Archives

figure3

Figure 3. Structural organization of the Vasopressin-neurophysin II gene, and processing of its product. The VP-NPII gene has 3 exons. Translation of the mRNA yields a larger preprohormone precursor, subsequently modified through substantial post-translational modification. The OT gene has a similar structure, and its product undergoes similar processing and post-translational modification. VP: Vasopressin; NPII: Neurophysin II.

Figure 3. Structural organization of the Vasopressin-neurophysin II gene, and processing of its product. The VP-NPII gene has 3 exons. Translation of the mRNA yields a larger preprohormone precursor, subsequently modified through substantial post-translational modification. The OT gene has a similar structure, and its product undergoes similar processing and post-translational modification. VP: Vasopressin; NPII: Neurophysin II.

Figure 3. Structural organization of the Vasopressin-neurophysin II gene, and processing of its product. The VP-NPII gene has 3 exons. Translation of the mRNA yields a larger preprohormone precursor, subsequently modified through substantial post-translational modification. The OT gene has a similar structure, and its product undergoes similar processing and post-translational modification. VP: Vasopressin; NPII: Neurophysin II.

figure2

Figure 2. The structural and chemical characteristics of Vasopressin and Oxytocin. The cyclical peptides differ in only 2 amino acid positions. Both contain disulphide bridges between Cysteine residues at positions 1 and 6.

Figure 2. The structural and chemical characteristics of Vasopressin and Oxytocin. The cyclical peptides differ in only 2 amino acid positions. Both contain disulphide bridges between Cysteine residues at positions 1 and 6.

Figure 2. The structural and chemical characteristics of Vasopressin and Oxytocin. The cyclical peptides differ in only 2 amino acid positions. Both contain disulphide bridges between Cysteine residues at positions 1 and 6.