathways 
that result in increased cholesterol and lipid efflux include protein kinase A (PKA) (785,786), cell 
division control protein 42 (Cdc42) (787), and Janus kinases-2 (JAK2) (788,789) cascades. HDL 
(i.e. apoA-I)-induced cell signaling through ABCA1 also suppresses macrophage M1 phenotype 
activation and pro-inflammatory cytokine production (Figure 10), and promotes M2 phenotype 
anti-inflammatory cytokine secretion (e.g. interleukin 10 (IL-10)) through JAK2 signaling and 
activation of signal transducer and activator of transcription 3 (STAT3) (75). In addition, the 
apoA-I:ABCA1:JAK2 axis was reported to suppress inflammation in endothelial cells through 
cyclooxygenase-2 (COX-2) activation leading to increased prostaglandins (PGI2), which also 
suppresses atherogenesis (790). HDL have also been reported to induce cell signaling through 
SR-BI. HDL binding to SR-BI’s extracellular loop was reported to trigger activation of SR-BI’s 
cytoplasmic C terminal domain leading to the phosphorylation of protein kinase Src and 
activation of both liver kinase B1 (LKB1) and calmodulin-dependent protein kinase (CAMK) 
(791,792). This results in cell signaling through downstream kinases – AMP-activated protein 
kinases (AMPK) (792), protein kinase Akt (791), and mitogen-activated protein kinase 
(MAPK)(791) – which ultimately regulates angiogenesis (ubiquitin ligase Siah (Siah1/2) and 
hypoxia-inducible factor 1α (HIF1α) (793)), insulin sensitivity (glucose transporter 4 
(Glut4)(794)), re-vascularization (Rac1(795)), and vasodilation (COX(796), endothelial nitric 
oxide synthase (eNOS)(797,798)). Interestingly, macrophage SR-BI has recently been shown to 
mediate efferocytosis (phagocytosis of dead cells) in the setting of atherosclerosis via a 
Src/Akt/Rac1 signaling pathway, reducing necrosis in lesions (185). All of these downstream 
effects contribute to HDL function, and to a lesser degree atherogenesis.  
 
The most robust HDL signaling activation is mediated by bioactive lipids on HDL, namely the 
lysosphingolipid sphingosine-1-phosphate (S1P). A majority of S1P in circulation is associated 
with HDL, and HDL-S1P activates the G-coupled S1P receptors (S1P1-5) on the surface of many 
vascular cell types, including macrophages, endothelial cells, and smooth muscle cells. 
Activation of S1P1 and S1P2 receptors turns on a host of signaling cascades and factors that 
directly contribute to the many anti-atherogenic properties of HDL, including increasing 
endothelial barrier function (799) and angiogenesis (800,801) while decreasing inflammation 
(802) and apoptosis (803). HDL were also found to inhibit smooth muscle migration through 
S1P signaling, a key factor in restenosis and plaque development (804). All of these are critical 
processes to atherogenesis. In support of these studies, subjects with CAD were found to have 
decreased HDL-S1P levels (805). The key terminal effector factors in these G-protein receptor 
signaling cascades are focal adhesion kinase (FAK), nuclear factor κ beta (NF-κB), nicotinamide 
adenine dinucleotide phosphate (NADPH) oxidase, eNOS, STAT3, and B-cell lymphoma-extra-
large (Bcl-xl) (780). This HDL-S1P signaling pathway has also been linked to vasorelaxation 
(806) and cytoprotection (e.g. cardiomyocytes) (807). In addition to these direct pathways, HDL 
also likely activates cell signaling indirectly through ATP (β-ATPase/P2Y12/13)(808) or toll-like 
receptors (809). Collectively, HDL induced cell signaling in vascular and inflammatory cells 
underlies HDL’s anti-atherogenic properties in health, and deficits in HDL signaling likely link 
HDL dysfunction in metabolic diseases to increased risk of atherosclerosis. 
 
Anti-Inflammatory HDL 



 
Outside reverse cholesterol transport, HDL’s anti-inflammatory properties have been the most 
extensively studied HDL function and likely play a large role in HDL’s anti-atherogenicity (Figure 
10). HDL’s anti-inflammatory properties are conferred by numerous mechanisms in many types 
of cells. In addition to providing the vascular barrier, endothelial cells control vascular 
inflammation through expressing adhesion molecules that aid in monocyte adhesion and 
ultimate migration into the atherosclerotic lesion. Moreover, activated endothelial cells secrete 
cytokines and recruit monocytes through chemokine release. The induction of adhesion 
molecules, cytokines, and chemokines in activated endothelial cells is largely due to NF-�B 
transcriptional activation. In humans, injection of apoA-I resulted in decreased adhesion 
molecule expression in atherosclerotic plaques (810). One mechanism by which HDL 
suppresses endothelial cell and monocyte activation is through inhibiting NF-kB activity by 
attenuating IkB kinase activity (811). Nonetheless, HDL decreases adhesion molecule 
expression through multiple mechanisms. Cells pre-treated with HDL or apoA-I are protected 
from TNFα or oxidized LDL (oxLDL)-induced adhesion molecule expression. In addition, HDL 
binding to SR-BI may also contribute to inhibition of adhesion molecule expression, as SR-BI-
mediated Akt activation promoted heme oxygenase-1 expression. In addition, up-regulation of 
3-beta-hydroxysteroid-delta 24 (DHCR24) by HDL binding to SR-BI was reported to underlie 
HDL’s ability to suppress adhesion molecules (812). Furthermore, HDL suppression of 
intracellular adhesion molecule-1 (ICAM-1) in endothelial cells was found to be mediated, in 
part, through the transfer of miR-223 to recipient cells (773). Recent studies also suggest that 
TGFβ and AMPK also contribute to HDL’s suppression of adhesion molecule expression (813).  
 
In addition to HDL’s profound effects on vascular endothelium, HDL suppresses myelopoiesis, 
monocyte recruitment, macrophage activation, proliferation, and emigration from atherosclerotic 
lesions. Similar to its impact on endothelial cells, HDL also suppresses adhesion molecule 
expression in monocytes, which inhibits monocyte adhesion and migration to atherosclerotic 
lesions (814). HDL and apoA-I were demonstrated to suppress CD11b expression on human 
monocytes through both ABCA1-dependent and independent mechanisms (814). HDL inhibition 
of monocyte activation, which includes suppression of cytokines and adhesion molecules, is 
mediated through both peroxisome proliferator-activated receptor gamma (PPARγ) and NF-kB 
transcription factors (815). Suppression of chemokine and cytokines in myeloid cells inhibits 
infiltration and migration of circulating monocytes, and thus antagonizes atherosclerosis. HDL 
have also been reported to mediate macrophage reprogramming through the transcription factor 
ATF3 that reduces Toll-like receptor signaling (816). Importantly, much of HDL’s (and apoA-I’s) 
inhibition of macrophage activation is mediated through altering cholesterol levels in plasma 
membrane lipid rafts through cholesterol efflux mediated by ABCG1/SR-BI and ABCA1; 
however, apoA-I induced signaling through ABCA1 and the JAK/STAT pathway independent of 
cholesterol efflux may also contribute to HDL’s effect, as described above (75,817) (814,818). 
HDL have also been demonstrated to promote macrophage emigration through removing 
excess cholesterol and induction of signaling pathways (208). In addition to HDL’s impact on 
monocytes and macrophages, HDL also strongly suppresses neutrophil activation and vascular 
smooth muscle cell secretion of monocyte chemoattractant protein-1 (MCP1) (819).  
 



In addition to HDL’s roles in innate immunity, recent evidence suggests that HDL play multiple 
roles in adaptive immunity (820). Mice lacking apoA-I develop autoimmunity when challenged 
with a high cholesterol (diet and background, Ldlr-/-), which includes T cell activation and 
production of autoantibodies (821,822). This phenotype was rescued by apoA-I injections. HDL 
have also been reported to repress both antigen-presenting cell (APC) activation of T cells and 
T cell activation of monocytes, thus preventing the secretion of proinflammatory cytokines and 
chemokines (Figure 10) (823,824). ApoA-I also prevents the phenotypic switching of T-regs into 
pro-inflammatory follicular helper T cells during atheroprogression (92). Moreover, cholesterol 
efflux to HDL and apoA-I have been reported to suppress myelopoiesis and proliferation of 
myelopoietic stem and progenitor cells, as loss of function for both Abca1 and Abcg1 in mice 
resulted in increased myelopoiesis (820). Injection of apoA-I was also found to rescue this 
phenotype (825). In addition, HDL and cholesterol efflux were reported to suppress 
megakaryocyte progenitor proliferation, platelet levels, and thrombocytosis (826). Collectively, 
HDL and apoA-I inhibit circulating levels of hematopoietic progenitor cells, monocytes, 
neutrophils, and platelets all of which contribute to HDL’s capacity to limit inflammation and 
atherosclerosis. 
 
Antithrombotic HDL 
 
Another anti-atherogenic function of HDL is the capacity to directly and indirectly inhibit platelet 
activation, aggregation, and thrombus formation (Figure 10). HDL-C levels were found to be 
inversely associated with thrombus formation in humans (827). HDL is required to remove 
excess cholesterol from the plasma membrane of platelets for proper function, and platelets 
isolated from mice lacking SR-BI to mediate cholesterol efflux to HDL were found to be more 
susceptible to activation (828,829). Both HDL and cyclodextrin-mediated cholesterol efflux were 
found to inhibit platelet aggregation (828). However, HDL-induced cell signaling through binding 
to glycoprotein IIb/IIIa on the surface of platelets was reported to activate phospholipase C 
(PLC) and PKC, thus leading to flux through the Na+/H+ antiport system (717). This pathway 
can result in alkalization of the cytoplasm and calcium release, which can reduce platelet 
activation (830). Furthermore, HDL dose-dependently inhibits stimulated platelet activation, 
which leads to reduced platelet aggregation, granule secretion and fibrinogen binding. In rats, 
apoA-I injections inhibited thrombus formation and reduced thrombus mass (831). HDL’s anti-
thrombotic effects are also mediated, in part, through HDL’s ability to inhibit tissue factor and 
factors X, Va, and VIIIa (Figure 10) (832). HDL also prevents thrombus formation through cell 
signaling and nitric oxide (NO) production in endothelial cells (828), and suppression of tissue 
factor and platelet-activating factor expression in endothelial cells (833,834). HDL also reduces 
erythrocyte influence on thrombus formation (835). Collectively, HDL has multiple biological 
mechanisms that inhibit thrombus formation, and thus, contribute to HDL’s anti-atherogenic 
properties. 
 
Pro-Vasodilatory HDL 
 
The endothelium significantly contributes to vascular tone, and HDL confer protection against 
endothelial cell activation, apoptosis, and loss of barrier function, which is critical to 



atherogenesis. HDL have been reported to induce endothelium-dependent vasodilation in aortic 
rings (806), and individuals with low HDL have reduced endothelium-dependent vasorelaxation 
(Figure 10) (741). HDL’s benefit to endothelial cells is largely mediated by cell signaling through 
phosphatidylinositol 3-kinase (PI3K) and Akt and is induced by bioactive lipids and associated 
proteins on HDL, including lysosulfatide, S1P, and sphingosylphosphorylcholine (SPC) 
(791,798,806). A key outcome of HDL-induced cell signaling is the production of NO (Figure 10) 
through both signaling induced phosphorylation of eNOS and increased eNOS expression 
(791,836). HDL can trigger eNOS-phosphorylation through SR-BI, S1P receptor (S1P1-5), and 
ABCG1-mediated cholesterol efflux (806,837). HDL-induced NO underlies many of HDL’s 
beneficial properties to endothelial cells, including HDL-induced vasodilation, tightening of cell-
to-cell junctions and increased barrier function, differentiation of endothelial progenitor cells, cell 
survival and proliferation, cell migration, inhibition of apoptosis, and suppression of adhesion 
molecule expression. In addition, HDL also has NO-independent properties on endothelial cells, 
including induced proliferation, increased barrier function, suppressed inflammation and 
decreased apoptosis (838). These studies clearly define a beneficial role for HDL in vascular 
integrity, which underlies HDL protection against atherosclerosis. 
 
Anti-Apoptotic HDL 
 
HDL have multiple anti-apoptotic properties that enhance cell survival (Figure 10). By various 
metrics, HDL support mitochondrial function and prevent the release of apoptotic signals, 
including cytochrome C (205,839). Moreover, HDL drives the expression of Bcl-xl, which is a 
strong anti-apoptotic factor and suppresses Bid, which is a pro-apoptic protein (839,840). HDL 
mediates these gene expression changes through cell signaling and NO production through 
activation of surface receptors by HDL-associated proteins and bioactive lipids, including 
apolipoprotein J (apoJ) and S1P (803,840). In addition, there are likely alternative anti-apoptotic 
mechanisms resulting from HDL-induced signaling. Nonetheless, HDL has been demonstrated 
to suppress apoptosis in endothelial cells (Figure 10) activated with tumor necrosis factor 
(TNFα) and oxLDL (839,841,842). HDL proteins (apolipoprotein M, apoM) and apoM-binding 
lipids (S1P) contribute to HDL’s ability to increase tight junctions and endothelial cell survival 
(843). Mice deficient in apoM have reduced S1P levels and loss of endothelium barrier function 
(843). HDL’s ability to support the endothelium barrier function is a key feature of its anti-
atherosclerosis properties and represents a classic example of HDL’s control of cellular gene 
expression and phenotype that are beneficial to vascular health. However, HDL also have many 
capacities in the extracellular space (e.g. plasma) that protect against atherosclerosis. 
 
Anti-Oxidative HDL 
 
A key factor in monocyte activation and chemotaxis in the vascular wall is the accumulation of 
oxLDL, which is more pro-inflammatory and pro-atherogenic than unmodified LDL. LDL can 
become oxidized by a variety of endogenous mechanisms (844). In the vascular wall, LDL can 
be modified (oxidized) by many cell types, including vascular smooth muscle cells, endothelial 
cells, and macrophages (776). Remarkably, HDL prevents the oxidation of LDL (Figure 10) and 
recent evidence suggests that this may occur through 4 distinct proteins circulating on HDL – 



apoA-I (845,846), LCAT (847), lipoprotein-associated phospholipase A2 (Lp-PLA2)(848,849), 
and paraoxonase 1 (PON1) (430,846). First, HDL can simply soak up oxidized lipids or oxidizing 
factors from cells preventing their association with LDL and their modification of LDL lipids and 
proteins. In addition, HDL removes lipid hydroperoxides from LDL particles (846). Specifically, 
small apoAI containing HDL particles are the most efficient at accepting lipid hydroperoxides, 
which are reduced to their inactive lipid hydroxides via oxidation of the methionine residues in 
apoA-I (850). Compared to apoA-II the methionine residues in apoA-I are more conformationally 
conducive to reducing lipid hydroperoxides (851,852). In addition, HDL with low surface free 
cholesterol and sphingomyelin are more efficient at accepting lipid hydroperoxides (745,853). 
The capacity of HDL to prevent oxidation via this mechanism is also maintained by the selective 
removal of HDL lipid hydroperoxides and hydroxides by hepatocyte SR-BI (854). In addition, 
ApoA-I methionine sulfoxide is reduced to methionine by methionine sulfoxide reductases.(850). 
LCAT circulates on HDL and has also been reported to block LDL oxidation, as LCAT over-
expression in mice reduced LDL oxidation as determined by reduced LDL autoantibodies (855). 
Lp-PLA2 appears to be pro-atherogenic on LDL and anti-atherogenic on HDL (856). Its activity 
on HDL likely contributes to HDL’s anti-oxidative capacity, as inhibition of HDL-associated Lp-
PLA2 attenuated HDL’s ability to block LDL oxidation (848). The strongest anti-oxidative HDL 
protein is likely PON1. Over-expression of PON1 in mice confers enhanced HDL anti-oxidative 
capacity, and PON1 itself prevents LDL oxidation in vitro (432). Most importantly, HDL isolated 
from mice lacking PON1 have reduced ability to prevent LDL oxidation. HDL’s anti-oxidative 
capacity likely plays a large role in preventing inflammation and atherogenesis, and like many of 
the other alternative functions, confer HDL’s beneficial role in health. 
 
HDL Intercellular Communication 
 
HDL also likely participate in intercellular communication through the transfer of nucleic acids 
between tissues. Recently, HDL have been reported to transport miRNA (Figure 10), which are 
small non-coding RNAs that suppress gene expression through binding to complimentary target 
sites in the 3’ untranslated region of mRNAs, and thus inhibit translation and induce mRNA 
degradation (772). Most interestingly, the HDL-miRNA profile is significantly altered in 
hypercholesterolemia and atherosclerosis (772). miRNAs have been reported to be exported 
from macrophages to HDL, and HDL has been demonstrated to transfer specific miRNAs to 
recipient hepatoma cells (Huh7) and endothelial cells, likely through HDL’s receptor SR-BI 
(773). In endothelial cells, HDL was found to deliver miR-223 to recipient cells, where it directly 
targeted intracellular adhesion molecule-1 (ICAM-1) expression (Figure 10), and thus inhibited 
neutrophil adhesion to the cells (773). miR-223 is not transcribed or processed in endothelial 
cells and HDL delivery of mature miR-223 to endothelium likely confers, in part, HDL’s anti-
inflammatory capacity associated with adhesion molecule suppression. Future studies are 
needed to determine the physiological relevance and functional impact of HDL-miRNAs in 
humans and animal models in the context of atherosclerosis and other inflammatory diseases. 
 
Anti-Infectious HDL 
 



HDL also contributes to innate immunity by modulating immune cell function. However, this 
hypothesis has not been extensively studied in the context of atherosclerosis. HDL are anti-
infectious, anti-parasitic, and anti-viral. HDL have the unique capacity to prevent endotoxic 
shock and readily binds to lipopolysaccharides (LPS) and contributes to removing LPS through 
biliary excretion thus aiding innate immunity (857-859). Amongst the many proteins that 
circulate on HDL, apolipoprotein L1 (apo-L1) (also known as trypanosome lytic factor) is present 
in specific sub-classes of HDL (860,861). This factor kills Trypanosome brucei and 
Trypanosome brucei rhdesiense, parasites that cause sleeping sickness, through creating ionic 
pores in endosomes (860-862). Although promising, future studies are required to define how 
HDL regulation of innate immunity contributes to the inhibition of atherogenesis. 
 
HDL Dysfunction 
 
HDL confer many anti-atherogenic properties that are lost in atherosclerosis and other 
inflammatory and metabolic diseases. These include 9 key processes –  
• Loss of cholesterol efflux capacity from macrophages 
• Reduced ability to inhibit LDL oxidation 
• Decreased vasodilation through reduced NO production in endothelial cells 
• Reduced ability to inhibit monocyte chemotactic activity 
• Loss of the ability to metabolize hydroperoxides on erythrocyte membranes 
• Reduced ability to suppress TNFα-induced NF-κB activation and adhesion molecule 

expression 
• Loss of anti-apoptotic capacity in endothelial cells 
• Decreased capacity to block TNFα-induced NADPH oxidase activity and superoxide 

production 
• Suppression of cytokine inhibition in activated inflammatory cells.  
 
Many of these defects are due to changes in HDL cargo, e.g. decreased PON1 levels or 
increased serum amyloid A (SAA) levels. Moreover, changes in the content of bioactive lipids or 
increased oxidative modifications to HDL’s lipids and protein cargo likely confer dysfunction. 
HDL-miRNAs have been shown to be significantly altered in hypercholesterolemia and 
atherosclerosis (772). It is unknown how these changes contribute to HDL’s loss of anti-
atherogenic properties, but they hold great potential for future studies. In CHD, acute coronary 
syndrome (ACS), and ischemic cardiomyopathy, HDL have reduced ability to inhibit oxidation of 
LDL, likely through reduced PON1 levels as reported in CHD (845,863,864). Loss of PON1 also 
reduces HDL’s ability to prevent oxidation of its own lipids and proteins, which has been 
reported in metabolic syndrome as oxidation of apoA-I impairs HDL’s RCT and anti-
inflammatory functions (865). Reduced HDL-PON1 levels are also found in other 
cardiometabolic diseases, including type 2 diabetic mellitus (T2DM) (866,867), type 1 diabetes 
mellitus (T1DM) (868), rheumatoid arthritis (RA) (869,870), dyslipidemia (e.g. 
hyperalphalipoproteinemia (HALP) (871)), and patients after cardiac surgery (872). In subjects 
with ACS and CAD, HDL have been reported to have decreased ability to prevent endothelial 
cell apoptosis likely through decreased activation (phosphorylation) of Bcl-xl and increased 
activation of Bcl-2, which are anti-apoptotic and pro-apoptotic proteins, respectively (840). Loss 



of HDL’s anti-apoptotic capacity has been proposed to be due to increased apoCIII and possibly 
decreased clusterin levels on HDL (840). HDL from subjects with CHD also have decreased 
ability to prevent monocyte adhesion to endothelial cells and recruitment in arterial wall co-
cultures, which could be associated with reduced PON1 levels amongst other cargo 
(845,873,874). HDL from ischemic cardiomyopathy and CAD subjects also have reduced 
cholesterol efflux acceptance capacity, which likely leads to increased foam cell formation in the 
atherosclerotic lesion and increased atherogenesis (746,863). Although the molecular basis for 
all of HDL’s loss of anti-atherogenicity in CHD is not known, other functions of HDL are 
compromised in these subjects, including the ability to reduce hydroperoxides on erythrocyte 
membranes (875). This loss of HDL’s anti-oxidant capacity is also found in T2DM (875) and 
T1DM (868,876). HDL in metabolic syndrome have been reported to have decreased capacity 
to prevent oxidation of LDL and inhibit endothelial cell apoptosis (877,878). This loss of anti-
atherogenic properties is also found in hypertension (879), T2DM (867,880,881), end-stage 
renal disease (ESRD) (882,883), RA (869,870,884,885), systemic erythematosus lupus (SLE) 
(884), obstructive sleep apnea (886), and dyslipidemia (HALP) (871). Reduced ability of HDL to 
stimulate NO production from endothelial cells and decreased vasorelaxation properties are 
reported for T2DM (887,888), T1DM (889), mild chronic kidney disease (CKD) (890), and rare 
forms of autoimmunity (ALPS) (891). Loss of HDL-mediated cholesterol efflux capacity has 
been found in patients with hyperhomocysteinemia (892), sepsis (893), psoriasis (894), SLE 
(895), RA (885,896), ESRD (897,898), and T2DM (899,900). Not only does HDL dysfunction 
result from loss of key proteins and cargo, HDL can gain pro-atherogenic cargo and properties 
in cardiometabolic diseases. Due to loss of PON1, HDL accumulate malonaldehydes, which 
inhibits NO production through increased phosphorylation of eNOS through LOX-1 receptor 
signaling (901). 
 
HDL Summary 
 
Years of sound epidemiological studies have clearly established an inverse relationship 
between HDL-C levels and risk of CVD. Nevertheless, recent GWAS studies suggest that 
individuals with high HDL-C levels are not protected from CVD. Furthermore, clinical studies 
aimed at raising HDL-C levels through niacin and CETP inhibitors have failed to reduce risk of 
cardiovascular events and have been stopped prematurely due to lack of efficacy or increased 
number of events. Although they’re often lumped together, HDL-C levels do not represent HDL 
particle numbers or HDL function (e.g. cholesterol efflux capacity); both of which have been 
reported to be better indicators of CVD risk than HDL-C. In addition to HDL’s transport of 
cholesterol and lipids in the RCT pathway, HDL transports a wide-variety of cargo, including a 
diverse group of proteins, small RNAs, bioactive lipids, and many other small molecules. These 
alternative cargos may confer many of HDL’s alternative functions outside of RCT. In fact, HDL 
have many beneficial properties, including anti-inflammatory, anti-oxidative, anti-thrombotic, 
anti-infectious, anti-apoptotic, intercellular communication, and pro-vasodilatory capacities. 
Recently, HDL dysfunction has been reported in many cardiometabolic diseases, including 
CAD, T2D, and CKD. Current and future challenges include the need to better define HDL anti-
atherogenic properties in health and pro-atherogenic influences in disease to better control HDL 
function to potentially prevent and treat CVD. 
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